Inge Seim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1722384/publications.pdf Version: 2024-02-01

INCE SEIM

#	Article	IF	CITATIONS
1	A chromosomeâ€level genome of <i>Antechinus flavipes</i> provides a reference for an Australian marsupial genus with male death after mating. Molecular Ecology Resources, 2022, 22, 740-754.	4.8	12
2	Reply to Gaudry etÂal.: Cross-validation is necessary for the identification of pseudogenes. Proceedings of the United States of America, 2022, 119, e2120427119.	7.1	0
3	Evolutionary impacts of purine metabolism genes on mammalian oxidative stress adaptation. Zoological Research, 2022, 43, 241-254.	2.1	21
4	Insights into amphicarpy from the compact genome of the legume <i>Amphicarpaea edgeworthii</i> . Plant Biotechnology Journal, 2021, 19, 952-965.	8.3	22
5	Oxidative stress drives divergent evolution of the glutathione peroxidase (GPX) gene family in mammals. Integrative Zoology, 2021, 16, 696-711.	2.6	20
6	The long non-coding RNA GHSROS reprograms prostate cancer cell lines toward a more aggressive phenotype. PeerJ, 2021, 9, e10280.	2.0	5
7	SLR-superscaffolder: a de novo scaffolding tool for synthetic long reads using a top-to-bottom scheme. BMC Bioinformatics, 2021, 22, 158.	2.6	7
8	Comparative analyses of aging-related genes in long-lived mammals provide insights into natural longevity. Innovation(China), 2021, 2, 100108.	9.1	11
9	Comparative analysis of the superoxide dismutase gene family in Cetartiodactyla. Journal of Evolutionary Biology, 2021, 34, 1046-1060.	1.7	2
10	A Chromosome-Level Genome of the Agile Gracile Mouse Opossum (<i>Gracilinanus agilis</i>). Genome Biology and Evolution, 2021, 13, .	2.5	3
11	Comparative genomics provides insights into the aquatic adaptations of mammals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	43
12	Genomewide analysis of sperm whale E2 ubiquitin conjugating enzyme genes. Journal of Genetics, 2021, 100, 1.	0.7	0
13	Genomewide analysis of sperm whale E2 ubiquitin conjugating enzyme genes. Journal of Genetics, 2021, 100, .	0.7	0
14	The Chromosome Level Genome and Genome-wide Association Study for the Agronomic Traits of Panax Notoginseng. IScience, 2020, 23, 101538.	4.1	34
15	An Indo-Pacific Humpback Dolphin Genome Reveals Insights into Chromosome Evolution and the Demography of a Vulnerable Species. IScience, 2020, 23, 101640.	4.1	14
16	African Arowana Genome Provides Insights on Ancient Teleost Evolution. IScience, 2020, 23, 101662.	4.1	3
17	Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K). GigaScience, 2020, 9, .	6.4	47
18	Genome sequencing of deep-sea hydrothermal vent snails reveals adaptions to extreme environments. GigaScience, 2020, 9, .	6.4	5

INGE SEIM

#	Article	IF	CITATIONS
19	Complete Chloroplast Genomes of 14 Mangroves: Phylogenetic and Comparative Genomic Analyses. BioMed Research International, 2020, 2020, 1-13.	1.9	14
20	Insights into the Evolution of Neoteny from the Genome of the Asian Icefish Protosalanx chinensis. IScience, 2020, 23, 101267.	4.1	7
21	Lineageâ€specific evolution of mangrove plastid genomes. Plant Genome, 2020, 13, e20019.	2.8	4
22	The mitochondrial genome of the black-tailed dusky antechinus (<i>Antechinus arktos</i>). Mitochondrial DNA Part B: Resources, 2020, 5, 3835-3837.	0.4	0
23	RadAA: A Commandâ€line Tool for Identification of Radical Amino Acid Changes in Multiple Sequence Alignments. Molecular Informatics, 2019, 38, e1800057.	2.5	0
24	MUC13 promotes the development of colitis-associated colorectal tumors via β-catenin activity. Oncogene, 2019, 38, 7294-7310.	5.9	28
25	Constraints to counting bioluminescence producing cells by a commonly used transgene promoter and its implications for experimental design. Scientific Reports, 2019, 9, 11334.	3.3	5
26	Accelerated evolution and diversifying selection drove the adaptation of cetacean bone microstructure. BMC Evolutionary Biology, 2019, 19, 194.	3.2	5
27	Distinct evolution of toll-like receptor signaling pathway genes in cetaceans. Genes and Genomics, 2019, 41, 1417-1430.	1.4	6
28	Contraction of the ROS Scavenging Enzyme Glutathione <i>S</i> -Transferase Gene Family in Cetaceans. G3: Genes, Genomes, Genetics, 2019, 9, 2303-2315.	1.8	13
29	A chromosomeâ€level genome of black rockfish, <i>Sebastes schlegelii</i> , provides insights into the evolution of live birth. Molecular Ecology Resources, 2019, 19, 1309-1321.	4.8	44
30	The mitochondrial genome of the black-tailed dasyure (Murexia melanurus). Mitochondrial DNA Part B: Resources, 2019, 4, 3598-3600.	0.4	1
31	Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nature Communications, 2018, 9, 1276.	12.8	80
32	No effect of unacylated ghrelin administration on subcutaneous PC3 xenograft growth or metabolic parameters in a Rag1-/- mouse model of metabolic dysfunction. PLoS ONE, 2018, 13, e0198495.	2.5	4
33	Transparency on scientific instruments. EMBO Reports, 2018, 19, .	4.5	0
34	Abundant ghrelin gene expression by monocytes: Putative implications for fat accumulation and obesity. Obesity Medicine, 2017, 5, 1-3.	0.9	7
35	MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. International Journal of Cancer, 2017, 140, 2351-2363.	5.1	32
36	Whole-Genome Sequence of the Metastatic PC3 and LNCaP Human Prostate Cancer Cell Lines. G3: Genes, Genomes, Genetics, 2017, 7, 1731-1741.	1.8	49

INGE SEIM

#	Article	IF	CITATIONS
37	Insights from engraftable immunodeficient mouse models of hyperinsulinaemia. Scientific Reports, 2017, 7, 491.	3.3	15
38	Adaptive Evolution of Energy Metabolism-Related Genes in Hypoxia-Tolerant Mammals. Frontiers in Genetics, 2017, 8, 205.	2.3	34
39	Gene expression signatures of human cell and tissue longevity. Npj Aging and Mechanisms of Disease, 2016, 2, 16014.	4.5	40
40	Multi-species sequence comparison reveals conservation of ghrelin gene-derived splice variants encoding a truncated ghrelin peptide. Endocrine, 2016, 52, 609-617.	2.3	20
41	Convergent evolution of marine mammals is associated with distinct substitutions in common genes. Scientific Reports, 2015, 5, 16550.	3.3	41
42	Fusion transcript loci share many genomic features with non-fusion loci. BMC Genomics, 2015, 16, 1021.	2.8	16
43	Comparative analysis reveals loss of the appetite-regulating peptide hormone ghrelin in falcons. General and Comparative Endocrinology, 2015, 216, 98-102.	1.8	6
44	The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal. Aging, 2014, 6, 879-899.	3.1	62
45	Adaptations to a Subterranean Environment and Longevity Revealed by the Analysis of Mole Rat Genomes. Cell Reports, 2014, 8, 1354-1364.	6.4	162
46	Cloning and tissue distribution of novel splice variants of the ovine ghrelin gene. BMC Veterinary Research, 2014, 10, 211.	1.9	7
47	Turtle ghrelin. Nature Genetics, 2014, 46, 525-526.	21.4	2
48	Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitroby ghrelin. Reproductive Biology and Endocrinology, 2013, 11, 70.	3.3	25
49	Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii. Nature Communications, 2013, 4, 2212.	12.8	213
50	Cloning of a novel insulin-regulated ghrelin transcript in prostate cancer. Journal of Molecular Endocrinology, 2013, 50, 179-191.	2,5	19
51	Identification of a long non-coding RNA gene, growth hormone secretagogue receptor opposite strand, which stimulates cell migration in non-small cell lung cancer cell lines. International Journal of Oncology, 2013, 43, 566-574.	3.3	24
52	Silencing of ghrelin receptor expression inhibits endometrial cancer cell growth in vitro and in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E305-E313.	3.5	14
53	The Ghrelin Axis—Does It Have an Appetite for Cancer Progression?. Endocrine Reviews, 2012, 33, 849-891.	20.1	75
54	The expanding roles of the ghrelin-gene derived peptide obestatin in health and disease. Molecular and Cellular Endocrinology, 2011, 340, 111-117.	3.2	47

INGE SEIM

#	Article	IF	CITATIONS
55	Ghrelin axis genes, peptides and receptors: Recent findings and future challenges. Molecular and Cellular Endocrinology, 2011, 340, 3-9.	3.2	37
56	Ghrelin and cancer. Molecular and Cellular Endocrinology, 2011, 340, 65-69.	3.2	58
57	Tandem B1 SINE retro-elements may provide a basis for natural antisense transcription in the Magi1 locus of the mouse (Mus musculus). Genes and Genomics, 2010, 32, 407-411.	1.4	0
58	Ghrelin geneâ€related peptides: Multifunctional endocrine / autocrine modulators in health and disease. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 125-131.	1.9	26
59	A variant of the KLK4 gene is expressed as a cis sense-antisense chimeric transcript in prostate cancer cells. Rna, 2010, 16, 1156-1166.	3.5	36
60	The proximal first exon architecture of the murine ghrelin gene is highly similar to its human orthologue. BMC Research Notes, 2009, 2, 85.	1.4	3
61	New insights into the molecular complexity of the ghrelin gene locus. Cytokine and Growth Factor Reviews, 2009, 20, 297-304.	7.2	35
62	Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene. BMC Molecular Biology, 2008, 9, 95.	3.0	26
63	Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts. BMC Genomics, 2007, 8, 298.	2.8	87