Peter Sergeant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1725760/publications.pdf

Version: 2024-02-01

247 papers

3,463 citations

30 h-index 243625 44 g-index

247 all docs

247 docs citations

times ranked

247

2156 citing authors

#	Article	IF	Citations
1	Dynamic Modeling and Analysis of Electric Motor With Integrated Magnetic Spring Driving Weaving Loom Application. IEEE Transactions on Industrial Electronics, 2023, 70, 2329-2338.	7.9	6
2	Design of an Integrated DC-Link Structure for Reconfigurable Integrated Modular Motor Drives. IEEE Transactions on Industrial Electronics, 2022, 69, 2312-2321.	7.9	3
3	Design and Analysis of Hybrid Excitation Generators for Aircraft Applications Under Limiting Open-Circuit Voltage. IEEE Transactions on Transportation Electrification, 2022, 8, 3390-3400.	7.8	4
4	Performance Analysis of a Rewound Multiphase Synchronous Reluctance Machine. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 297-309.	5.4	14
5	Construction of Synchronous Reluctance Machines With Combined Star-Pentagon Configuration Using Standard Three-Phase Stator Frames. IEEE Transactions on Industrial Electronics, 2022, 69, 7582-7595.	7.9	12
6	Hysteresis Loss in NdFeB Permanent Magnets in a Permanent Magnet Synchronous Machine. IEEE Transactions on Industrial Electronics, 2022, 69, 121-129.	7.9	15
7	Circulating-Current-Excited Switched Reluctance Generator System With Diode Rectifier. IEEE Transactions on Industrial Electronics, 2022, 69, 7859-7868.	7.9	3
8	Reconfigurable Modular Fault-Tolerant Converter Topology for Switched Reluctance Motors. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 2890-2902.	5.4	8
9	Polygon-Retrofitted Integrated Modular Motor Drive for Switched Reluctance Machines. IEEE Transactions on Industrial Electronics, 2022, 69, 12469-12479.	7.9	1
10	Power Density Boosting Techniques for Reconfigurable Integrated Modular Motor Drives. IEEE Transactions on Energy Conversion, 2022, , 1-1.	5.2	1
11	An Enhanced Fault-Tolerant Control of a Five-Phase Synchronous Reluctance Motor Fed From a Three-to-Five-Phase Matrix Converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 4182-4194.	5.4	15
12	Multi-Agent Position Estimation in Modular Motor Drives Using Low-Resolution Sensors. IEEE Open Journal of the Industrial Electronics Society, 2022, 3, 105-115.	6.8	3
13	Approach to couple MATLAB Simscape and Simulink blocks for dynamic analysis of multiphase drive systems. AIP Conference Proceedings, 2022, , .	0.4	0
14	Metal Additive Manufacturing for Electrical Machines: Technology Review and Latest Advancements. Energies, 2022, 15, 1076.	3.1	42
15	Multiâ€egent control in modular motor drives by means of gossip consensus. IET Electric Power Applications, 2022, 16, 483-497.	1.8	3
16	A Simple Commutation Method and a Cost-Effective Clamping Circuit for Three-to-Five-Phase Indirect-Matrix Converters. Electronics (Switzerland), 2022, 11, 808.	3.1	3
17	Additively Manufactured Ultralight Shaped-Profile Windings for HF Electrical Machines and Weight-Sensitive Applications. IEEE Transactions on Transportation Electrification, 2022, 8, 4313-4324.	7.8	21
18	Mitigation of High-Frequency Eddy Current Losses in Hairpin Winding Machines. Machines, 2022, 10, 328.	2.2	17

#	Article	IF	CITATIONS
19	Mitigation of Torsional Vibrations in a Modular Drivetrain with Interleaving Control. Machines, 2022, 10, 429.	2.2	3
20	Electrical Machines Winding Technology: Latest Advancements for Transportation Electrification. Machines, 2022, 10, 563.	2.2	29
21	Perovskite Solar Cells and Thermoelectric Generator Hybrid Array Feeding a Synchronous Reluctance Motor for an Efficient Water Pumping System. Mathematics, 2022, 10, 2417.	2.2	3
22	Simultaneous DC-Link and Stator Current Ripple Reduction With Interleaved Carriers in Multiphase Controlled Integrated Modular Motor Drives. IEEE Transactions on Industrial Electronics, 2021, 68, 5616-5625.	7.9	18
23	Design, implementation and performance analysis of shunt active filter based on a matrix converter. International Journal of Electronics, 2021, 108, 395-410.	1.4	1
24	Refurbishing three-phase synchronous reluctance machines to multiphase machines. Electrical Engineering, 2021, 103, 139-152.	2.0	14
25	An Integrated Modular Motor Drive With Shared Cooling for Axial Flux Motor Drives. IEEE Transactions on Industrial Electronics, 2021, 68, 10467-10476.	7.9	22
26	Efficiency Measurement Strategy for a Planetary Gearbox with 2 Degrees of Freedom. Springer Proceedings in Energy, 2021, , 257-270.	0.3	0
27	Mathematical Modelling, Analysis and Control of a Three to Five-Phase Matrix Converter for Minimal Switching Losses. Mathematics, 2021, 9, 96.	2.2	12
28	Optimal Rotor Design of Synchronous Reluctance Machines Considering the Effect of Current Angle. Mathematics, 2021, 9, 344.	2.2	10
29	Performance Analysis of a Five-phase Synchronous Reluctance Motor Connected to Matrix Converter. , 2021, , .		6
30	An Integrated Motor Drive with Enhanced Power Density Using Modular Converter Structure. , 2021, , .		4
31	Effect of Using Different Types of Magnet Wires on the AC Losses of Electrical Machine Windings. , 2021, , .		7
32	Drivetrain Torque Ripple Reduction With a Modular Motor Architecture., 2021,,.		4
33	Performance Improvement of Synchronous Reluctance Machinesâ€"A Review Research. IEEE Transactions on Magnetics, 2021, 57, 1-11.	2.1	29
34	Electrothermal Design of a Discrete GaN-Based Converter for Integrated Modular Motor Drives. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 5390-5406.	5.4	10
35	Design Methodology for a PM Electrical Variable Transmission Used in HEV. Springer Proceedings in Energy, 2021, , 187-202.	0.3	0
36	Comparative Study of Switched Reluctance Generators with Separate Field Current and Circulating Current Excitations. IEEE Transactions on Energy Conversion, 2021, , 1-1.	5.2	1

#	Article	IF	Citations
37	Comparative Analysis of Refurbishing Methods of Three-Phase Synchronous Reluctance Machines to Five-Phase With Minimum Cost. IEEE Transactions on Industry Applications, 2021, 57, 6007-6022.	4.9	10
38	An Improved Fault-Tolerant Control of a Five-Phase Synchronous Reluctance Motor Connected to Matrix Converter. , $2021, \ldots$		3
39	Synchronous Reluctance Motor Drive System Fed From Three-Phase Matrix Converter., 2021,,.		1
40	Sizing Methodology Based on Scaling Laws for a Permanent Magnet Electrical Variable Transmission. IEEE Transactions on Industrial Electronics, 2020, 67, 1739-1749.	7.9	12
41	Effects of stator core welding on an induction machine – Measurements and modeling. Journal of Magnetism and Magnetic Materials, 2020, 499, 166280.	2.3	7
42	Extended End-Winding Cooling Insert for High Power Density Electric Machines With Concentrated Windings. IEEE Transactions on Energy Conversion, 2020, 35, 948-955.	5.2	33
43	Modeling Interlocking Effects on Core Losses in Electrical Steel. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15, 1836-1843.	1.4	4
44	Performance Comparison Between SiC and Si Inverter Modules in an Electrical Variable Transmission Application. , 2020, , .		1
45	Magnetic Properties of Silicon Steel after Plastic Deformation. Materials, 2020, 13, 4361.	2.9	21
46	Distributed Control Strategies for Modular Permanent Magnet Synchronous Machines Taking Into Account Mutual Inductances. , 2020, , .		1
47	Performance Improvement of Existing Three Phase Synchronous Reluctance Machine: Stator Upgrading to 5-Phase With Combined Star-Pentagon Winding. IEEE Access, 2020, 8, 143569-143583.	4.2	22
48	Comparison of an optimized electrical variable transmission with the Toyota Hybrid System. Applied Energy, 2020, 278, 115616.	10.1	11
49	Modelling and Design Methodology of an Improved Performance Photovoltaic Pumping System Employing Ferrite Magnet Synchronous Reluctance Motors. Mathematics, 2020, 8, 1429.	2.2	11
50	A Generic DC link Capacitor Sizing Methodology for Multi-phase Wide Bandgap Based Integrated Modular Motor Drives. , 2020, , .		2
51	Energy efficiency improvement of water pumping system using synchronous reluctance motor fed by perovskite solar cells. International Journal of Energy Research, 2020, 44, 11629-11642.	4.5	19
52	Synchronous reluctance machines: performance evaluation with and without ferrite magnets. IOP Conference Series: Materials Science and Engineering, 2020, 966, 012107.	0.6	2
53	Active Demagnetization Fault Compensation for Axial Flux Permanent-Magnet Synchronous Machines Using an Analytical Inverse Model. IEEE Transactions on Energy Conversion, 2020, 35, 591-599.	5.2	15
54	Experimental Implementation of Power-Split Control Strategies in a Versatile Hardware-in-the-Loop Laboratory Test Bench for Hybrid Electric Vehicles Equipped with Electrical Variable Transmission. Applied Sciences (Switzerland), 2020, 10, 4253.	2.5	14

#	Article	IF	Citations
55	A Novel Driving Method for Switched Reluctance Motor With Standard Full Bridge Inverter. IEEE Transactions on Energy Conversion, 2020, 35, 994-1003.	5.2	7
56	Energy Management Strategy Optimization for Application of an Electrical Variable Transmission System in a Hybrid Electric City Bus., 2020,,.		2
57	Quality Assessment of a 2D FE Based Lumped Parameter Electric Motor Thermal Model Using 3D FE Models. , 2020, , .		5
58	Replacing Stator of Existing Three-phase Synchronous Reluctance Machines towards Improved Multiphase Machines Performance., 2020,,.		6
59	Comparison Between Two Fault Tolerant Deadbeat Controllers under Partial Demagnetization Faults in Permanent Magnet Synchronous Machines. , 2020, , .		1
60	Directly Cooled Windings in Switched Reluctance Machines. , 2020, , .		2
61	Design of a circumscribing polygon wide bandgap based integrated modular motor drive topology with thermally decoupled windings and power converters. , 2020, , .		5
62	Wide Bandgap Based Modular Driving Techniques for Switched Reluctance Motor Drives. , 2020, , .		2
63	An Inverse Thermal Modeling Approach for Thermal Parameter and Loss Identification in an Axial Flux Permanent Magnet Machine. IEEE Transactions on Industrial Electronics, 2019, 66, 1727-1735.	7.9	39
64	Multiphysics Analysis of a Stator Construction Method in Yokeless and Segmented Armature Axial Flux PM Machines. IEEE Transactions on Energy Conversion, 2019, 34, 139-146.	5.2	44
65	Experimental Investigation of Direct Contact Baseplate Cooling for Electric Vehicle Power Electronics., 2019,,.		3
66	A novel design and electromagnetic analysis for a linear switched reluctance motor. Electrical Engineering, 2019, 101, 609-618.	2.0	4
67	Two-Dimensional Fourier-Based Modeling of Electric Machines—An Overview. IEEE Transactions on Magnetics, 2019, 55, 1-17.	2.1	29
68	Implementation of Matrix Converter in Wind Energy Conversion System with Modified Control Techniques. Electric Power Components and Systems, 2019, 47, 1316-1331.	1.8	11
69	Hybrid Photovoltaic-Thermoelectric Generator Powered Synchronous Reluctance Motor for Pumping Applications. IEEE Access, 2019, 7, 146979-146988.	4.2	29
70	A holistic DC link architecture design method for multiphase integrated modular motor drives. , 2019, , .		7
71	Module Connection Topologies and Interleaving Strategies for Integrated Modular Motor Drives. , 2019, , .		3
72	Evaluation of the Rotor Eddy-Current Losses in High-Speed PMSMs With a Shielding Cylinder for Different Stator Sources. IEEE Transactions on Magnetics, 2019, 55, 1-10.	2.1	17

#	Article	IF	Citations
73	Assessment of Different Cooling Techniques for Reduced Mechanical Stress in the Windings of Electrical Machines. Energies, 2019, 12, 1967.	3.1	10
74	Solar Array Fed Synchronous Reluctance Motor Driven Water Pump: An Improved Performance Under Partial Shading Conditions. IEEE Access, 2019, 7, 77100-77115.	4.2	49
75	Performance Degradation of Surface PMSMs with Demagnetization Defect under Predictive Current Control. Energies, 2019, 12, 782.	3.1	4
76	Effect of Different Cutting Techniques on Magnetic Properties of Grain Oriented Steel Sheets and Axial Flux Machines. , $2019, \dots$		11
77	An ECMS-based Approach for Energy Management of a HEV Equipped with an Electrical Variable Transmission. , 2019, , .		7
78	Open-Phase Fault-Tolerant Current Reconstruction Control of Three-Phase Permanent Magnet Assisted Synchronous Reluctance Motors. , 2019, , .		5
79	Prediction of Eddy Current Losses in Cooling Tubes of Direct Cooled Windings in Electric Machines. Mathematics, 2019, 7, 1096.	2.2	8
80	A Simple and Efficient Quasi-3D Magnetic Equivalent Circuit for Surface Axial Flux Permanent Magnet Synchronous Machines. IEEE Transactions on Industrial Electronics, 2019, 66, 8318-8333.	7.9	49
81	An Improved Torque Density Synchronous Reluctance Machine With a Combined Star–Delta Winding Layout. IEEE Transactions on Energy Conversion, 2018, 33, 1015-1024.	5.2	38
82	Influence of the temperature on energy management in battery-ultracapacitor electric vehicles. Journal of Cleaner Production, 2018, 176, 716-725.	9.3	28
83	Analysis and selection of harmonics sensitive to demagnetisation faults intended for condition monitoring of double rotor axial flux permanent magnet synchronous machines. IET Electric Power Applications, 2018, 12, 486-493.	1.8	14
84	A comparison of the full and half toroidal continuously variable transmissions in terms of dynamics of ratio variation and efficiency. Mechanism and Machine Theory, 2018, 121, 299-316.	4.5	14
85	Computational-Time Reduction of Fourier-Based Analytical Models. IEEE Transactions on Energy Conversion, 2018, 33, 281-289.	5.2	11
86	Parametric Studies for Combined Convective and Conductive Heat Transfer for YASA Axial Flux Permanent Magnet Synchronous Machines. Energies, 2018, 11, 2983.	3.1	9
87	Energy Management Strategy for Oscillating Drivetrains Equipped with an Electric Variable Transmission. , 2018, , .		0
88	Predictive Current Control vs. PI Control for Surface Mounted Permanent Magnet Machines. , 2018, , .		7
89	Technical Assessment of Utilizing an Electrical Variable Transmission SystEm in Hybrid Electric Vehicles. , 2018, , .		5
90	Magnetic Equivalent Circuit Model of a Permanent Magnet Electrical Variable Transmission., 2018,,.		0

#	Article	IF	Citations
91	Adaptive PI Controller for Slip controlled Belt Continuously Variable Transmission. IFAC-PapersOnLine, 2018, 51, 101-106.	0.9	2
92	Permanent Magnet-Assisted Synchronous Reluctance Motor Employing a Hybrid Star-Delta Winding for High Speed Applications. , $2018, , .$		3
93	A Control Method with Ring Structure for Switched Reluctance Motor. , 2018, , .		3
94	Controlling a Switched Reluctance Motor with a Conventional Three-Phase Bridge Instead of Asymmetric H-Bridges. Energies, 2018, 11, 3242.	3.1	3
95	Evaluation of the Rotor Eddy-Currents in High-Speed PMSMs with a Shielding Cylinder. , 2018, , .		1
96	Evaluation of the Torque in High-Speed PMSMs With a Shielding Cylinder and BLDC Control. IEEE Transactions on Magnetics, 2018, 54, 1-8.	2.1	4
97	Model-Based Comparison of Thermo-Hydraulic Performance of Various Cooling Methods for Power Electronics of Electric Vehicles. , 2018, , .		6
98	A 3D Dynamic Lumped Parameter Thermal Network of Air-Cooled YASA Axial Flux Permanent Magnet Synchronous Machine. Energies, 2018, 11, 774.	3.1	15
99	Efficiency of a CVT-Operated EVT Experimentally Evaluated Against Half-Toroidal and Push-Belt CVTs. IEEE Transactions on Industrial Electronics, 2018, 65, 3095-3103.	7.9	10
100	Thermally Induced Mechanical Stress in the Stator Windings of Electrical Machines. Energies, 2018, 11, 2113.	3.1	13
101	ADVANCED LUMPED PARAMETER MODEL FOR SWITCHED RELUCTANCE MOTORS WITH HIGH PERFORMANCE COOLING. , 2018, , .		6
102	Optimal Control for a Hybrid Excited Dual Mechanical Port Electric Machine. IEEE Transactions on Energy Conversion, 2017, 32, 599-607.	5.2	23
103	Demagnetization Fault Detection in Axial Flux PM Machines by Using Sensing Coils and an Analytical Model. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	24
104	Analytical modeling of axial flux PM machines with eccentricities. International Journal of Applied Electromagnetics and Mechanics, 2017, 53, 757-777.	0.6	5
105	Loss Identification in a Double Rotor Electrical Variable Transmission. IEEE Transactions on Industrial Electronics, 2017, 64, 7731-7740.	7.9	14
106	Analytical Model for Combined Study of Magnet Demagnetization and Eccentricity Defects in Axial Flux Permanent Magnet Synchronous Machines. IEEE Transactions on Magnetics, 2017, 53, 1-12.	2.1	35
107	Benchmarking the permanent magnet electrical variable transmission against the half toroidal continuously variable transmission. Mechanism and Machine Theory, 2017, 113, 141-157.	4.5	10
108	Modeling and validation of losses due to unbalanced loading of stand-alone generators., 2017,,.		0

#	Article	IF	Citations
109	Design of low cost and efficient photovoltaic pumping system utilizing synchronous reluctance motor., 2017,,.		5
110	Dual rotor electrical variable transmission for hybrid vehicles: Performance analysis with focus on losses over a driving cycle. , 2017, , .		1
111	Two-dimensional fourier-based modeling of electric machines. , 2017, , .		3
112	Study of the Effect of a Shielding Cylinder on the Torque in a Permanent-Magnet Synchronous Machine Considering Two Torque-Producing Mechanisms. IEEE Transactions on Magnetics, 2017, 53, 1-8.	2.1	9
113	Applicability of Fractional Slot Axial Flux Permanent Magnet Synchronous Machines in the Field Weakening Region. IEEE Transactions on Energy Conversion, 2017, 32, 111-121.	5.2	27
114	Half toroidal continuously variable transmission: Trade-off between dynamics of ratio variation and efficiency. Mechanism and Machine Theory, 2017, 107, 183-196.	4.5	12
115	Relevance of Including Saturation and Position Dependence in the Inductances for Accurate Dynamic Modeling and Control of SynRMs. IEEE Transactions on Industry Applications, 2017, 53, 151-160.	4.9	45
116	Fully predictive heat transfer coefficient modeling of an axial flux permanent magnet synchronous machine with geometrical parameters of the magnets. Applied Thermal Engineering, 2017, 110, 1343-1357.	6.0	21
117	Torque Analysis on a Double Rotor Electrical Variable Transmission With Hybrid Excitation. IEEE Transactions on Industrial Electronics, 2017, 64, 60-68.	7.9	37
118	Stator heat extraction system for axial flux yokeless and segmented armature machines. , 2017, , .		18
119	Comparison between two combined star-delta configurations on synchronous reluctance motors performance., 2017,,.		5
120	Thermal parameter identification of an electrical machine using inverse modelling and non-collocated thermal sensors. , 2017, , .		1
121	Performance Comparison of Conventional Synchronous Reluctance Machines and PM-Assisted Types with Combined Star–Delta Winding. Energies, 2017, 10, 1500.	3.1	22
122	Optimal design and implementation of a drivetrain for an ultra-light electric vehicle. International Journal of Vehicle Design, 2016, 72, 262.	0.3	2
123	Comparison of Three Analytical Methods for the Precise Calculation of Cogging Torque and Torque Ripple in Axial Flux PM Machines. Mathematical Problems in Engineering, 2016, 2016, 1-14.	1.1	16
124	Analytical Modeling of Static Eccentricities in Axial Flux Permanent-Magnet Machines with Concentrated Windings. Energies, 2016, 9, 892.	3.1	22
125	Simple Design Approach for Low Torque Ripple and High Output Torque Synchronous Reluctance Motors. Energies, 2016, 9, 942.	3.1	31
126	Development of Correlations for Windage Power Losses Modeling in an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Features of the Magnets. Energies, 2016, 9, 1009.	3.1	5

#	Article	IF	Citations
127	Reducing Losses Due to Fringing Flux in an Axial-Flux Permanent-Magnet Synchronous Machine. IEEE Transactions on Magnetics, 2016, 52, 1-8.	2.1	6
128	Time- and Spatial-Harmonic Content in Synchronous Electrical Machines. IEEE Transactions on Magnetics, $2016, 1.1$.	2.1	24
129	Power flow in an induction machine based electrical variable transmission. , 2016, , .		7
130	Effects of cutting and annealing of amorphous materials for high speed permanent magnet machines. , 2016, , .		9
131	Demagnetization fault detection in axial flux PM machines by using sensing coils and an analytical model. , $2016, $		0
132	Time- and spatial-harmonic content in electrical machines and its application in Fourier-based models. , 2016, , .		1
133	Combined Star-Delta Windings to Improve Synchronous Reluctance Motor Performance. IEEE Transactions on Energy Conversion, 2016, 31, 1479-1487.	5.2	48
134	Influence of stator slot openings on losses and torque in axial flux permanent magnet machines. Mathematics and Computers in Simulation, 2016, 130, 22-31.	4.4	7
135	Field-Oriented Control for an Induction-Machine-Based Electrical Variable Transmission. IEEE Transactions on Vehicular Technology, 2016, 65, 4230-4240.	6.3	21
136	Torque and torque components in high-speed permanent-magnet synchronous machines with a shielding cylinder. Mathematics and Computers in Simulation, 2016, 130, 70-80.	4.4	9
137	STATOR HEAT TRANSFER PREDICTION OF DISK-TYPE ELECTRICAL MACHINES. , 2016, , .		0
138	Optimal design and implementation of a drivetrain for an ultra-light electric vehicle. International Journal of Vehicle Design, 2016, 72, 262.	0.3	0
139	Transient analysis and stability limits for synchronous reluctance motors considering saturation effects. , $2015, \ldots$		9
140	Voltage Sources in 2D Fourier-Based Analytical Models of Electric Machines. Mathematical Problems in Engineering, 2015, 2015, 1-8.	1.1	4
141	Coupled Electromagnetic and Thermal Analysis of an Axial Flux PM Machine. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	25
142	Evaluation of the additional loss due to supply voltage distortion in relation to induction motor efficiency rating. , 2015, , .		4
143	Concept study of a double rotor induction machine used as continuously variable transmission. , 2015, , .		3
144	Effect of control strategies on the two torque-producing mechanisms in high-speed PMSMs. , 2015, , .		0

#	Article	IF	Citations
145	Comparison of Iron Loss Models for Electrical Machines With Different Frequency Domain and Time Domain Methods for Excess Loss Prediction. IEEE Transactions on Magnetics, 2015, 51, 1-10.	2.1	68
146	Comparison of Methods for Permanent Magnet Eddy-Current Loss Computations With and Without Reaction Field Considerations in Axial Flux PMSM. IEEE Transactions on Magnetics, 2015, 51, 1-11.	2.1	33
147	Comparison of Frequency and Time-Domain Iron and Magnet Loss Modeling Including PWM Harmonics in a PMSG for a Wind Energy Application. IEEE Transactions on Energy Conversion, 2015, 30, 476-486.	5.2	27
148	3-D Eddy Current and Fringing-Flux Distribution in an Axial-Flux Permanent-Magnet Synchronous Machine With Stator in Laminated Iron or SMC. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	17
149	Convective heat transfer prediction in disk-type electrical machines. Applied Thermal Engineering, 2015, 91, 778-790.	6.0	29
150	Steady-state analysis and stability of synchronous reluctance motors considering saturation effects. , 2015, , .		5
151	A numerical design of a frequency-based analytical model for demagnetization detection in axial flux permanent magnet synchronous machines. , 2015 , , .		0
152	Synchronous Reluctance Motor Performance Based on Different Electrical Steel Grades. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	51
153	Loss evaluation of interior permanent-magnet synchronous Machine drives using T-type multilevel converters., 2015,,.		4
154	Synchronous reluctance motors performance based on different electrical steel grades. , 2015, , .		0
155	Adding Inverter Fault Detection to Model-Based Predictive Control for Flying-Capacitor Inverters. IEEE Transactions on Industrial Electronics, 2015, 62, 2054-2063.	7.9	62
156	Integrated Model of Power Electronics, Electric Motor, and Gearbox for a Light EV. Journal of Power Electronics, 2015, 15, 1640-1653.	1.5	3
157	Performance and implementation issues considering the use of thin laminated steel sheets in segmented armature axial-flux PM machines. , 2014 , , .		4
158	Analytical modeling of eddy current losses in Axial Flux PMSM using resistance network. , 2014, , .		11
159	Modeling and control of an induction machine based electrical variable transmission. , 2014, , .		1
160	2D analytical torque study of slotted high-speed PMSMs considering pole pairs, slots per pole per phase and coil throw. , 2014, , .		5
161	Losses due to transverse flux in axial flux permanent magnet synchronous machines. , 2014, , .		0
162	Magnetic stray field based position detection in BLDC outer rotor permanent magnet synchronous machines. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2014, 27, 544-554.	1.9	3

#	Article	IF	CITATIONS
163	Identification of Demagnetization Faults in Axial Flux Permanent Magnet Synchronous Machines Using an Inverse Problem Coupled With an Analytical Model. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	40
164	Influence of the Amount of Permanent-Magnet Material in Fractional-Slot Permanent-Magnet Synchronous Machines. IEEE Transactions on Industrial Electronics, 2014, 61, 4979-4989.	7.9	38
165	Losses in VSI-PWM fed axial flux machines. , 2014, , .		2
166	2-D Analytical Subdomain Model of a Slotted PMSM With Shielding Cylinder. IEEE Transactions on Magnetics, 2014, 50, 1-10.	2.1	47
167	Evaluation of the Efficiency of Line-Start Permanent-Magnet Machines as a Function of the Operating Temperature. IEEE Transactions on Industrial Electronics, 2014, 61, 4443-4454.	7.9	37
168	Analytical Modeling of Surface PMSM Using a Combined Solution of Maxwell–s Equations and Magnetic Equivalent Circuit. IEEE Transactions on Magnetics, 2014, 50, 1-13.	2.1	75
169	A Computationally Efficient Method to Determine Iron and Magnet Losses in VSI-PWM Fed Axial Flux Permanent Magnet Synchronous Machines. IEEE Transactions on Magnetics, 2014, 50, 1-10.	2.1	20
170	Influence of Supply Voltage Distortion on the Energy Efficiency of Line-Start Permanent-Magnet Motors. IEEE Transactions on Industry Applications, 2014, 50, 1034-1043.	4.9	17
171	Axial-Flux PM Machines With Variable Air Gap. IEEE Transactions on Industrial Electronics, 2014, 61, 730-737.	7.9	59
172	The Effect of the Electrical Steel Properties on the Temperature Distribution in Direct-Drive PM Synchronous Generators for 5 MW Wind Turbines. IEEE Transactions on Magnetics, 2013, 49, 5371-5377.	2.1	15
173	Drivetrain design for an ultra light electric vehicle with high efficiency. , 2013, , .		6
174	Rotor Geometry Design of Interior PMSMs With and Without Flux Barriers for More Accurate Sensorless Control. IEEE Transactions on Industrial Electronics, 2012, 59, 2457-2465.	7.9	47
175	Effect of segmentation on eddy-current loss in permanent-magnets of axial-flux PM machines using a multilayer-2D $\&$ #x2014; 2D coupled model., 2012,,.		10
176	Homogenized eddy current model for nonâ€destructive testing of metallic cables. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2012, 31, 1656-1680.	0.9	1
177	Reducing the permanent magnet content in fractional-slot concentrated-windings permanent magnet synchronous machines. , 2012, , .		4
178	Influence of electrical steel grade on the temperature distribution in direct-drive PM synchronous generators for 5 MW wind turbines. , 2012, , .		2
179	A Combined Wye-Delta Connection to Increase the Performance of Axial-Flux PM Machines With Concentrated Windings. IEEE Transactions on Energy Conversion, 2012, 27, 403-410.	5 . 2	49
180	A Multilayer 2-D–2-D Coupled Model for Eddy Current Calculation in the Rotor of an Axial-Flux PM Machine. IEEE Transactions on Energy Conversion, 2012, 27, 784-791.	5.2	42

#	Article	IF	CITATIONS
181	Evaluation of a Simple Lamination Stacking Method for the Teeth of an Axial Flux Permanent-Magnet Synchronous Machine With Concentrated Stator Windings. IEEE Transactions on Magnetics, 2012, 48, 999-1002.	2.1	17
182	A Non-Destructive Methodology for Estimating the Magnetic Material Properties of an Asynchronous Motor. IEEE Transactions on Magnetics, 2012, 48, 1621-1624.	2.1	16
183	Influence of Soft Magnetic Material in a Permanent Magnet Synchronous Machine With a Commercial Induction Machine Stator. IEEE Transactions on Magnetics, 2012, 48, 1645-1648.	2.1	3
184	Improving the torque output in radial- and axial-flux permanent-magnet synchronous machines with concentrated windings by using a combined wye-delta connection. , $2011, \dots$		3
185	Modelling the impact of the stator currents on inductance-based sensorless control of brushless DC-machines., 2011,,.		3
186	Magnetic material identification of a switched reluctance motor. International Journal of Applied Electromagnetics and Mechanics, 2011, 37, 35-49.	0.6	10
187	ELECTROMAGNETIC LOSSES IN MAGNETIC SHIELDS FOR BURIED HIGH VOLTAGE CABLES. Progress in Electromagnetics Research, 2011, 115, 441-460.	4.4	11
188	Influence of contact resistance on shielding efficiency of shielding gutters for high-voltage cables. IET Electric Power Applications, 2011, 5, 715.	1.8	7
189	Analysis of Hysteresis in Resonance-Based Position Estimation of Switched Reluctance Drives. IEEE Transactions on Magnetics, 2011, 47, 1022-1025.	2.1	12
190	Influence of the Electrical Steel Grade on the Performance of the Direct-Drive and Single Stage Gearbox Permanent-Magnet Machine for Wind Energy Generation, Based on an Analytical Model. IEEE Transactions on Magnetics, 2011, 47, 4781-4790.	2.1	18
191	Finiteâ€element analysis of a shielded pulsedâ€current induction heater. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2010, 29, 1585-1595.	0.9	0
192	Magnetic Shielding of Levitation Melting Devices. IEEE Transactions on Magnetics, 2010, 46, 686-689.	2.1	9
193	Losses in Sensorless Controlled Permanent-Magnet Synchronous Machines. IEEE Transactions on Magnetics, 2010, 46, 590-593.	2.1	13
194	Comparison of Nonoriented and Grain-Oriented Material in an Axial Flux Permanent-Magnet Machine. IEEE Transactions on Magnetics, 2010, 46, 279-285.	2.1	51
195	An Inverse Approach for Magnetic Material Characterization of an El Core Electromagnetic Inductor. IEEE Transactions on Magnetics, 2010, 46, 622-625.	2.1	18
196	A Two-Level Genetic Algorithm for Electromagnetic Optimization. IEEE Transactions on Magnetics, 2010, 46, 2585-2595.	2.1	45
197	Optimized Design Considering the Mass Influence of an Axial Flux Permanent-Magnet Synchronous Generator With Concentrated Pole Windings. IEEE Transactions on Magnetics, 2010, 46, 4101-4107.	2.1	66
198	Comparison of analytical, finite element and neural network methods to study magnetic shielding. Simulation Modelling Practice and Theory, 2010, 18, 206-216.	3.8	15

#	Article	IF	CITATIONS
199	Geometrical optimization of an ultrasonic tactile plate. Sensors and Actuators A: Physical, 2010, 161, 91-100.	4.1	12
200	A sensorless PMSM drive using modified high-frequency test pulse sequences for the purpose of a discrete-time current controller with fixed sampling frequency. Mathematics and Computers in Simulation, 2010, 81, 367-381.	4.4	17
201	Nondestructive Testing of Metallic Cables Based on a Homogenized Model and Global Measurements. Mathematical Problems in Engineering, 2010, 2010, 1-21.	1.1	1
202	Analysis of a Nondestructive Evaluation Technique for Defect Characterization in Magnetic Materials Using Local Magnetic Measurements. Mathematical Problems in Engineering, 2010, 2010, 1-18.	1.1	6
203	Analysis of hysteresis in resonance-based position estimation of switched reluctance drives. , 2010, , .		0
204	Influence of contact resistance on shielding efficiency of shielding gutters for HV cables. , 2010, , .		0
205	Efficiency optimization of an axial flux permanent-magnet synchronous generator with concentrated pole windings. , 2010, , .		2
206	Influence of the electrical steel grade on the performance of the direct-drive permanent magnet machine for wind energy generation. , $2010, , .$		0
207	A Sensorless Drive by Applying Test Pulses Without Affecting the Average-Current Samples. IEEE Transactions on Power Electronics, 2010, 25, 875-888.	7.9	73
208	Rotor geometry design of an interior permanent-magnet synchronous machine for more accurate sensorless control. , 2010, , .		4
209	Eddy current based, contactless position transducer for a gas handle. , 2010, , .		1
210	Modeling the Electromagnetic Behavior of Nanocrystalline Soft Materials. IEEE Transactions on Magnetics, 2009, 45, 678-686.	2.1	5
211	Thermal analysis of magnetic shields for induction heating. IET Electric Power Applications, 2009, 3, 543.	1.8	11
212	Optimization of an Octangular Double-Layered Shield Using Multiple Forward Models. IEEE Transactions on Magnetics, 2009, 45, 1586-1589.	2.1	2
213	Effect of Rotor Geometry and Magnetic Saturation in Sensorless Control of PM Synchronous Machines. IEEE Transactions on Magnetics, 2009, 45, 1756-1759.	2.1	30
214	Magnetic Material Identification in Geometries With Non-Uniform Electromagnetic Fields Using Global and Local Magnetic Measurements. IEEE Transactions on Magnetics, 2009, 45, 4157-4160.	2.1	20
215	Analysis of perforated magnetic shields for electric power applications. IET Electric Power Applications, 2009, 3, 123.	1.8	9
216	Characterization and optimization of a permanent magnet synchronous machine. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2009, 28, 272-285.	0.9	13

#	Article	IF	CITATIONS
217	Adjoint variable method for timeâ€harmonic Maxwell equations. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2009, 28, 1202-1215.	0.9	7
218	Core losses in nanocrystalline soft magnetic materials under square voltage waveforms. Journal of Magnetism and Magnetic Materials, 2008, 320, 53-57.	2.3	15
219	Two-Level Response and Parameter Mapping Optimization for Magnetic Shielding. IEEE Transactions on Magnetics, 2008, 44, 301-308.	2.1	25
220	Circuit Method for Conductive and Nonlinear Ferromagnetic Materials. IEEE Transactions on Magnetics, 2008, 44, 1326-1329.	2.1	1
221	Plane Wave Model for the Electromagnetic Behavior of SiFe Alloys. IEEE Transactions on Magnetics, 2008, 44, 463-472.	2.1	1
222	Numerical Model for the Drag Force Method to Evaluate Hysteresis Loss. IEEE Transactions on Magnetics, 2008, 44, 842-845.	2.1	5
223	Inductive coupler for contactless power transmission. IET Electric Power Applications, 2008, 2, 1-7.	1.8	105
224	Magnetic shielding of buried highâ€voltage (HV) cables by conductive metal plates. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2008, 27, 170-180.	0.9	7
225	Reducing steady-state current distortions in sensorless control strategies by using adaptive test pulses. IEEE Applied Power Electronics Conference and Exposition, 2008, , .	0.0	9
226	Analysis of the Local Material Degradation Near Cutting Edges of Electrical Steel Sheets. IEEE Transactions on Magnetics, 2008, 44, 3173-3176.	2.1	60
227	Segmentation of Magnets to Reduce Losses in Permanent-Magnet Synchronous Machines. IEEE Transactions on Magnetics, 2008, 44, 4409-4412.	2.1	69
228	Estimation errors in sensorless drives due to the magnetic interaction. , 2008, , .		1
229	Sensing local inhomogeneity in electrical steels by the drag force method. Journal of Applied Physics, 2008, 103, .	2.5	1
230	Adjoint Variable Method for the Study of Combined Active and Passive Magnetic Shielding. Mathematical Problems in Engineering, 2008, 2008, 1-15.	1.1	6
231	Electromagnetic shielding of high-voltage cables. Journal of Magnetism and Magnetic Materials, 2007, 316, e908-e911.	2.3	25
232	Hardware control of an active magnetic shield. IET Science, Measurement and Technology, 2007, 1, 152-159.	1.6	6
233	Magnetic Nondestructive Evaluation of Bending Fatigue Damage Using the Drag Force Method. IEEE Transactions on Magnetics, 2007, 43, 2746-2748.	2.1	3
234	Software control of an active magnetic shield. IET Science, Measurement and Technology, 2006, 153, 13-21.	0.7	1

#	Article	IF	CITATIONS
235	Fast multipole accelerated finite element-boundary element analysis of shielded induction heaters. IEEE Transactions on Magnetics, 2006, 42, 1407-1410.	2.1	9
236	Space mapping method for the design of passive shields. Journal of Applied Physics, 2006, 99, 08H901.	2.5	5
237	Magnetic shielding of a cylindrical shield in nonlinear material with hysteresis. , 2006, , .		0
238	Optimization of a Si gradient in laminated SiFe alloys. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1491-1494.	2.3	4
239	Active and passive magnetic shielding for stray field reduction of an induction heater with axial flux. IET Electric Power Applications, 2005, 152, 1359.	1.4	13
240	Analytical formulation for magnetic shields taking into account hysteresis effects in the Rayleigh region. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2005, 24, 1470-1491.	0.9	7
241	Optimizing a transformer driven active magnetic shield in induction heating. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2005, 24, 1241-1257.	0.9	3
242	Magnetic shielding properties of sheet metal products taking into account hysteresis effects. Journal of Applied Physics, 2005, 97, 10E511.	2.5	3
243	Magnetic network model including loss separation and Preisach principles for the evaluation of core losses in devices. Journal of Applied Physics, 2005, 97, 10E515.	2.5	1
244	Optimization of multilayered nonlinear crystalline alloys for shielding. Journal of Applied Physics, 2005, 97, 10F904.	2.5	0
245	Magnetic field computation for optimized shielding of induction heaters. Journal of Computational and Applied Mathematics, 2004, 168, 437-446.	2.0	7
246	Passive and Active Electromagnetic Shielding of Induction Heaters. IEEE Transactions on Magnetics, 2004, 40, 675-678.	2.1	26
247	Optimizing active and passive magnetic shields in induction heating by a genetic algorithm. IEEE Transactions on Magnetics, 2003, 39, 3486-3496.	2.1	27