
Ahmed Mahfouz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1725479/publications.pdf Version: 2024-02-01

ΔΗΜΕΟ ΜΛΗΕΟΠΖ

#	Article	IF	CITATIONS
1	Conserved cell types with divergent features in human versus mouse cortex. Nature, 2019, 573, 61-68.	27.8	1,198
2	Eleven grand challenges in single-cell data science. Genome Biology, 2020, 21, 31.	8.8	742
3	A comparison of automatic cell identification methods for single-cell RNA sequencing data. Genome Biology, 2019, 20, 194.	8.8	402
4	Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nature Biotechnology, 2018, 36, 1197-1202.	17.5	253
5	The single-cell eQTLGen consortium. ELife, 2020, 9, .	6.0	150
6	RNA sequencing data integration reveals an miRNA interactome of osteoarthritis cartilage. Annals of the Rheumatic Diseases, 2019, 78, 270-277.	0.9	130
7	Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Scientific Reports, 2017, 7, 12575.	3.3	123
8	A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nature Communications, 2021, 12, 463.	12.8	109
9	SpaGE: Spatial Gene Enhancement using scRNA-seq. Nucleic Acids Research, 2020, 48, e107-e107.	14.5	94
10	High-dimensional cytometric analysis of colorectal cancer reveals novel mediators of antitumour immunity. Gut, 2020, 69, 691-703.	12.1	92
11	Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2738-2743.	7.1	73
12	Transcriptomic signatures of brain regional vulnerability to Parkinson's disease. Communications Biology, 2020, 3, 101.	4.4	58
13	NeuroD Factors Discriminate Mineralocorticoid From Glucocorticoid Receptor DNA Binding in the Male Rat Brain. Endocrinology, 2017, 158, 1511-1522.	2.8	56
14	Shared Pathways Among Autism Candidate Genes Determined by Co-expression Network Analysis of the Developing Human Brain Transcriptome. Journal of Molecular Neuroscience, 2015, 57, 580-594.	2.3	54
15	Visualizing the spatial gene expression organization in the brain through non-linear similarity embeddings. Methods, 2015, 73, 79-89.	3.8	54
16	Predicting Cell Populations in Single Cell Mass Cytometry Data. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 769-781.	1.5	54
17	Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen Human Brain Atlas. Human Genetics, 2016, 135, 425-439.	3.8	47
18	Single-cell RNA sequencing in facioscapulohumeral muscular dystrophy disease etiology and development. Human Molecular Genetics, 2019, 28, 1064-1075.	2.9	46

Ahmed Mahfouz

#	Article	IF	CITATIONS
19	Hi-C Chromatin Interaction Networks Predict Co-expression in the Mouse Cortex. PLoS Computational Biology, 2015, 11, e1004221.	3.2	45
20	Unraveling the Complexity of the Cancer Microenvironment With Multidimensional Genomic and Cytometric Technologies. Frontiers in Oncology, 2020, 10, 1254.	2.8	45
21	Corticosteroid Action in the Brain: The Potential of Selective Receptor Modulation. Neuroendocrinology, 2019, 109, 266-276.	2.5	41
22	Cortical Spreading Depression Causes Unique Dysregulation of Inflammatory Pathways in a Transgenic Mouse Model of Migraine. Molecular Neurobiology, 2017, 54, 2986-2996.	4.0	37
23	BrainScope: interactive visual exploration of the spatial and temporal human brain transcriptome. Nucleic Acids Research, 2017, 45, gkx046.	14.5	29
24	Hierarchical progressive learning of cell identities in single-cell data. Nature Communications, 2021, 12, 2799.	12.8	25
25	CyTOFmerge: integrating mass cytometry data across multiple panels. Bioinformatics, 2019, 35, 4063-4071.	4.1	23
26	Identification and characterization of two consistent osteoarthritis subtypes by transcriptome and clinical data integration. Rheumatology, 2021, 60, 1166-1175.	1.9	23
27	Pan-cancer subtyping in a 2D-map shows substructures that are driven by specific combinations of molecular characteristics. Scientific Reports, 2016, 6, 24949.	3.3	21
28	Continuous infusion of manganese improves contrast and reduces side effects in manganese-enhanced magnetic resonance imaging studies. NeuroImage, 2017, 147, 1-9.	4.2	20
29	An educational guide for nanopore sequencing in the classroom. PLoS Computational Biology, 2020, 16, e1007314.	3.2	20
30	Cell type specificity of glucocorticoid signaling in the adult mouse hippocampus. Journal of Neuroendocrinology, 2022, 34, e13072.	2.6	20
31	Brain transcriptome atlases: a computational perspective. Brain Structure and Function, 2017, 222, 1557-1580.	2.3	19
32	Functional genomics analysis of Phelan-McDermid syndrome 22q13 region during human neurodevelopment. PLoS ONE, 2019, 14, e0213921.	2.5	16
33	Early-Life Compartmentalization of Immune Cells in Human Fetal Tissues Revealed by High-Dimensional Mass Cytometry. Frontiers in Immunology, 2019, 10, 1932.	4.8	15
34	Natriuretic Peptides in Post-mortem Brain Tissue and Cerebrospinal Fluid of Non-demented Humans and Alzheimer's Disease Patients. Frontiers in Neuroscience, 2018, 12, 864.	2.8	13
35	How Metabolic State May Regulate Fear: Presence of Metabolic Receptors in the Fear Circuitry. Frontiers in Neuroscience, 2018, 12, 594.	2.8	10
36	Co-expression Patterns between ATN1 and ATXN2 Coincide with Brain Regions Affected in Huntington's Disease. Frontiers in Molecular Neuroscience, 2017, 10, 399.	2.9	9

Ahmed Mahfouz

#	Article	IF	CITATIONS
37	Differential analysis of binarized single-cell RNA sequencing data captures biological variation. NAR Genomics and Bioinformatics, 2021, 3, lqab118.	3.2	8
38	Single-Cell Transcriptomics Reveals Discrete Steps in Regulatory T Cell Development in the Human Thymus. Journal of Immunology, 2022, 208, 384-395.	0.8	8
39	Identification of a Disease-Associated Network of Intestinal Immune Cells in Treatment-Naive Inflammatory Bowel Disease. Frontiers in Immunology, 0, 13, .	4.8	7
40	A structural equation model for imaging genetics using spatial transcriptomics. Brain Informatics, 2018, 5, 13.	3.0	6
41	Cingulate networks associated with gray matter loss in Parkinson's disease show high expression of cholinergic genes in the healthy brain. European Journal of Neuroscience, 2021, 53, 3727-3739.	2.6	5
42	Molecular characterization of the stress network in individuals at risk for schizophrenia. Neurobiology of Stress, 2021, 14, 100307.	4.0	5
43	Untangling biological factors influencing trajectory inference from single cell data. NAR Genomics and Bioinformatics, 2020, 2, Iqaa053.	3.2	4
44	Timing and localization of myasthenia gravisâ€related gene expression. European Journal of Neuroscience, 2021, 54, 5574-5585.	2.6	4
45	SCHNEL: scalable clustering of high dimensional single-cell data. Bioinformatics, 2020, 36, i849-i856.	4.1	4
46	scMoC: single-cell multi-omics clustering. Bioinformatics Advances, 2022, 2, .	2.4	3
47	Single-Cell Analysis of Refractory Celiac Disease Demonstrates Inter- and Intra-Patient Aberrant Cell Heterogeneity. Cellular and Molecular Gastroenterology and Hepatology, 2022, , .	4.5	3
48	Single-Cell Transcriptomics Links Loss of Human Pancreatic β-Cell Identity to ER Stress. Cells, 2021, 10, 3585.	4.1	3
49	Transcriptomic Signatures Associated With Regional Cortical Thickness Changes in Parkinson's Disease. Frontiers in Neuroscience, 2021, 15, 733501.	2.8	2
50	Genomic connectivity networks based on the BrainSpan atlas of the developing human brain. , 2014, , .		1
51	P2â€274: MAPPING OF NATRIURETIC PEPTIDES AND THEIR RECEPTORS IN THE BRAINS OF NONâ€DEMENTED HUMAN SUBJECTS AND PATIENTS WITH ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P782.	0.8	0
52	S191. Molecular Characterization of Stress Reactivity Regions in the Brain. Biological Psychiatry, 2019, 85, S371.	1.3	0
53	Correcting Differential Gene Expression Analysis for Cyto—Architectural Alterations in Substantia Nigra of Parkinson's Disease Patients Reveals Known and Potential Novel Disease—Associated Genes and Pathways. Cells, 2022, 11, 198.	4.1	0