Peter Sergeant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1725760/publications.pdf Version: 2024-02-01

DETED SEDCEANT

#	Article	IF	CITATIONS
1	Inductive coupler for contactless power transmission. IET Electric Power Applications, 2008, 2, 1-7.	1.8	105
2	Analytical Modeling of Surface PMSM Using a Combined Solution of Maxwell–s Equations and Magnetic Equivalent Circuit. IEEE Transactions on Magnetics, 2014, 50, 1-13.	2.1	75
3	A Sensorless Drive by Applying Test Pulses Without Affecting the Average-Current Samples. IEEE Transactions on Power Electronics, 2010, 25, 875-888.	7.9	73
4	Segmentation of Magnets to Reduce Losses in Permanent-Magnet Synchronous Machines. IEEE Transactions on Magnetics, 2008, 44, 4409-4412.	2.1	69
5	Comparison of Iron Loss Models for Electrical Machines With Different Frequency Domain and Time Domain Methods for Excess Loss Prediction. IEEE Transactions on Magnetics, 2015, 51, 1-10.	2.1	68
6	Optimized Design Considering the Mass Influence of an Axial Flux Permanent-Magnet Synchronous Generator With Concentrated Pole Windings. IEEE Transactions on Magnetics, 2010, 46, 4101-4107.	2.1	66
7	Adding Inverter Fault Detection to Model-Based Predictive Control for Flying-Capacitor Inverters. IEEE Transactions on Industrial Electronics, 2015, 62, 2054-2063.	7.9	62
8	Analysis of the Local Material Degradation Near Cutting Edges of Electrical Steel Sheets. IEEE Transactions on Magnetics, 2008, 44, 3173-3176.	2.1	60
9	Axial-Flux PM Machines With Variable Air Gap. IEEE Transactions on Industrial Electronics, 2014, 61, 730-737.	7.9	59
10	Comparison of Nonoriented and Grain-Oriented Material in an Axial Flux Permanent-Magnet Machine. IEEE Transactions on Magnetics, 2010, 46, 279-285.	2.1	51
11	Synchronous Reluctance Motor Performance Based on Different Electrical Steel Grades. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	51
12	A Combined Wye-Delta Connection to Increase the Performance of Axial-Flux PM Machines With Concentrated Windings. IEEE Transactions on Energy Conversion, 2012, 27, 403-410.	5.2	49
13	Solar Array Fed Synchronous Reluctance Motor Driven Water Pump: An Improved Performance Under Partial Shading Conditions. IEEE Access, 2019, 7, 77100-77115.	4.2	49
14	A Simple and Efficient Quasi-3D Magnetic Equivalent Circuit for Surface Axial Flux Permanent Magnet Synchronous Machines. IEEE Transactions on Industrial Electronics, 2019, 66, 8318-8333.	7.9	49
15	Combined Star-Delta Windings to Improve Synchronous Reluctance Motor Performance. IEEE Transactions on Energy Conversion, 2016, 31, 1479-1487.	5.2	48
16	Rotor Geometry Design of Interior PMSMs With and Without Flux Barriers for More Accurate Sensorless Control. IEEE Transactions on Industrial Electronics, 2012, 59, 2457-2465.	7.9	47
17	2-D Analytical Subdomain Model of a Slotted PMSM With Shielding Cylinder. IEEE Transactions on Magnetics, 2014, 50, 1-10.	2.1	47
18	A Two-Level Genetic Algorithm for Electromagnetic Optimization. IEEE Transactions on Magnetics, 2010, 46, 2585-2595.	2.1	45

#	Article	IF	CITATIONS
19	Relevance of Including Saturation and Position Dependence in the Inductances for Accurate Dynamic Modeling and Control of SynRMs. IEEE Transactions on Industry Applications, 2017, 53, 151-160.	4.9	45
20	Multiphysics Analysis of a Stator Construction Method in Yokeless and Segmented Armature Axial Flux PM Machines. IEEE Transactions on Energy Conversion, 2019, 34, 139-146.	5.2	44
21	A Multilayer 2-D–2-D Coupled Model for Eddy Current Calculation in the Rotor of an Axial-Flux PM Machine. IEEE Transactions on Energy Conversion, 2012, 27, 784-791.	5.2	42
22	Metal Additive Manufacturing for Electrical Machines: Technology Review and Latest Advancements. Energies, 2022, 15, 1076.	3.1	42
23	Identification of Demagnetization Faults in Axial Flux Permanent Magnet Synchronous Machines Using an Inverse Problem Coupled With an Analytical Model. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	40
24	An Inverse Thermal Modeling Approach for Thermal Parameter and Loss Identification in an Axial Flux Permanent Magnet Machine. IEEE Transactions on Industrial Electronics, 2019, 66, 1727-1735.	7.9	39
25	Influence of the Amount of Permanent-Magnet Material in Fractional-Slot Permanent-Magnet Synchronous Machines. IEEE Transactions on Industrial Electronics, 2014, 61, 4979-4989.	7.9	38
26	An Improved Torque Density Synchronous Reluctance Machine With a Combined Star–Delta Winding Layout. IEEE Transactions on Energy Conversion, 2018, 33, 1015-1024.	5.2	38
27	Evaluation of the Efficiency of Line-Start Permanent-Magnet Machines as a Function of the Operating Temperature. IEEE Transactions on Industrial Electronics, 2014, 61, 4443-4454.	7.9	37
28	Torque Analysis on a Double Rotor Electrical Variable Transmission With Hybrid Excitation. IEEE Transactions on Industrial Electronics, 2017, 64, 60-68.	7.9	37
29	Analytical Model for Combined Study of Magnet Demagnetization and Eccentricity Defects in Axial Flux Permanent Magnet Synchronous Machines. IEEE Transactions on Magnetics, 2017, 53, 1-12.	2.1	35
30	Comparison of Methods for Permanent Magnet Eddy-Current Loss Computations With and Without Reaction Field Considerations in Axial Flux PMSM. IEEE Transactions on Magnetics, 2015, 51, 1-11.	2.1	33
31	Extended End-Winding Cooling Insert for High Power Density Electric Machines With Concentrated Windings. IEEE Transactions on Energy Conversion, 2020, 35, 948-955.	5.2	33
32	Simple Design Approach for Low Torque Ripple and High Output Torque Synchronous Reluctance Motors. Energies, 2016, 9, 942.	3.1	31
33	Effect of Rotor Geometry and Magnetic Saturation in Sensorless Control of PM Synchronous Machines. IEEE Transactions on Magnetics, 2009, 45, 1756-1759.	2.1	30
34	Convective heat transfer prediction in disk-type electrical machines. Applied Thermal Engineering, 2015, 91, 778-790.	6.0	29
35	Two-Dimensional Fourier-Based Modeling of Electric Machines—An Overview. IEEE Transactions on Magnetics, 2019, 55, 1-17.	2.1	29
36	Hybrid Photovoltaic-Thermoelectric Generator Powered Synchronous Reluctance Motor for Pumping Applications. IEEE Access, 2019, 7, 146979-146988.	4.2	29

#	Article	IF	CITATIONS
37	Performance Improvement of Synchronous Reluctance Machines—A Review Research. IEEE Transactions on Magnetics, 2021, 57, 1-11.	2.1	29
38	Electrical Machines Winding Technology: Latest Advancements for Transportation Electrification. Machines, 2022, 10, 563.	2.2	29
39	Influence of the temperature on energy management in battery-ultracapacitor electric vehicles. Journal of Cleaner Production, 2018, 176, 716-725.	9.3	28
40	Optimizing active and passive magnetic shields in induction heating by a genetic algorithm. IEEE Transactions on Magnetics, 2003, 39, 3486-3496.	2.1	27
41	Comparison of Frequency and Time-Domain Iron and Magnet Loss Modeling Including PWM Harmonics in a PMSG for a Wind Energy Application. IEEE Transactions on Energy Conversion, 2015, 30, 476-486.	5.2	27
42	Applicability of Fractional Slot Axial Flux Permanent Magnet Synchronous Machines in the Field Weakening Region. IEEE Transactions on Energy Conversion, 2017, 32, 111-121.	5.2	27
43	Passive and Active Electromagnetic Shielding of Induction Heaters. IEEE Transactions on Magnetics, 2004, 40, 675-678.	2.1	26
44	Electromagnetic shielding of high-voltage cables. Journal of Magnetism and Magnetic Materials, 2007, 316, e908-e911.	2.3	25
45	Two-Level Response and Parameter Mapping Optimization for Magnetic Shielding. IEEE Transactions on Magnetics, 2008, 44, 301-308.	2.1	25
46	Coupled Electromagnetic and Thermal Analysis of an Axial Flux PM Machine. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	25
47	Time- and Spatial-Harmonic Content in Synchronous Electrical Machines. IEEE Transactions on Magnetics, 2016, , 1-1.	2.1	24
48	Demagnetization Fault Detection in Axial Flux PM Machines by Using Sensing Coils and an Analytical Model. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	24
49	Optimal Control for a Hybrid Excited Dual Mechanical Port Electric Machine. IEEE Transactions on Energy Conversion, 2017, 32, 599-607.	5.2	23
50	Analytical Modeling of Static Eccentricities in Axial Flux Permanent-Magnet Machines with Concentrated Windings. Energies, 2016, 9, 892.	3.1	22
51	Performance Comparison of Conventional Synchronous Reluctance Machines and PM-Assisted Types with Combined Star–Delta Winding. Energies, 2017, 10, 1500.	3.1	22
52	Performance Improvement of Existing Three Phase Synchronous Reluctance Machine: Stator Upgrading to 5-Phase With Combined Star-Pentagon Winding. IEEE Access, 2020, 8, 143569-143583.	4.2	22
53	An Integrated Modular Motor Drive With Shared Cooling for Axial Flux Motor Drives. IEEE Transactions on Industrial Electronics, 2021, 68, 10467-10476.	7.9	22
54	Field-Oriented Control for an Induction-Machine-Based Electrical Variable Transmission. IEEE Transactions on Vehicular Technology, 2016, 65, 4230-4240.	6.3	21

#	Article	IF	CITATIONS
55	Fully predictive heat transfer coefficient modeling of an axial flux permanent magnet synchronous machine with geometrical parameters of the magnets. Applied Thermal Engineering, 2017, 110, 1343-1357.	6.0	21
56	Magnetic Properties of Silicon Steel after Plastic Deformation. Materials, 2020, 13, 4361.	2.9	21
57	Additively Manufactured Ultralight Shaped-Profile Windings for HF Electrical Machines and Weight-Sensitive Applications. IEEE Transactions on Transportation Electrification, 2022, 8, 4313-4324.	7.8	21
58	Magnetic Material Identification in Geometries With Non-Uniform Electromagnetic Fields Using Global and Local Magnetic Measurements. IEEE Transactions on Magnetics, 2009, 45, 4157-4160.	2.1	20
59	A Computationally Efficient Method to Determine Iron and Magnet Losses in VSI-PWM Fed Axial Flux Permanent Magnet Synchronous Machines. IEEE Transactions on Magnetics, 2014, 50, 1-10.	2.1	20
60	Energy efficiency improvement of water pumping system using synchronous reluctance motor fed by perovskite solar cells. International Journal of Energy Research, 2020, 44, 11629-11642.	4.5	19
61	An Inverse Approach for Magnetic Material Characterization of an El Core Electromagnetic Inductor. IEEE Transactions on Magnetics, 2010, 46, 622-625.	2.1	18
62	Influence of the Electrical Steel Grade on the Performance of the Direct-Drive and Single Stage Gearbox Permanent-Magnet Machine for Wind Energy Generation, Based on an Analytical Model. IEEE Transactions on Magnetics, 2011, 47, 4781-4790.	2.1	18
63	Stator heat extraction system for axial flux yokeless and segmented armature machines. , 2017, , .		18
64	Simultaneous DC-Link and Stator Current Ripple Reduction With Interleaved Carriers in Multiphase Controlled Integrated Modular Motor Drives. IEEE Transactions on Industrial Electronics, 2021, 68, 5616-5625.	7.9	18
65	A sensorless PMSM drive using modified high-frequency test pulse sequences for the purpose of a discrete-time current controller with fixed sampling frequency. Mathematics and Computers in Simulation, 2010, 81, 367-381.	4.4	17
66	Evaluation of a Simple Lamination Stacking Method for the Teeth of an Axial Flux Permanent-Magnet Synchronous Machine With Concentrated Stator Windings. IEEE Transactions on Magnetics, 2012, 48, 999-1002.	2.1	17
67	Influence of Supply Voltage Distortion on the Energy Efficiency of Line-Start Permanent-Magnet Motors. IEEE Transactions on Industry Applications, 2014, 50, 1034-1043.	4.9	17
68	3-D Eddy Current and Fringing-Flux Distribution in an Axial-Flux Permanent-Magnet Synchronous Machine With Stator in Laminated Iron or SMC. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	17
69	Evaluation of the Rotor Eddy-Current Losses in High-Speed PMSMs With a Shielding Cylinder for Different Stator Sources. IEEE Transactions on Magnetics, 2019, 55, 1-10.	2.1	17
70	Mitigation of High-Frequency Eddy Current Losses in Hairpin Winding Machines. Machines, 2022, 10, 328.	2.2	17
71	A Non-Destructive Methodology for Estimating the Magnetic Material Properties of an Asynchronous Motor. IEEE Transactions on Magnetics, 2012, 48, 1621-1624.	2.1	16
72	Comparison of Three Analytical Methods for the Precise Calculation of Cogging Torque and Torque Ripple in Axial Flux PM Machines. Mathematical Problems in Engineering, 2016, 2016, 1-14.	1.1	16

#	Article	IF	CITATIONS
73	Core losses in nanocrystalline soft magnetic materials under square voltage waveforms. Journal of Magnetism and Magnetic Materials, 2008, 320, 53-57.	2.3	15
74	Comparison of analytical, finite element and neural network methods to study magnetic shielding. Simulation Modelling Practice and Theory, 2010, 18, 206-216.	3.8	15
75	The Effect of the Electrical Steel Properties on the Temperature Distribution in Direct-Drive PM Synchronous Generators for 5 MW Wind Turbines. IEEE Transactions on Magnetics, 2013, 49, 5371-5377.	2.1	15
76	A 3D Dynamic Lumped Parameter Thermal Network of Air-Cooled YASA Axial Flux Permanent Magnet Synchronous Machine. Energies, 2018, 11, 774.	3.1	15
77	Active Demagnetization Fault Compensation for Axial Flux Permanent-Magnet Synchronous Machines Using an Analytical Inverse Model. IEEE Transactions on Energy Conversion, 2020, 35, 591-599.	5.2	15
78	Hysteresis Loss in NdFeB Permanent Magnets in a Permanent Magnet Synchronous Machine. IEEE Transactions on Industrial Electronics, 2022, 69, 121-129.	7.9	15
79	An Enhanced Fault-Tolerant Control of a Five-Phase Synchronous Reluctance Motor Fed From a Three-to-Five-Phase Matrix Converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 4182-4194.	5.4	15
80	Loss Identification in a Double Rotor Electrical Variable Transmission. IEEE Transactions on Industrial Electronics, 2017, 64, 7731-7740.	7.9	14
81	Analysis and selection of harmonics sensitive to demagnetisation faults intended for condition monitoring of double rotor axial flux permanent magnet synchronous machines. IET Electric Power Applications, 2018, 12, 486-493.	1.8	14
82	A comparison of the full and half toroidal continuously variable transmissions in terms of dynamics of ratio variation and efficiency. Mechanism and Machine Theory, 2018, 121, 299-316.	4.5	14
83	Experimental Implementation of Power-Split Control Strategies in a Versatile Hardware-in-the-Loop Laboratory Test Bench for Hybrid Electric Vehicles Equipped with Electrical Variable Transmission. Applied Sciences (Switzerland), 2020, 10, 4253.	2.5	14
84	Refurbishing three-phase synchronous reluctance machines to multiphase machines. Electrical Engineering, 2021, 103, 139-152.	2.0	14
85	Performance Analysis of a Rewound Multiphase Synchronous Reluctance Machine. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 297-309.	5.4	14
86	Active and passive magnetic shielding for stray field reduction of an induction heater with axial flux. IET Electric Power Applications, 2005, 152, 1359.	1.4	13
87	Characterization and optimization of a permanent magnet synchronous machine. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2009, 28, 272-285.	0.9	13
88	Losses in Sensorless Controlled Permanent-Magnet Synchronous Machines. IEEE Transactions on Magnetics, 2010, 46, 590-593.	2.1	13
89	Thermally Induced Mechanical Stress in the Stator Windings of Electrical Machines. Energies, 2018, 11, 2113.	3.1	13
90	Geometrical optimization of an ultrasonic tactile plate. Sensors and Actuators A: Physical, 2010, 161, 91-100.	4.1	12

#	Article	IF	CITATIONS
91	Analysis of Hysteresis in Resonance-Based Position Estimation of Switched Reluctance Drives. IEEE Transactions on Magnetics, 2011, 47, 1022-1025.	2.1	12
92	Half toroidal continuously variable transmission: Trade-off between dynamics of ratio variation and efficiency. Mechanism and Machine Theory, 2017, 107, 183-196.	4.5	12
93	Sizing Methodology Based on Scaling Laws for a Permanent Magnet Electrical Variable Transmission. IEEE Transactions on Industrial Electronics, 2020, 67, 1739-1749.	7.9	12
94	Mathematical Modelling, Analysis and Control of a Three to Five-Phase Matrix Converter for Minimal Switching Losses. Mathematics, 2021, 9, 96.	2.2	12
95	Construction of Synchronous Reluctance Machines With Combined Star-Pentagon Configuration Using Standard Three-Phase Stator Frames. IEEE Transactions on Industrial Electronics, 2022, 69, 7582-7595.	7.9	12
96	Thermal analysis of magnetic shields for induction heating. IET Electric Power Applications, 2009, 3, 543.	1.8	11
97	ELECTROMAGNETIC LOSSES IN MAGNETIC SHIELDS FOR BURIED HIGH VOLTAGE CABLES. Progress in Electromagnetics Research, 2011, 115, 441-460.	4.4	11
98	Analytical modeling of eddy current losses in Axial Flux PMSM using resistance network. , 2014, , .		11
99	Computational-Time Reduction of Fourier-Based Analytical Models. IEEE Transactions on Energy Conversion, 2018, 33, 281-289.	5.2	11
100	Implementation of Matrix Converter in Wind Energy Conversion System with Modified Control Techniques. Electric Power Components and Systems, 2019, 47, 1316-1331.	1.8	11
101	Effect of Different Cutting Techniques on Magnetic Properties of Grain Oriented Steel Sheets and Axial Flux Machines. , 2019, , .		11
102	Comparison of an optimized electrical variable transmission with the Toyota Hybrid System. Applied Energy, 2020, 278, 115616.	10.1	11
103	Modelling and Design Methodology of an Improved Performance Photovoltaic Pumping System Employing Ferrite Magnet Synchronous Reluctance Motors. Mathematics, 2020, 8, 1429.	2.2	11
104	Magnetic material identification of a switched reluctance motor. International Journal of Applied Electromagnetics and Mechanics, 2011, 37, 35-49.	0.6	10
105	Effect of segmentation on eddy-current loss in permanent-magnets of axial-flux PM machines using a multilayer-2D — 2D coupled model. , 2012, , .		10
106	Benchmarking the permanent magnet electrical variable transmission against the half toroidal continuously variable transmission. Mechanism and Machine Theory, 2017, 113, 141-157.	4.5	10
107	Efficiency of a CVT-Operated EVT Experimentally Evaluated Against Half-Toroidal and Push-Belt CVTs. IEEE Transactions on Industrial Electronics, 2018, 65, 3095-3103.	7.9	10
108	Assessment of Different Cooling Techniques for Reduced Mechanical Stress in the Windings of Electrical Machines. Energies, 2019, 12, 1967.	3.1	10

#	Article	IF	CITATIONS
109	Optimal Rotor Design of Synchronous Reluctance Machines Considering the Effect of Current Angle. Mathematics, 2021, 9, 344.	2.2	10
110	Electrothermal Design of a Discrete GaN-Based Converter for Integrated Modular Motor Drives. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 5390-5406.	5.4	10
111	Comparative Analysis of Refurbishing Methods of Three-Phase Synchronous Reluctance Machines to Five-Phase With Minimum Cost. IEEE Transactions on Industry Applications, 2021, 57, 6007-6022.	4.9	10
112	Fast multipole accelerated finite element-boundary element analysis of shielded induction heaters. IEEE Transactions on Magnetics, 2006, 42, 1407-1410.	2.1	9
113	Reducing steady-state current distortions in sensorless control strategies by using adaptive test pulses. IEEE Applied Power Electronics Conference and Exposition, 2008, , .	0.0	9
114	Analysis of perforated magnetic shields for electric power applications. IET Electric Power Applications, 2009, 3, 123.	1.8	9
115	Magnetic Shielding of Levitation Melting Devices. IEEE Transactions on Magnetics, 2010, 46, 686-689.	2.1	9
116	Transient analysis and stability limits for synchronous reluctance motors considering saturation effects. , 2015, , .		9
117	Effects of cutting and annealing of amorphous materials for high speed permanent magnet machines. , 2016, , .		9
118	Torque and torque components in high-speed permanent-magnet synchronous machines with a shielding cylinder. Mathematics and Computers in Simulation, 2016, 130, 70-80.	4.4	9
119	Study of the Effect of a Shielding Cylinder on the Torque in a Permanent-Magnet Synchronous Machine Considering Two Torque-Producing Mechanisms. IEEE Transactions on Magnetics, 2017, 53, 1-8.	2.1	9
120	Parametric Studies for Combined Convective and Conductive Heat Transfer for YASA Axial Flux Permanent Magnet Synchronous Machines. Energies, 2018, 11, 2983.	3.1	9
121	Prediction of Eddy Current Losses in Cooling Tubes of Direct Cooled Windings in Electric Machines. Mathematics, 2019, 7, 1096.	2.2	8
122	Reconfigurable Modular Fault-Tolerant Converter Topology for Switched Reluctance Motors. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 2890-2902.	5.4	8
123	Magnetic field computation for optimized shielding of induction heaters. Journal of Computational and Applied Mathematics, 2004, 168, 437-446.	2.0	7
124	Analytical formulation for magnetic shields taking into account hysteresis effects in the Rayleigh region. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2005, 24, 1470-1491.	0.9	7
125	Magnetic shielding of buried highâ€voltage (HV) cables by conductive metal plates. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2008, 27, 170-180.	0.9	7
126	Adjoint variable method for timeâ€harmonic Maxwell equations. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2009, 28, 1202-1215.	0.9	7

#	Article	IF	CITATIONS
127	Influence of contact resistance on shielding efficiency of shielding gutters for high-voltage cables. IET Electric Power Applications, 2011, 5, 715.	1.8	7
128	Power flow in an induction machine based electrical variable transmission. , 2016, , .		7
129	Influence of stator slot openings on losses and torque in axial flux permanent magnet machines. Mathematics and Computers in Simulation, 2016, 130, 22-31.	4.4	7
130	Predictive Current Control vs. PI Control for Surface Mounted Permanent Magnet Machines. , 2018, , .		7
131	A holistic DC link architecture design method for multiphase integrated modular motor drives. , 2019, , .		7
132	An ECMS-based Approach for Energy Management of a HEV Equipped with an Electrical Variable Transmission. , 2019, , .		7
133	Effects of stator core welding on an induction machine – Measurements and modeling. Journal of Magnetism and Magnetic Materials, 2020, 499, 166280.	2.3	7
134	A Novel Driving Method for Switched Reluctance Motor With Standard Full Bridge Inverter. IEEE Transactions on Energy Conversion, 2020, 35, 994-1003.	5.2	7
135	Effect of Using Different Types of Magnet Wires on the AC Losses of Electrical Machine Windings. , 2021, , .		7
136	Hardware control of an active magnetic shield. IET Science, Measurement and Technology, 2007, 1, 152-159.	1.6	6
137	Adjoint Variable Method for the Study of Combined Active and Passive Magnetic Shielding. Mathematical Problems in Engineering, 2008, 2008, 1-15.	1.1	6
138	Analysis of a Nondestructive Evaluation Technique for Defect Characterization in Magnetic Materials Using Local Magnetic Measurements. Mathematical Problems in Engineering, 2010, 2010, 1-18.	1.1	6
139	Drivetrain design for an ultra light electric vehicle with high efficiency. , 2013, , .		6
140	Reducing Losses Due to Fringing Flux in an Axial-Flux Permanent-Magnet Synchronous Machine. IEEE Transactions on Magnetics, 2016, 52, 1-8.	2.1	6
141	Model-Based Comparison of Thermo-Hydraulic Performance of Various Cooling Methods for Power Electronics of Electric Vehicles. , 2018, , .		6
142	Performance Analysis of a Five-phase Synchronous Reluctance Motor Connected to Matrix Converter. , 2021, , .		6
143	ADVANCED LUMPED PARAMETER MODEL FOR SWITCHED RELUCTANCE MOTORS WITH HIGH PERFORMANCE COOLING. , 2018, , .		6
144	Replacing Stator of Existing Three-phase Synchronous Reluctance Machines towards Improved		6

⁴ Multiphase Machines Performance. , 2020, , .

#	Article	IF	CITATIONS
145	Dynamic Modeling and Analysis of Electric Motor With Integrated Magnetic Spring Driving Weaving Loom Application. IEEE Transactions on Industrial Electronics, 2023, 70, 2329-2338.	7.9	6
146	Space mapping method for the design of passive shields. Journal of Applied Physics, 2006, 99, 08H901.	2.5	5
147	Numerical Model for the Drag Force Method to Evaluate Hysteresis Loss. IEEE Transactions on Magnetics, 2008, 44, 842-845.	2.1	5
148	Modeling the Electromagnetic Behavior of Nanocrystalline Soft Materials. IEEE Transactions on Magnetics, 2009, 45, 678-686.	2.1	5
149	2D analytical torque study of slotted high-speed PMSMs considering pole pairs, slots per pole per phase and coil throw. , 2014, , .		5
150	Steady-state analysis and stability of synchronous reluctance motors considering saturation effects. , 2015, , .		5
151	Development of Correlations for Windage Power Losses Modeling in an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Features of the Magnets. Energies, 2016, 9, 1009.	3.1	5
152	Analytical modeling of axial flux PM machines with eccentricities. International Journal of Applied Electromagnetics and Mechanics, 2017, 53, 757-777.	0.6	5
153	Design of low cost and efficient photovoltaic pumping system utilizing synchronous reluctance motor. , 2017, , .		5
154	Comparison between two combined star-delta configurations on synchronous reluctance motors performance. , 2017, , .		5
155	Technical Assessment of Utilizing an Electrical Variable Transmission SystEm in Hybrid Electric Vehicles. , 2018, , .		5
156	Open-Phase Fault-Tolerant Current Reconstruction Control of Three-Phase Permanent Magnet Assisted Synchronous Reluctance Motors. , 2019, , .		5
157	Quality Assessment of a 2D FE Based Lumped Parameter Electric Motor Thermal Model Using 3D FE Models. , 2020, , .		5
158	Design of a circumscribing polygon wide bandgap based integrated modular motor drive topology with thermally decoupled windings and power converters. , 2020, , .		5
159	Optimization of a Si gradient in laminated SiFe alloys. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1491-1494.	2.3	4
160	Rotor geometry design of an interior permanent-magnet synchronous machine for more accurate sensorless control. , 2010, , .		4
161	Reducing the permanent magnet content in fractional-slot concentrated-windings permanent magnet synchronous machines. , 2012, , .		4
162	Performance and implementation issues considering the use of thin laminated steel sheets in segmented armature axial-flux PM machines. , 2014, , .		4

#	Article	IF	CITATIONS
163	Voltage Sources in 2D Fourier-Based Analytical Models of Electric Machines. Mathematical Problems in Engineering, 2015, 2015, 1-8.	1.1	4
164	Evaluation of the additional loss due to supply voltage distortion in relation to induction motor efficiency rating. , 2015, , .		4
165	Loss evaluation of interior permanent-magnet synchronous Machine drives using T-type multilevel converters. , 2015, , .		4
166	Evaluation of the Torque in High-Speed PMSMs With a Shielding Cylinder and BLDC Control. IEEE Transactions on Magnetics, 2018, 54, 1-8.	2.1	4
167	A novel design and electromagnetic analysis for a linear switched reluctance motor. Electrical Engineering, 2019, 101, 609-618.	2.0	4
168	Performance Degradation of Surface PMSMs with Demagnetization Defect under Predictive Current Control. Energies, 2019, 12, 782.	3.1	4
169	Modeling Interlocking Effects on Core Losses in Electrical Steel. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15, 1836-1843.	1.4	4
170	Design and Analysis of Hybrid Excitation Generators for Aircraft Applications Under Limiting Open-Circuit Voltage. IEEE Transactions on Transportation Electrification, 2022, 8, 3390-3400.	7.8	4
171	An Integrated Motor Drive with Enhanced Power Density Using Modular Converter Structure. , 2021, ,		4
172	Drivetrain Torque Ripple Reduction With a Modular Motor Architecture. , 2021, , .		4
173	Optimizing a transformer driven active magnetic shield in induction heating. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2005, 24, 1241-1257.	0.9	3
174	Magnetic shielding properties of sheet metal products taking into account hysteresis effects. Journal of Applied Physics, 2005, 97, 10E511.	2.5	3
175	Magnetic Nondestructive Evaluation of Bending Fatigue Damage Using the Drag Force Method. IEEE Transactions on Magnetics, 2007, 43, 2746-2748.	2.1	3
176	Improving the torque output in radial- and axial-flux permanent-magnet synchronous machines with concentrated windings by using a combined wye-delta connection. , 2011, , .		3
177	Modelling the impact of the stator currents on inductance-based sensorless control of brushless DC-machines. , 2011, , .		3
178	Influence of Soft Magnetic Material in a Permanent Magnet Synchronous Machine With a Commercial Induction Machine Stator. IEEE Transactions on Magnetics, 2012, 48, 1645-1648.	2.1	3
179	Magnetic stray field based position detection in BLDC outer rotor permanent magnet synchronous machines. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2014, 27, 544-554.	1.9	3
180	Concept study of a double rotor induction machine used as continuously variable transmission. , 2015, , .		3

#	Article	IF	CITATIONS
181	Two-dimensional fourier-based modeling of electric machines. , 2017, , .		3
182	Permanent Magnet-Assisted Synchronous Reluctance Motor Employing a Hybrid Star-Delta Winding for High Speed Applications. , 2018, , .		3
183	A Control Method with Ring Structure for Switched Reluctance Motor. , 2018, , .		3
184	Controlling a Switched Reluctance Motor with a Conventional Three-Phase Bridge Instead of Asymmetric H-Bridges. Energies, 2018, 11, 3242.	3.1	3
185	Experimental Investigation of Direct Contact Baseplate Cooling for Electric Vehicle Power Electronics. , 2019, , .		3
186	Module Connection Topologies and Interleaving Strategies for Integrated Modular Motor Drives. , 2019, , .		3
187	Design of an Integrated DC-Link Structure for Reconfigurable Integrated Modular Motor Drives. IEEE Transactions on Industrial Electronics, 2022, 69, 2312-2321.	7.9	3
188	Circulating-Current-Excited Switched Reluctance Generator System With Diode Rectifier. IEEE Transactions on Industrial Electronics, 2022, 69, 7859-7868.	7.9	3
189	Integrated Model of Power Electronics, Electric Motor, and Gearbox for a Light EV. Journal of Power Electronics, 2015, 15, 1640-1653.	1.5	3
190	An Improved Fault-Tolerant Control of a Five-Phase Synchronous Reluctance Motor Connected to Matrix Converter. , 2021, , .		3
191	Multi-Agent Position Estimation in Modular Motor Drives Using Low-Resolution Sensors. IEEE Open Journal of the Industrial Electronics Society, 2022, 3, 105-115.	6.8	3
192	Multiâ€agent control in modular motor drives by means of gossip consensus. IET Electric Power Applications, 2022, 16, 483-497.	1.8	3
193	A Simple Commutation Method and a Cost-Effective Clamping Circuit for Three-to-Five-Phase Indirect-Matrix Converters. Electronics (Switzerland), 2022, 11, 808.	3.1	3
194	Mitigation of Torsional Vibrations in a Modular Drivetrain with Interleaving Control. Machines, 2022, 10, 429.	2.2	3
195	Perovskite Solar Cells and Thermoelectric Generator Hybrid Array Feeding a Synchronous Reluctance Motor for an Efficient Water Pumping System. Mathematics, 2022, 10, 2417.	2.2	3
196	Optimization of an Octangular Double-Layered Shield Using Multiple Forward Models. IEEE Transactions on Magnetics, 2009, 45, 1586-1589.	2.1	2
197	Efficiency optimization of an axial flux permanent-magnet synchronous generator with concentrated pole windings. , 2010, , .		2
198	Influence of electrical steel grade on the temperature distribution in direct-drive PM synchronous generators for 5 MW wind turbines. , 2012, , .		2

#	Article	IF	CITATIONS
199	Losses in VSI-PWM fed axial flux machines. , 2014, , .		2
200	Optimal design and implementation of a drivetrain for an ultra-light electric vehicle. International Journal of Vehicle Design, 2016, 72, 262.	0.3	2
201	Adaptive PI Controller for Slip controlled Belt Continuously Variable Transmission. IFAC-PapersOnLine, 2018, 51, 101-106.	0.9	2
202	A Generic DC link Capacitor Sizing Methodology for Multi-phase Wide Bandgap Based Integrated Modular Motor Drives. , 2020, , .		2
203	Synchronous reluctance machines: performance evaluation with and without ferrite magnets. IOP Conference Series: Materials Science and Engineering, 2020, 966, 012107.	0.6	2
204	Energy Management Strategy Optimization for Application of an Electrical Variable Transmission System in a Hybrid Electric City Bus. , 2020, , .		2
205	Directly Cooled Windings in Switched Reluctance Machines. , 2020, , .		2
206	Wide Bandgap Based Modular Driving Techniques for Switched Reluctance Motor Drives. , 2020, , .		2
207	Magnetic network model including loss separation and Preisach principles for the evaluation of core losses in devices. Journal of Applied Physics, 2005, 97, 10E515.	2.5	1
208	Software control of an active magnetic shield. IET Science, Measurement and Technology, 2006, 153, 13-21.	0.7	1
209	Circuit Method for Conductive and Nonlinear Ferromagnetic Materials. IEEE Transactions on Magnetics, 2008, 44, 1326-1329.	2.1	1
210	Plane Wave Model for the Electromagnetic Behavior of SiFe Alloys. IEEE Transactions on Magnetics, 2008, 44, 463-472.	2.1	1
211	Estimation errors in sensorless drives due to the magnetic interaction. , 2008, , .		1
212	Sensing local inhomogeneity in electrical steels by the drag force method. Journal of Applied Physics, 2008, 103, .	2.5	1
213	Nondestructive Testing of Metallic Cables Based on a Homogenized Model and Global Measurements. Mathematical Problems in Engineering, 2010, 2010, 1-21.	1.1	1
214	Eddy current based, contactless position transducer for a gas handle. , 2010, , .		1
215	Homogenized eddy current model for nonâ€destructive testing of metallic cables. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2012, 31, 1656-1680.	0.9	1
216	Modeling and control of an induction machine based electrical variable transmission. , 2014, , .		1

#	Article	IF	CITATIONS
217	Time- and spatial-harmonic content in electrical machines and its application in Fourier-based models. , 2016, , .		1
218	Dual rotor electrical variable transmission for hybrid vehicles: Performance analysis with focus on losses over a driving cycle. , 2017, , .		1
219	Thermal parameter identification of an electrical machine using inverse modelling and non-collocated thermal sensors. , 2017, , .		1
220	Evaluation of the Rotor Eddy-Currents in High-Speed PMSMs with a Shielding Cylinder. , 2018, , .		1
221	Performance Comparison Between SiC and Si Inverter Modules in an Electrical Variable Transmission Application. , 2020, , .		1
222	Distributed Control Strategies for Modular Permanent Magnet Synchronous Machines Taking Into Account Mutual Inductances. , 2020, , .		1
223	Design, implementation and performance analysis of shunt active filter based on a matrix converter. International Journal of Electronics, 2021, 108, 395-410.	1.4	1
224	Comparative Study of Switched Reluctance Generators with Separate Field Current and Circulating Current Excitations. IEEE Transactions on Energy Conversion, 2021, , 1-1.	5.2	1
225	Comparison Between Two Fault Tolerant Deadbeat Controllers under Partial Demagnetization Faults in Permanent Magnet Synchronous Machines. , 2020, , .		1
226	Polygon-Retrofitted Integrated Modular Motor Drive for Switched Reluctance Machines. IEEE Transactions on Industrial Electronics, 2022, 69, 12469-12479.	7.9	1
227	Synchronous Reluctance Motor Drive System Fed From Three-Phase Matrix Converter. , 2021, , .		1
228	Power Density Boosting Techniques for Reconfigurable Integrated Modular Motor Drives. IEEE Transactions on Energy Conversion, 2022, , 1-1.	5.2	1
229	Optimization of multilayered nonlinear crystalline alloys for shielding. Journal of Applied Physics, 2005, 97, 10F904.	2.5	Ο
230	Magnetic shielding of a cylindrical shield in nonlinear material with hysteresis. , 2006, , .		0
231	Finiteâ€element analysis of a shielded pulsedâ€current induction heater. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2010, 29, 1585-1595.	0.9	Ο
232	Analysis of hysteresis in resonance-based position estimation of switched reluctance drives. , 2010, , .		0
233	Influence of contact resistance on shielding efficiency of shielding gutters for HV cables. , 2010, , .		0
234	Influence of the electrical steel grade on the performance of the direct-drive permanent magnet machine for wind energy generation. , 2010, , .		0

#	Article	IF	CITATIONS
235	Losses due to transverse flux in axial flux permanent magnet synchronous machines. , 2014, , .		0
236	Effect of control strategies on the two torque-producing mechanisms in high-speed PMSMs. , 2015, , .		0
237	A numerical design of a frequency-based analytical model for demagnetization detection in axial flux permanent magnet synchronous machines. , 2015, , .		0
238	Synchronous reluctance motors performance based on different electrical steel grades. , 2015, , .		0
239	Demagnetization fault detection in axial flux PM machines by using sensing coils and an analytical model. , 2016, , .		0
240	Modeling and validation of losses due to unbalanced loading of stand-alone generators. , 2017, , .		0
241	Energy Management Strategy for Oscillating Drivetrains Equipped with an Electric Variable Transmission. , 2018, , .		0
242	Magnetic Equivalent Circuit Model of a Permanent Magnet Electrical Variable Transmission. , 2018, , .		0
243	Efficiency Measurement Strategy for a Planetary Gearbox with 2 Degrees of Freedom. Springer Proceedings in Energy, 2021, , 257-270.	0.3	0
244	Design Methodology for a PM Electrical Variable Transmission Used in HEV. Springer Proceedings in Energy, 2021, , 187-202.	0.3	0
245	STATOR HEAT TRANSFER PREDICTION OF DISK-TYPE ELECTRICAL MACHINES. , 2016, , .		0
246	Optimal design and implementation of a drivetrain for an ultra-light electric vehicle. International Journal of Vehicle Design, 2016, 72, 262.	0.3	0
247	Approach to couple MATLAB Simscape and Simulink blocks for dynamic analysis of multiphase drive systems. AIP Conference Proceedings, 2022, , .	0.4	0