
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1726572/publications.pdf Version: 2024-02-01

YONG-FELZENC

#	Article	IF	CITATIONS
1	Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy. Chemical Research in Chinese Universities, 2022, 38, 402-408.	2.6	7
2	High iodine uptake in two-dimensional covalent organic frameworks. Chemical Communications, 2021, 57, 5558-5561.	4.1	38
3	Acid-Labile Temperature-Responsive Homopolymers and a Diblock Copolymer Bearing the Pendent Acetal Group. Macromolecules, 2021, 54, 3725-3734.	4.8	7
4	Guest-Regulated Luminescence and Force-Stimuli Response of a Hydrogen-Bonded Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 32270-32277.	8.0	38
5	Highly Active Pd-PEPPSI Complexes for Suzuki-Miyaura Cross-coupling of Aryl Chlorides: an Investigation on the Effect of Electronic Properties. Chemical Research in Chinese Universities, 2020, 36, 859-864.	2.6	4
6	Novel thermoresponsive homopolymers of poly[oligo(ethylene glycol) (acyloxy) methacrylate]s: LCST-type transition in water and UCST-type transition in alcohols. Polymer, 2020, 203, 122746.	3.8	21
7	Covalent-Organic-Framework-Based Composite Materials. CheM, 2020, 6, 3172-3202.	11.7	127
8	<scp><i>N</i>â€Heterocyclic</scp> Carbene Copper(I) Complex Catalyzed Coupling of (Hetero)aryl Chlorides and Nitrogen Heterocycles: Highly Efficient Catalytic System. Chinese Journal of Chemistry, 2020, 38, 1252-1256.	4.9	5
9	Highly Active Heterogeneous PdCl 2 /MOF Catalyst for Suzuki–Miyaura Cross oupling Reactions of Aryl Chloride. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1336-1341.	1.2	9
10	Self-Assembly Evolution of <i>N</i> -Terminal Aromatic Amino Acids with Transient Supramolecular Chirality. Journal of Physical Chemistry Letters, 2020, 11, 1490-1496.	4.6	9
11	Integrating Suitable Linkage of Covalent Organic Frameworks into Covalently Bridged Inorganic/Organic Hybrids toward Efficient Photocatalysis. Journal of the American Chemical Society, 2020, 142, 4862-4871.	13.7	304
12	Two-dimensional covalent–organic frameworks for ultrahigh iodine capture. Journal of Materials Chemistry A, 2020, 8, 9523-9527.	10.3	92
13	Novel thiol-functionalized covalent organic framework as adsorbent for simultaneous removal of BTEX and mercury (II) from water. Chemical Engineering Journal, 2020, 398, 125566.	12.7	69
14	Construction of a Sandwiched MOF@COF Composite as a Size-Selective Catalyst. Cell Reports Physical Science, 2020, 1, 100272.	5.6	21
15	Construction of Covalentâ€Organic Frameworks (COFs) from Amorphous Covalent Organic Polymers via Linkage Replacement. Angewandte Chemie - International Edition, 2019, 58, 17679-17683.	13.8	78
16	Construction of Covalentâ€Organic Frameworks (COFs) from Amorphous Covalent Organic Polymers via Linkage Replacement. Angewandte Chemie, 2019, 131, 17843-17847.	2.0	13
17	A Highly Active Catalyst System for Suzuki–Miyaura Coupling of Aryl Chlorides. Organometallics, 2019, 38, 1459-1467.	2.3	25
18	A Novel Strategy for the Construction of Covalent Organic Frameworks from Nonporous Covalent Organic Polymers. Angewandte Chemie, 2019, 131, 4960-4964.	2.0	22

#	Article	IF	CITATIONS
19	Diverse Role of Solvents in Controlling Supramolecular Chirality. Chemistry - A European Journal, 2019, 25, 7426-7437.	3.3	50
20	A Novel Strategy for the Construction of Covalent Organic Frameworks from Nonporous Covalent Organic Polymers. Angewandte Chemie - International Edition, 2019, 58, 4906-4910.	13.8	76
21	Tuning Expanded Pores in Metal–Organic Frameworks for Selective Capture and Catalytic Conversion of Carbon Dioxide. ChemSusChem, 2018, 11, 3751-3757.	6.8	47
22	Tuning Synergistic Effect of Au–Pd Bimetallic Nanocatalyst for Aerobic Oxidative Carbonylation of Amines. Chemistry of Materials, 2017, 29, 3671-3677.	6.7	38
23	PKUâ€21: A Novel Layered Germanate Built from Ge ₇ and Ge ₁₀ Clusters for CO ₂ Separation. Chemistry - A European Journal, 2017, 23, 17879-17884.	3.3	0
24	Synergistic Effect of Mesoporous Co ₃ O ₄ Nanowires Confined by N-Doped Graphene Aerogel for Enhanced Lithium Storage. Small, 2016, 12, 3849-3860.	10.0	80
25	Metal-Organic Frameworks: Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2Conversion (Small 17/2016). Small, 2016, 12, 2386-2386.	10.0	2
26	Bimetallic Metalâ€Organic Frameworks: Probing the Lewis Acid Site for CO ₂ Conversion. Small, 2016, 12, 2334-2343.	10.0	122
27	Covalent Organic Frameworks for CO2Capture. Advanced Materials, 2016, 28, 2855-2873.	21.0	873
28	Carbon Dioxide Capture: Covalent Organic Frameworks for CO ₂ Capture (Adv. Mater.) Tj ETQq0 0	0 rgBT /Ov 21.0	erlock 10 Tf 5
29	Metal nuclearity affects network connectivity: a series of highly connected metal–organic frameworks based on polynuclear metal clusters as secondary building units. CrystEngComm, 2016, 18, 8182-8193.	2.6	12
30	Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water. Nano Letters, 2016, 16, 2860-2866.	9.1	473
31	Surface Conductive Grapheneâ€Wrapped Micromotors Exhibiting Enhanced Motion. Small, 2015, 11, 5023-5027.	10.0	28
32	Reconstruction of Covalent Organic Frameworks by Dynamic Equilibrium. Chemistry - A European Journal, 2015, 21, 16818-16822.	3.3	51
33	Covalent Organic Frameworks Formed with Two Types of Covalent Bonds Based on Orthogonal Reactions. Journal of the American Chemical Society, 2015, 137, 1020-1023.	13.7	276
34	Synthesis of Microporous Nitrogenâ€Rich Covalentâ€Organic Framework and Its Application in CO ₂ Capture. Chinese Journal of Chemistry, 2015, 33, 90-94.	4.9	67
35	Waterâ€Soluble Pillarareneâ€Functionalized Graphene Oxide for Inâ€Vitro Raman and Fluorescence Dualâ€Mode Imaging. ChemPlusChem, 2014, 79, 462-469.	2.8	41
36	Tuning the magnetic behaviors in [FellI12LnIII4] clusters with aromatic carboxylate ligands. Inorganic Chemistry Frontiers, 2014, 1, 200-206.	6.0	35

#	Article	IF	CITATIONS
37	Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials, 2014, 35, 7951-7962.	11.4	134
38	Iron(III)â€Quantityâ€Dependent Aggregation–Dispersion Conversion of Functionalized Gold Nanoparticles. Chemistry - A European Journal, 2014, 20, 4032-4037.	3.3	17
39	Five new Mn(II)/Co(II) coordination polymers constructed from flexible multicarboxylate ligands with varying magnetic properties. Journal of Solid State Chemistry, 2013, 204, 197-204.	2.9	10
40	Engineering a Hollow Nanocontainer Platform with Multifunctional Molecular Machines for Tumor-Targeted Therapy <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2013, 7, 10271-10284.	14.6	212
41	Fe ₂₀ Cluster Units Based Coordination Polymer from in Situ Ligand Conversion and Trapping of an Intermediate. Inorganic Chemistry, 2012, 51, 9571-9573.	4.0	26
42	Three new Cu(II)-Ln(III) heterometallic coordination polymers constructed from quinolinic acid and nicotinic acid: Synthesis, structures, and magnetic properties. Science China Chemistry, 2012, 55, 1064-1072.	8.2	18
43	Isomorphous tetrazolate MnII and CoII compounds built on Δ-chain showing different magnetic behaviors. Dalton Transactions, 2011, 40, 11955.	3.3	22
44	An unprecedented double-bridging interpenetrating α-Po network based on a new heterometallic cluster {Cu ₄ Mo ₆ }. Dalton Transactions, 2011, 40, 31-34.	3.3	31
45	Novel coordination polymers with 1,4-di(benzimidazole-1-yl)benzene modulated by an anion: Syntheses, structures and properties. Science China Chemistry, 2010, 53, 2170-2176.	8.2	4
46	Cadmium coordination polymers based on biimidazole and bibenzimidazole: Syntheses, crystal structures and fluorescent properties. Solid State Sciences, 2010, 12, 1357-1363.	3.2	7
47	Single-Molecule-Magnet Behavior in a Fe12Sm4Cluster. Inorganic Chemistry, 2010, 49, 9734-9736.	4.0	85
48	Zeolite-like Metalâ^'Organic Framework Based on a Flexible 2-(1 <i>H</i> -benzimidazol-2-ylthio)acetic Ligand: Synthesis, Structures, and Properties. Crystal Growth and Design, 2010, 10, 1878-1884.	3.0	18
49	Homospin single-chain magnet with 1D ferromagnetic azido-cobalt Ising-type chain. Chemical Communications, 2010, 46, 8540.	4.1	98
50	Three-Dimensional Porous Metalâ^'Organic Frameworks Exhibiting Metamagnetic Behaviors: Synthesis, Structure, Adsorption, and Magnetic Properties. Inorganic Chemistry, 2010, 49, 4301-4306.	4.0	49
51	Adjusting the Porosity and Interpenetration of Cadmium(II) Coordination Polymers by Ligand Modification: Syntheses, Structures, and Adsorption Properties. Crystal Growth and Design, 2010, 10, 1138-1144.	3.0	96
52	One-dimensional metal-azido complex constructed by a double EO azido bridged trinuclear nickel(ii) unit: synthesis, structure and magnetic properties. Dalton Transactions, 2010, 39, 1185-1187.	3.3	17
53	Two unprecedented 10-connected bct topological metal–organic frameworks constructed from cadmium clusters. Chemical Communications, 2010, 46, 4890.	4.1	81
54	Tuning the Structure and Magnetism of Azido-Mediated Cu ^{II} Systems by Coligand Modifications. Inorganic Chemistry, 2009, 48, 2482-2489.	4.0	99

#	Article	IF	CITATIONS
55	New 3D Coordination Polymers Constructed from Pillared Metalâ~'Formate Kagomé Layers Exhibiting Spin Canting Only in the Nickel(II) Complex. Inorganic Chemistry, 2009, 48, 11601-11607.	4.0	90
56	3dâ^'4f Coordination Polymers Containing Alternating EE/EO Azido Chain Synthesized by Synergistic Coordination of Lanthanide and Transition Metal Ions. Crystal Growth and Design, 2009, 9, 421-426.	3.0	40
57	Novel lanthanide–azido complexes: hydrothermal syntheses, structures and magnetic properties. Dalton Transactions, 2009, , 2074.	3.3	22
58	Azido-mediated systems showing different magnetic behaviors. Chemical Society Reviews, 2009, 38, 469-480.	38.1	575
59	Partial Substitution of Hydroxyl by Azide: An Unprecedented 2D Azido–Copper–Hydroxyl Compound with a [Cu ₂₄] Macrocycle in the Presence of [Cu(H ₂ O) ₆] ²⁺ . Chemistry - A European Journal, 2008, 14, 7127-7130.	3.3	28
60	Tuning silver(I) coordination architectures by ligands design: from dinuclear, trinuclear, to 1D and 3D frameworks. CrystEngComm, 2008, 10, 1866.	2.6	85
61	Nickel(ii)–azido ferromagnetic chains in a 3D porous metal–organic framework with breathing guest molecules. Dalton Transactions, 2008, , 5556.	3.3	41
62	Two New Copper Azido Polymorphs:  Structures, Magnetic Properties, and Effects of "Noninnocent― Reagents in Hydrothermal Methods. Inorganic Chemistry, 2007, 46, 7698-7700.	4.0	53
63	Metal–organic coordination architectures of 9,10-bis(N-benzimidazolyl)anthracene: syntheses, structures and emission properties. CrystEngComm, 2007, 9, 412-420.	2.6	26
64	Arenedisulfonate–lanthanide supramolecular architectures with phenanthroline as a co-ligand: syntheses and structures. CrystEngComm, 2007, 9, 902.	2.6	33
65	An Unusual 1D Manganese Azido Complex with Novel EO/EO/EO/EE Coordination Mode:Â Synthesis, Structure, and Magnetic Properties. Inorganic Chemistry, 2007, 46, 1520-1522.	4.0	61
66	New d10metal–organic coordination polymers with 9,10-bis(triazol-1-ylmethyl)anthracene (L): Syntheses, crystal structures, and luminescent properties. CrystEngComm, 2007, 9, 289-297.	2.6	56
67	Structures with Tunable Strong Ferromagnetic Coupling: from Unordered (1D) to Ordered (Discrete). Chemistry - A European Journal, 2007, 13, 9924-9930.	3.3	87
68	An unusual 3-D asymmetric mixed valence copper-azido complex with pyrazinecarboxylate as co-ligand showing rare net topology: Hydrothermal synthesis, structure and magnetic properties. Inorganic Chemistry Communication, 2007, 10, 129-132.	3.9	20
69	Novel Heterometallic 3dâ^'4f Metalâ^'Azido Complex of Mixed Ligands with Unprecedented Structure Type:Â Synthesis, Structure, and Magnetic Properties. Inorganic Chemistry, 2006, 45, 6129-6131.	4.0	96
70	An azido–metal–isonicotinate complex showing long-range ordered ferromagnetic interaction: synthesis, structure and magnetic properties. Chemical Communications, 2006, , 2227-2229.	4.1	89
71	First Metal Azide Complex with Isonicotinate as a Bridging Ligand Showing New Net Topology:Â Hydrothermal Synthesis, Structure, and Magnetic Properties. Inorganic Chemistry, 2006, 45, 2776-2778.	4.0	120
72	Novel 3-D Framework Nickel(II) Complex with Azide, Nicotinic Acid, and Nicotinate(1â^') as Coligands:Â Hydrothermal Synthesis, Structure, and Magnetic Properties. Inorganic Chemistry, 2005, 44, 7298-7300.	4.0	103