
Stefan O Ciurea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1723667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nature Medicine, 2018, 24, 1036-1046.	30.7	622
2	Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood, 2015, 126, 1033-1040.	1.4	565
3	Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. Journal of Clinical Investigation, 2016, 126, 3363-3376.	8.2	399
4	Phase 1 clinical trial using mbIL21 ex vivo–expanded donor-derived NK cells after haploidentical transplantation. Blood, 2017, 130, 1857-1868.	1.4	256
5	Mobilized Peripheral Blood Stem Cells Versus Unstimulated Bone Marrow As a Graft Source for T-Cell–Replete Haploidentical Donor Transplantation Using Post-Transplant Cyclophosphamide. Journal of Clinical Oncology, 2017, 35, 3002-3009.	1.6	255
6	Reduced-intensity transplantation for lymphomas using haploidentical related donors vs HLA-matched unrelated donors. Blood, 2016, 127, 938-947.	1.4	246
7	High Risk of Graft Failure in Patients With Anti-HLA Antibodies Undergoing Haploidentical Stem-Cell Transplantation. Transplantation, 2009, 88, 1019-1024.	1.0	236
8	Improved Early Outcomes Using a T Cell Replete Graft Compared with T Cell Depleted Haploidentical Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2012, 18, 1835-1844.	2.0	227
9	Increasing use of allogeneic hematopoietic cell transplantation in patients aged 70 years and older in the United States. Blood, 2017, 130, 1156-1164.	1.4	210
10	Similar Transplantation Outcomes for Acute Myeloid Leukemia and Myelodysplastic Syndrome Patients with Haploidentical versus 10/10 Human Leukocyte Antigen–Matched Unrelated and Related Donors. Biology of Blood and Marrow Transplantation, 2014, 20, 1975-1981.	2.0	207
11	Donor-specific anti-HLA Abs and graft failure in matched unrelated donor hematopoietic stem cell transplantation. Blood, 2011, 118, 5957-5964.	1.4	197
12	Busulfan in Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2009, 15, 523-536.	2.0	196
13	The European Society for Blood and Marrow Transplantation (EBMT) Consensus Guidelines for the Detection and Treatment of Donor-specific Anti-HLA Antibodies (DSA) in Haploidentical Hematopoietic Cell Transplantation. Bone Marrow Transplantation, 2018, 53, 521-534.	2.4	168
14	Complement-Binding Donor-Specific Anti-HLA Antibodies and Risk of Primary Graft Failure in Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 1392-1398.	2.0	161
15	Haploidentical Natural Killer Cells Infused before Allogeneic Stem Cell Transplantation for Myeloid Malignancies: A Phase I Trial. Biology of Blood and Marrow Transplantation, 2016, 22, 1290-1298.	2.0	113
16	The European Society for Blood and Marrow Transplantation (EBMT) consensus recommendations for donor selection in haploidentical hematopoietic cell transplantation. Bone Marrow Transplantation, 2020, 55, 12-24.	2.4	94
17	PTCy-based haploidentical vs matched related or unrelated donor reduced-intensity conditioning transplant for DLBCL. Blood Advances, 2019, 3, 360-369.	5.2	92
18	Fifty Years of Melphalan Use in Hematopoietic Stem CellÂTransplantation. Biology of Blood and Marrow Transplantation, 2013, 19, 344-356.	2.0	90

#	Article	IF	CITATIONS
19	Outcomes of haploidentical vs matched sibling transplantation for acute myeloid leukemia in first complete remission. Blood Advances, 2019, 3, 1826-1836.	5.2	89
20	Posttransplant cyclophosphamide is associated with increased cytomegalovirus infection: a CIBMTR analysis. Blood, 2021, 137, 3291-3305.	1.4	85
21	Results of a 2â€arm, phase 2 clinical trial using postâ€transplantation cyclophosphamide for the prevention of graftâ€versusâ€host disease in haploidentical donor and mismatched unrelated donor hematopoietic stem cell transplantation. Cancer, 2016, 122, 3316-3326.	4.1	75
22	Intravenous Busulfan Compared with Total Body Irradiation Pretransplant Conditioning for Adults with Acute Lymphoblastic Leukemia. Biology of Blood and Marrow Transplantation, 2018, 24, 726-733.	2.0	71
23	Conditioning with busulfan plus melphalan versus melphalan alone before autologous haemopoietic cell transplantation for multiple myeloma: an open-label, randomised, phase 3 trial. Lancet Haematology,the, 2019, 6, e266-e275.	4.6	68
24	Allogeneic Transplantation in First Remission Improves Outcomes Irrespective of FLT3 -ITD Allelic Ratio in FLT3 -ITD–Positive Acute Myelogenous Leukemia. Biology of Blood and Marrow Transplantation, 2016, 22, 1218-1226.	2.0	66
25	Haploidentical Transplantation for Older Patients with Acute Myeloid Leukemia and Myelodysplastic Syndrome. Biology of Blood and Marrow Transplantation, 2018, 24, 1232-1236.	2.0	64
26	Mixed T Lymphocyte Chimerism after Allogeneic Hematopoietic Transplantation Is Predictive for Relapse ofÂAcute Myeloid Leukemia and Myelodysplastic Syndromes. Biology of Blood and Marrow Transplantation, 2015, 21, 1948-1954.	2.0	63
27	Prognostic factors influencing survival after allogeneic transplantation for AML/MDS patients with TP53 mutations. Blood, 2018, 131, 2989-2992.	1.4	63
28	Postâ€transplantation cyclophosphamide versus conventional graftâ€versusâ€host disease prophylaxis in mismatched unrelated donor haematopoietic cell transplantation. British Journal of Haematology, 2016, 173, 444-455.	2.5	61
29	Early Post-Transplant Minimal Residual Disease Assessment Improves Risk Stratification in Acute Myeloid Leukemia. Biology of Blood and Marrow Transplantation, 2018, 24, 1514-1520.	2.0	61
30	Treatment with Hypomethylating Agents before Allogeneic Stem Cell Transplant Improves Progression-Free Survival forÂPatients with Chronic Myelomonocytic Leukemia. Biology of Blood and Marrow Transplantation, 2016, 22, 47-53.	2.0	58
31	Donor Selection in T Cell–Replete Haploidentical Hematopoietic Stem Cell Transplantation: Knowns, Unknowns, and Controversies. Biology of Blood and Marrow Transplantation, 2013, 19, 180-184.	2.0	56
32	The Effect of Peritransplant Minimal Residual Disease in Adults With Acute Lymphoblastic Leukemia Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, 319-326.	0.4	55
33	Haploidentical Transplantation with Post-Transplantation Cyclophosphamide for High-Risk Acute Lymphoblastic Leukemia. Biology of Blood and Marrow Transplantation, 2017, 23, 318-324.	2.0	54
34	Clinical applications of donor lymphocyte infusion from an HLA-haploidentical donor: consensus recommendations from the Acute Leukemia Working Party of the EBMT. Haematologica, 2020, 105, 47-58.	3.5	51
35	Cellular therapy for acute myeloid Leukemia – Current status and future prospects. Blood Reviews, 2019, 37, 100578.	5.7	49
36	Allogeneic Stem Cell Transplantation for Myelofibrosis with Leukemic Transformation. Biology of Blood and Marrow Transplantation, 2010, 16, 555-559.	2.0	46

#	Article	IF	CITATIONS
37	Cytogenetics, Donor Type, and Use of Hypomethylating Agents in Myelodysplastic Syndrome with Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, 1618-1625.	2.0	46
38	Donor Specific Anti-HLA Antibody and Risk of Graft Failure in Haploidentical Stem Cell Transplantation. Advances in Hematology, 2016, 2016, 1-10.	1.0	45
39	Lymphocyte Recovery Predicts Outcomes in Cord Blood and T Cell–Depleted Haploidentical Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2011, 17, 1169-1175.	2.0	44
40	Prevention of Cytomegalovirus Reactivation in Haploidentical Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 353-358.	2.0	43
41	Decrease post-transplant relapse using donor-derived expanded NK-cells. Leukemia, 2022, 36, 155-164.	7.2	43
42	"No donor� Consider a haploidentical transplant. Blood Reviews, 2015, 29, 63-70.	5.7	42
43	Antileukemia Efficacy and Mechanisms of Action of SL-101, a Novel Anti-CD123 Antibody Conjugate, in Acute Myeloid Leukemia. Clinical Cancer Research, 2017, 23, 3385-3395.	7.0	41
44	Impact of TKIs post–allogeneic hematopoietic cell transplantation in Philadelphia chromosome–positive ALL. Blood, 2020, 136, 1786-1789.	1.4	40
45	Progress in Haploidentical Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2012, 18, 372-380.	2.0	39
46	Relapse risk and survival in patients with FLT3 mutated acute myeloid leukemia undergoing stem cell transplantation. American Journal of Hematology, 2017, 92, 331-337.	4.1	39
47	Comparing transplant outcomes in ALL patients after haploidentical with PTCy or matched unrelated donor transplantation. Blood Advances, 2020, 4, 2073-2083.	5.2	39
48	Is there an optimal conditioning for older patients with AML receiving allogeneic hematopoietic cell transplantation?. Blood, 2020, 135, 449-452.	1.4	39
49	Outcomes of Haploidentical Stem Cell Transplantation forÂLymphoma with Melphalan-Based Conditioning. Biology of Blood and Marrow Transplantation, 2016, 22, 493-498.	2.0	38
50	Can a Female Donor for a Male Recipient Decrease the Relapse Rate for Patients with Acute Myeloid Leukemia Treated with Allogeneic Hematopoietic Stem Cell Transplantation?. Biology of Blood and Marrow Transplantation, 2015, 21, 713-719.	2.0	36
51	BFR (bendamustine, fludarabine, and rituximab) allogeneic conditioning for chronic lymphocytic leukemia/lymphoma: reduced myelosuppression and GVHD. Blood, 2014, 124, 2306-2312.	1.4	35
52	Phase II Trial of Graft-versus-Host Disease Prophylaxis with Post-Transplantation Cyclophosphamide after Reduced-Intensity Busulfan/Fludarabine Conditioning for Hematological Malignancies. Biology of Blood and Marrow Transplantation, 2015, 21, 906-912.	2.0	35
53	Related donor transplants: has posttransplantation cyclophosphamide nullified the detrimental effect of HLA mismatch?. Blood Advances, 2018, 2, 1180-1186.	5.2	35
54	Risk Factors for Graft-versus-Host Disease in Haploidentical Hematopoietic Cell Transplantation Using Post-Transplant Cyclophosphamide. Biology of Blood and Marrow Transplantation, 2020, 26, 1459-1468.	2.0	35

#	Article	IF	CITATIONS
55	Impact of Fluid Overload as New Toxicity Category on Hematopoietic Stem Cell Transplantation Outcomes. Biology of Blood and Marrow Transplantation, 2017, 23, 2166-2171.	2.0	34
56	Endothelial Activation and Stress Index (EASIX) at Admission Predicts Fluid Overload in Recipients of Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2020, 26, 1013-1020.	2.0	34
57	Posttransplantation cyclophosphamide improves transplantation outcomes in patients with AML/MDS who are treated with checkpoint inhibitors. Cancer, 2020, 126, 2193-2205.	4.1	33
58	Leukemia cell mobilization with G-CSF plus plerixafor during busulfan–fludarabine conditioning for allogeneic stem cell transplantation. Bone Marrow Transplantation, 2015, 50, 939-946.	2.4	32
59	Treatment of allosensitized patients receiving allogeneic transplantation. Blood Advances, 2021, 5, 4031-4043.	5.2	32
60	An overview of conditioning regimens for haploidentical stem cell transplantation with postâ€ŧransplantation cyclophosphamide. American Journal of Hematology, 2015, 90, 541-548.	4.1	31
61	Third party, umbilical cord blood derived regulatory T-cells for prevention of graft versus host disease in allogeneic hematopoietic stem cell transplantation: feasibility, safety and immune reconstitution. Oncotarget, 2018, 9, 35611-35622.	1.8	31
62	Haploidentical Hematopoietic Stem Cell Transplantation asÂaÂPlatform for Post-Transplantation Cellular Therapy. Biology of Blood and Marrow Transplantation, 2015, 21, 1714-1720.	2.0	30
63	Relapse and survival after transplantation for complex karyotype acute myeloid leukemia: A report from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation and the University of Texas MD Anderson Cancer Center. Cancer, 2018, 124, 2134-2141.	4.1	30
64	Maintenance with 5-Azacytidine for Acute Myeloid Leukemia and Myelodysplastic Syndrome Patients. Blood, 2018, 132, 971-971.	1.4	29
65	Optimal Threshold and Time of Absolute Lymphocyte CountÂAssessment for Outcome Prediction after Bone MarrowÂTransplantation. Biology of Blood and Marrow Transplantation, 2016, 22, 505-513.	2.0	28
66	Haploidentical vs haplo-cord transplant in adults under 60 years receiving fludarabine and melphalan conditioning. Blood Advances, 2019, 3, 1858-1867.	5.2	25
67	Allogeneic transplant and CAR-T therapy after autologous transplant failure in DLBCL: a noncomparative cohort analysis. Blood Advances, 2022, 6, 486-494.	5.2	25
68	Clofarabine Plus Busulfan is an Effective Conditioning Regimen for Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Acute Lymphoblastic Leukemia: Long-Term Study Results. Biology of Blood and Marrow Transplantation, 2017, 23, 285-292.	2.0	24
69	Pilot study using post-transplant cyclophosphamide (PTCy), tacrolimus and mycophenolate GVHD prophylaxis for older patients receiving 10/10 HLA-matched unrelated donor hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2019, 54, 601-606.	2.4	24
70	Impact of a novel prognostic model, hematopoietic cell transplant-composite risk (HCT-CR), on allogeneic transplant outcomes in patients with acute myeloid leukemia and myelodysplastic syndrome. Bone Marrow Transplantation, 2019, 54, 839-848.	2.4	24
71	NK cell therapy: targeting disease relapse after hematopoietic stem cell transplantation. Immunotherapy, 2012, 4, 305-313.	2.0	23
72	Fludarabine with a higher versus lower dose of myeloablative timed-sequential busulfan in older patients and patients with comorbidities: an open-label, non-stratified, randomised phase 2 trial. Lancet Haematology,the, 2018, 5, e532-e542.	4.6	23

#	Article	IF	CITATIONS
73	Recent Advances in Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia. Biology of Blood and Marrow Transplantation, 2020, 26, e215-e221.	2.0	23
74	Outcomes of Patients with Myeloid Malignancies Treated with Allogeneic Hematopoietic Stem Cell Transplantation from Matched Unrelated Donors Compared with One Human Leukocyte Antigen Mismatched Related Donors Using HLA Typing at 10 Loci. Biology of Blood and Marrow Transplantation, 2011, 17, 923-929.	2.0	22
75	Age and Modified European LeukemiaNet Classification to Predict Transplant Outcomes: An Integrated Approach for Acute Myelogenous Leukemia Patients Undergoing Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 1405-1412.	2.0	22
76	Infectious complications in cord blood and T-cell depleted haploidentical stem cell transplantation. American Journal of Blood Research, 2011, 1, 98-105.	0.6	22
77	Outcome of Multiple Myeloma with Chromosome 1q Gain and 1p Deletion after Autologous Hematopoietic Stem Cell Transplantation: Propensity Score Matched Analysis. Biology of Blood and Marrow Transplantation, 2020, 26, 665-671.	2.0	21
78	Is a matched unrelated donor search needed for all allogeneic transplant candidates?. Blood Advances, 2018, 2, 2254-2261.	5.2	21
79	Fludarabine, melphalan, thiotepa and anti-thymocyte globulin conditioning for unrelated cord blood transplant. Leukemia and Lymphoma, 2012, 53, 901-906.	1.3	20
80	Haploidentical transplantation for acute myeloid leukemia patients with minimal/measurable residual disease at transplantation. American Journal of Hematology, 2019, 94, 1382-1387.	4.1	20
81	Outcomes of Haploidentical Transplantation in Patients with Relapsed Multiple Myeloma: An EBMT/CIBMTR Report. Biology of Blood and Marrow Transplantation, 2019, 25, 335-342.	2.0	20
82	Incidence of HLA Loss in a Global Multicentric Cohort of Post-Transplantation Relapses: Results from the Hlaloss Collaborative Study. Blood, 2018, 132, 818-818.	1.4	19
83	A Randomized Phase II Trial of Fludarabine/Melphalan 100 versus Fludarabine/Melphalan 140 Followed by Allogeneic Hematopoietic Stem Cell Transplantation for Patients with Multiple Myeloma. Biology of Blood and Marrow Transplantation, 2013, 19, 1453-1458.	2.0	18
84	Eltrombopag for Post-Transplantation Thrombocytopenia: Results of Phase II Randomized, Double-Blind, Placebo-Controlled Trial. Transplantation and Cellular Therapy, 2021, 27, 430.e1-430.e7.	1.2	18
85	Randomized phase II trial of extracorporeal phototherapy and steroids vs. steroids alone for newly diagnosed acute GVHD. Bone Marrow Transplantation, 2021, 56, 1316-1324.	2.4	18
86	Double umbilical cord blood transplant is effective therapy for relapsed or refractory Hodgkin lymphoma. Leukemia and Lymphoma, 2016, 57, 1607-1615.	1.3	17
87	Management of Advanced and Relapsed/Refractory Extranodal Natural Killer T-Cell Lymphoma: An Analysis of Stem Cell Transplantation and Chemotherapy Outcomes. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, e41-e50.	0.4	17
88	Optimizing the Conditioning Regimen for Hematopoietic Cell Transplant in Myelofibrosis: Long-Term Results of a Prospective Phase II Clinical Trial. Biology of Blood and Marrow Transplantation, 2020, 26, 1439-1445.	2.0	17
89	Significance of minimal residual disease monitoring by realâ€time quantitative polymerase chain reaction in core binding factor acute myeloid leukemia for transplantation outcomes. Cancer, 2020, 126, 2183-2192.	4.1	17
90	Effect of nonpermissive HLA-DPB1 mismatches after unrelated allogeneic transplantation with in vivo T-cell depletion. Blood, 2018, 131, 1248-1257.	1.4	16

#	Article	IF	CITATIONS
91	Novel Disease Risk Model for Patients with Acute Myeloid Leukemia Receiving Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2020, 26, 197-203.	2.0	16
92	Pure Red Cell Aplasia in Major ABO-Mismatched Allogeneic Hematopoietic Stem Cell Transplantation Is Associated with Severe Pancytopenia. Biology of Blood and Marrow Transplantation, 2016, 22, 961-965.	2.0	15
93	Who is the best donor for haploidentical stem cell transplantation?. Seminars in Hematology, 2019, 56, 194-200.	3.4	15
94	Myeloablative Conditioning for Allogeneic Transplantation Results in Superior Disease-Free Survival for Acute Myelogenous Leukemia and Myelodysplastic Syndromes with Low/Intermediate but not High Disease Risk Index: A Center for International Blood and Marrow Transplant Research Study. Transplantation and Cellular Therapy, 2021, 27, 68.e1-68.e9.	1.2	15
95	Cytogenetics and comorbidity predict outcomes in older myelodysplastic syndrome patients after allogeneic stem cell transplantation using reduced intensity conditioning. Cancer, 2017, 123, 2661-2670.	4.1	14
96	Targeting CD123 in blastic plasmacytoid dendritic cell neoplasm using allogeneic anti-CD123 CAR T cells. Nature Communications, 2022, 13, 2228.	12.8	14
97	HLA-DP mismatch and CMV reactivation increase risk of aGVHD independently in recipients of allogeneic stem cell transplant. Current Research in Translational Medicine, 2019, 67, 51-55.	1.8	13
98	Molecular disparity in human leukocyte antigens is associated with outcomes in haploidentical stem cell transplantation. Blood Advances, 2020, 4, 3474-3485.	5.2	13
99	Characteristics of Graft-Versus-Host Disease (GvHD) After Post-Transplantation Cyclophosphamide Versus Conventional GvHD Prophylaxis. Transplantation and Cellular Therapy, 2022, 28, 681-693.	1.2	13
100	PI3K inhibitor GDC-0941 enhances apoptotic effects of BH-3 mimetic ABT-737 in AML cells in the hypoxic bone marrow microenvironment. Journal of Molecular Medicine, 2013, 91, 1383-1397.	3.9	12
101	Community health status and outcomes after allogeneic hematopoietic cell transplantation in the United States. Cancer, 2021, 127, 609-618.	4.1	12
102	Vedolizumab for Steroid Refractory Lower Gastrointestinal Tract Graft-Versus-Host Disease. Transplantation and Cellular Therapy, 2021, 27, 272.e1-272.e5.	1.2	12
103	Incidence and impact of community respiratory viral infections in postâ€transplant cyclophosphamideâ€based graftâ€ <i>versus</i> â€host disease prophylaxis and haploidentical stem cell transplantation. British Journal of Haematology, 2021, 194, 145-157.	2.5	12
104	Stem cell transplantation outcomes in lymphoblastic lymphoma. Leukemia and Lymphoma, 2017, 58, 366-371.	1.3	11
105	Outcome of autologous hematopoietic stem cell transplantation in refractory multiple myeloma. Cancer, 2017, 123, 3568-3575.	4.1	11
106	Updated Results of Rituximab Pre- and Post-BEAM with or without 90Yttrium Ibritumomab Tiuxetan during Autologous Transplant for Diffuse Large B-cell Lymphoma. Clinical Cancer Research, 2018, 24, 2304-2311.	7.0	11
107	Outcomes of autologous hematopoietic cell transplantation in myeloma patients aged ≥75 years. Leukemia and Lymphoma, 2019, 60, 3536-3543.	1.3	11
108	Comparison of Outcomes of Allogeneic Hematopoietic Cell Transplantation for Multiple Myeloma Using Three Different Conditioning Regimens. Biology of Blood and Marrow Transplantation, 2019, 25, 1039-1044.	2.0	11

#	Article	IF	CITATIONS
109	Transforming growth factor βâ€mediated micromechanics modulates disease progression in primary myelofibrosis. Journal of Cellular and Molecular Medicine, 2020, 24, 11100-11110.	3.6	11
110	Effect of Conditioning Regimen Dose Reduction in Obese Patients Undergoing Autologous Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2019, 25, 480-487.	2.0	10
111	Impact of graft composition on outcomes of haploidentical bone marrow stem cell transplantation. Haematologica, 2020, 106, 269-274.	3.5	10
112	Leukemia Stem Cell Marker CD123 (IL-3R alpha) Predicts Minimal Residual Disease and Relapse, Providing a Valid Target For SL-101 In Acute Myeloid Leukemia With FLT3-ITD Mutations. Blood, 2013, 122, 359-359.	1.4	10
113	Fibroblast dynamics as an in vitro screening platform for anti-fibrotic drugs in primary myelofibrosis. Journal of Cellular Physiology, 2018, 233, 422-433.	4.1	9
114	Validation of a Hematopoietic Cell Transplant-Composite Risk (HCT-CR) Model for Post-Transplant Survival Prediction in Patients with Hematologic Malignancies. Clinical Cancer Research, 2020, 26, 2404-2410.	7.0	9
115	Fractionated busulfan myeloablative conditioning improves survival in older patients with acute myeloid leukemia and myelodysplastic syndrome. Cancer, 2021, 127, 1598-1605.	4.1	9
116	Targeting mantle cell lymphoma metabolism and survival through simultaneous blockade of mTOR and nuclear transporter exportin-1. Oncotarget, 2017, 8, 34552-34564.	1.8	9
117	Aging, Acute Myelogenous Leukemia, and Allogeneic Transplantation: Do They Belong in the Same Sentence?. Clinical Lymphoma and Myeloma, 2009, 9, 289-297.	1.4	8
118	Predictive model for survival in patients with AML/MDS receiving haploidentical stem cell transplantation. Blood, 2017, 129, 3031-3033.	1.4	8
119	NK cell therapy after hematopoietic stem cell transplantation: can we improve anti-tumor effect?. International Journal of Hematology, 2018, 107, 151-156.	1.6	8
120	Viral Reactivation in Haploidentical Transplants Using Post-Transplantation Cyclophosphamide – a Single Institution Experience. Biology of Blood and Marrow Transplantation, 2016, 22, S375-S376.	2.0	7
121	Longâ€ŧerm followâ€up of patients receiving allogeneic stem cell transplant for chronic lymphocytic leukaemia: mixed Tâ€cell chimerism is associated with high relapse risk and inferior survival. British Journal of Haematology, 2017, 177, 567-577.	2.5	7
122	Impact of Donor Type and Melphalan Dose on Allogeneic Transplantation Outcomes for Patients with Lymphoma. Biology of Blood and Marrow Transplantation, 2019, 25, 1340-1346.	2.0	7
123	<scp>NK</scp> cell alloreactivity in acute myeloid leukemia in the postâ€ŧransplant cyclophosphamide era. American Journal of Hematology, 2020, 95, 1590-1598.	4.1	7
124	Idiopathic refractory ascites after allogeneic stem cell transplantation: a previously unrecognized entity. Blood Advances, 2020, 4, 1296-1306.	5.2	7
125	Haploidentical transplants for patients with relapse after the first allograft. American Journal of Hematology, 2020, 95, 1187.	4.1	6
126	Myeloablative Fractionated Busulfan With Fludarabine in Older Patients: Long Term Disease-Specific Outcomes of a Prospective Phase II Clinical Trial. Transplantation and Cellular Therapy, 2021, 27, 913.e1-913.e12.	1.2	6

#	Article	IF	CITATIONS
127	Refined HLA-DPB1 mismatch with molecular algorithms predicts outcomes in hematopoietic stem cell transplantation. Haematologica, 2021, , .	3.5	6
128	Feasibility of Lenalidomide Therapy for Persistent Chronic Lymphocytic Leukemia after Allogeneic Transplantation. Biology of Blood and Marrow Transplantation, 2017, 23, 1405-1410.	2.0	5
129	Allogeneic stem cell transplantation for FLT3 mutated acute myeloid leukemia in first complete remission: does age really matter?. Haematologica, 2018, 103, 191-193.	3.5	5
130	Considerations for haploidentical versus unrelated donor transplants. Bone Marrow Transplantation, 2019, 54, 738-742.	2.4	5
131	Curative potential of hematopoietic stem cell transplantation for advanced psoriasis. American Journal of Hematology, 2019, 94, E176-E180.	4.1	5
132	Haploidentical transplants for patients with graft failure after the first allograft. American Journal of Hematology, 2020, 95, E267.	4.1	5
133	A Matched Controlled Analysis of Post-Transplant Cyclophosphamide (CY) Versus Tacrolimus and Mini-Dose Methotrexate in Matched Sibling and Unrelated Donor Transplant Recipients Receiving Reduced-Intensity Conditioning: Post-Transplant CY Is Associated with Higher Rates of Acute Gvhd. Blood, 2012, 120, 4200-4200.	1.4	5
134	A Bayesian, Phase II Randomized Trial of Extracorporeal Photopheresis (ECP) Plus Steroids Versus Steroids-Alone in Patients with Newly Diagnosed Acute Graft Vs. Host Disease (GVHD): The Addition of ECP Improves Gvhd Response and the Ability to Taper Steroids. Blood, 2015, 126, 854-854.	1.4	5
135	Number of HLA-Mismatched Eplets Is Not Associated with Major Outcomes in Haploidentical Transplantation with Post-Transplantation Cyclophosphamide: A Center for International Blood and Marrow Transplant Research Study. Transplantation and Cellular Therapy, 2022, 28, 107.e1-107.e8.	1.2	5
136	Allogeneic Transplantation after Myeloablative Rituximab/BEAM ± Bortezomib for Patients with Relapsed/Refractory Lymphoid Malignancies: 5-Year Follow-Up Results. Biology of Blood and Marrow Transplantation, 2019, 25, 1347-1354.	2.0	4
137	Strategies in Haploidentical Stem Cell Transplantation in Adults. Turkish Journal of Haematology, 2013, 30, 342-350.	0.5	3
138	Mismatch in SIRPα, a regulatory protein in innate immunity, is associated with chronic GVHD in hematopoietic stem cell transplantation. Blood Advances, 2021, 5, 3407-3417.	5.2	3
139	Improved Outcomes for Patients Receiving High-Doses of IL-21 Ex Vivo Expanded NK Cells after Haploidentical Transplantation (haploSCT): Long-Term Follow-up of a Phase 1/2 Clinical Trial with Comparison to CIBMTR Controls. Blood, 2019, 134, 700-700.	1.4	3
140	Feasibility and Outcomes of Haploidentical Transplantation for Elderly Patients with Advanced Hematological Malignancies: The MD Anderson Cancer Center Experience. Blood, 2014, 124, 1245-1245.	1.4	3
141	A randomized phase III study of pretransplant conditioning for AML/MDS with fludarabine and once daily IV busulfan ± clofarabine in allogeneic stem cell transplantation. Bone Marrow Transplantation, 0, , .	2.4	3
142	Donorâ€specific antiâ€HLA antibodies and …recipientâ€specific antiâ€HLA antibodies? The conundrum on pregnancy in transplantation. American Journal of Hematology, 2020, 95, E128-E130.	4.1	2
143	Can we cure refractory Hodgkin's lymphoma with transplantation?. Bone Marrow Transplantation, 2021, 56, 278-281.	2.4	2
144	Cytogenetics and Blast Count Determine Transplant Outcomes in Patients with Active Acute Myeloid Leukemia. Acta Haematologica, 2021, 144, 74-81.	1.4	2

#	Article	IF	CITATIONS
145	T-Replete Haploidentical Cell Transplantation Using Post-Transplant Cyclophosphamide for Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia and Myelodysplastic Syndrome: Effect of Transplant Conditioning Regimen Intensity on Outcomes. Blood, 2018, 132, 1015-1015.	1.4	2
146	Sustained Engraftment Using Fludarabine, Melphalan and Thiotepa Conditioning for Haploidentical Stem Cell Transplantation Blood, 2007, 110, 5081-5081.	1.4	2
147	Fluid Overload As New Toxicity Category Has a Strong Impact on Non Relapse Mortality and Survival in Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2015, 126, 4321-4321.	1.4	2
148	Nonmyeoablative Allogeneic Conditioning with Bendamustine in Combination with Fludarabine and Rituximab for Lymphoid Malignancies: Immunosuppression without Myelosuppression and without Acute Gvhd. Blood, 2011, 118, 894-894.	1.4	2
149	What the Intensivist Needs to Know About Hematopoietic Stem Cell Transplantation?. , 2020, , 1531-1546.		2
150	Prevention and Treatment of Relapse After HLA-Haploidentical Hematopoietic Cell Transplantation. , 2018, , 291-306.		1
151	Sequential kidney and allogeneic hematopoietic stem cell transplantation. American Journal of Hematology, 2019, 94, E267-E270.	4.1	1
152	Myeloablative Fractionated Busulfan Conditioning Regimen in Older Patients: Results of a Phase II Study. Blood, 2019, 134, 256-256.	1.4	1
153	Prior Hypomethylating Agents Or Chemotherapy Does Not Improve The Outcome Of Allogeneic Hematopoietic Transplantation For High Risk MDS. Blood, 2013, 122, 305-305.	1.4	1
154	Allogeneic stem cell transplantation (AlloSCT) for patients (pts) with acute leukemia following venetoclax-based therapy Journal of Clinical Oncology, 2019, 37, 7047-7047.	1.6	1
155	A Randomized Study of Fludarabine-Clofarabine Vs Fludarabine Alone Combined with Busulfan and Allogeneic Hematopoietic Transplantation for AML and MDS. Blood, 2019, 134, 257-257.	1.4	1
156	Haploidentical Mbil-21 <i>Ex Vivo</i> Expanded NK Cells (FC21-NK) for Patients with Multiple Relapsed and Refractory Acute Myeloid Leukemia. Blood, 2020, 136, 11-12.	1.4	1
157	Survival Trends in Multiple Myeloma after Autologous Hematopoietic Stem Cell Transplantation. Blood, 2020, 136, 24-25.	1.4	1
158	Progress in Haploidentical Hematopoietic Stem Cell Transplantation. , 2015, , .		0
159	Reply to: Use of Single-Antigen Flow Beads Assays to Assess Anti-HLA Donor-Specific Antibody Strength. Biology of Blood and Marrow Transplantation, 2016, 22, 395-396.	2.0	0
160	Donor-specific anti-human leukocyte antigen antibodies and risk of graft failure after hematopoietic cell transplants. , 0, , 73-78.		0
161	Haploidentical Transplants for Acute Myeloid Leukemia in Adults. , 2018, , 231-243.		0
162	Haploidentical Transplants for Myeloproliferative Neoplasms. , 2018, , 261-269.		0

#	Article	IF	CITATIONS
163	Future Prospects: Haploidentical Transplantation. , 2018, , 325-337.		0
164	Anti-HLA Antibodies: Assessment and Mitigating Strategies. , 2018, , 127-143.		0
165	Autologous Stem Cell Mobilization with Cytokines and in-Vivo Alemtuzumab in Patients with T-Cell Non-Hodgkin's Lymphoma (T-NHL) Blood, 2009, 114, 3213-3213.	1.4	0
166	Allogeneic Hematopoietic Stem Cell Transplantation for Myelofibrosis: PK Guided IV Busulfan Dose Intensity Results in Improved Event Free Survival. Blood, 2011, 118, 2006-2006.	1.4	0
167	Reconstitution of Lymphocyte Subsets and Outcomes After Matched and Mismatched Hematopoietic Stem-Cell Transplantation. Blood, 2012, 120, 4485-4485.	1.4	0
168	Relevance and Factors Predicting for Early Lymphocyte Recovery After Allogeneic Bone Marrow Stem Cell Transplantation (BMT) Blood, 2012, 120, 3053-3053.	1.4	0
169	Impact of monosomal karyotype and FLT3 status on post-transplant relapse in acute myeloid leukemia (AML) Journal of Clinical Oncology, 2013, 31, 7010-7010.	1.6	0
170	Comparable Outcomes After Sibling and Matched Unrelated Donor Allogeneic Hematopoietic Cell Transplantations (HCT) In Adult Acute Lymphoblatic Leukemia (ALL) With First Complete Remission (CR). Blood, 2013, 122, 2142-2142.	1.4	0
171	Autologous stem cell transplantation in dialysis-dependent myeloma patients Journal of Clinical Oncology, 2014, 32, 8601-8601.	1.6	0
172	Comparable Outcomes of Therapy-Related and De Novo Myelodysplastic Syndrome after Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2016, 128, 2276-2276.	1.4	0
173	Haploidentical Donors in Addition to Transplantation in Chronic Phase Associate with Improved Gvhd-Free Relapse-Free Survival (GRFS) for Patients with Advanced CML. Blood, 2016, 128, 4583-4583.	1.4	0
174	Impact of t(11;14) on the Outcome of Autologous Transplantation in Multiple Myeloma: A Matched-Pair Analysis. Blood, 2018, 132, 4607-4607.	1.4	0
175	What the Intensivist Needs to Know About Hematopoietic Stem Cell Transplantation?. , 2019, , 1-16.		0
176	Third-Party BK Virus Specific Cytotoxic T Lymphocyte Therapy for Hemorrhagic Cystitis Following Allotransplantation. Blood, 2019, 134, 3596-3596.	1.4	0
177	Allogeneic Hematopoietic Cell Transplantation May Improve Long-Term Outcomes in Patients with Ph-like Acute Lymphoblastic Leukemia with CRLF2 Overexpression. Blood, 2019, 134, 4598-4598.	1.4	0
178	Incidence and Outcomes of Toxoplasma Reactivation in Patients with Hematologic Diseases after Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2021, 138, 1779-1779.	1.4	0
179	Transplant Outcomes with Fludarabine and Melphalan in High Risk AML Patients By Donor Types. Blood, 2020, 136, 20-21.	1.4	0
180	Long-Term Survival for Myeloma after Autologous Stem Cell Transplantation. Blood, 2020, 136, 23-24.	1.4	0

#	Article	IF	CITATIONS
181	Stability of Captisol-enabled versus propylene glycol–based melphalan at room temperature and after refrigeration. American Journal of Health-System Pharmacy, 2022, , .	1.0	0
182	SIRPα Mismatch Is Associated With Relapse Protection and Chronic Graft-Versus-Host Disease After Related Hematopoietic Stem Cell Transplantation for Lymphoid Malignancies. Frontiers in Immunology, 0, 13, .	4.8	0