Jennifer G Mulle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1721990/publications.pdf

Version: 2024-02-01

126907 98798 5,032 76 33 67 citations h-index g-index papers 96 96 96 9763 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Sex steroid deficiency–associated bone loss is microbiota dependent and prevented by probiotics. Journal of Clinical Investigation, 2016, 126, 2049-2063.	8.2	416
2	An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genetics in Medicine, 2011, 13, 777-784.	2.4	371
3	The Pathophysiology of Fragile X Syndrome. Annual Review of Genomics and Human Genetics, 2007, 8, 109-129.	6.2	357
4	Deletion 17q12 Is a Recurrent Copy Number Variant that Confers High Risk of Autism and Schizophrenia. American Journal of Human Genetics, 2010, 87, 618-630.	6.2	282
5	The Gut Microbiome: A New Frontier in Autism Research. Current Psychiatry Reports, 2013, 15, 337.	4.5	218
6	Microdeletions of 3q29 Confer High Risk for Schizophrenia. American Journal of Human Genetics, 2010, 87, 229-236.	6.2	215
7	Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease. Genome Medicine, 2016, 8, 75.	8.2	211
8	Genomeâ€wide association study of schizophrenia in Ashkenazi Jews. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 649-659.	1.7	203
9	Critical Determinants of Ca2+-Dependent Inactivation within an EF-Hand Motif of L-Type Ca2+ Channels. Biophysical Journal, 2000, 78, 1906-1920.	0.5	188
10	A Genome-Wide Scan of Ashkenazi Jewish Crohn's Disease Suggests Novel Susceptibility Loci. PLoS Genetics, 2012, 8, e1002559.	3.5	144
11	Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Molecular Psychiatry, 2013, 18, 1090-1095.	7.9	140
12	Replication Stress Induces Genome-wide Copy Number Changes in Human Cells that Resemble Polymorphic and Pathogenic Variants. American Journal of Human Genetics, 2009, 84, 339-350.	6.2	132
13	Microarray-based mutation detection in the <i>dystrophin </i> gene. Human Mutation, 2008, 29, 1091-1099.	2.5	113
14	Signatures of founder effects, admixture, and selection in the Ashkenazi Jewish population. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16222-16227.	7.1	113
15	A Comparison Among 5 Methods for the Clinical Diagnosis of Fetal Alcohol Spectrum Disorders. Alcoholism: Clinical and Experimental Research, 2016, 40, 1000-1009.	2.4	110
16	Replication stress induces tumor-like microdeletions in <i>FHIT</i> /FRA3B. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 246-251.	7.1	107
17	Infection and Inflammation in Schizophrenia and Bipolar Disorder: A Genome Wide Study for Interactions with Genetic Variation. PLoS ONE, 2015, 10, e0116696.	2.5	92
18	A framework for the investigation of rare genetic disorders in neuropsychiatry. Nature Medicine, 2019, 25, 1477-1487.	30.7	90

#	Article	lF	CITATIONS
19	Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion. Molecular Psychiatry, 2021, 26, 4496-4510.	7.9	87
20	The Thanatomicrobiome: A Missing Piece of the Microbial Puzzle of Death. Frontiers in Microbiology, 2016, 7, 225.	3.5	80
21	The 3q29 deletion confers >40-fold increase in risk for schizophrenia. Molecular Psychiatry, 2015, 20, 1028-1029.	7.9	73
22	Novel features of 3q29 deletion syndrome: Results from the 3q29 registry. American Journal of Medical Genetics, Part A, 2016, 170, 999-1006.	1.2	73
23	Reciprocal Duplication of the Williams-Beuren Syndrome Deletion on Chromosome 7q11.23 Is Associated with Schizophrenia. Biological Psychiatry, 2014, 75, 371-377.	1.3	66
24	Segmental duplications mediate novel, clinically relevant chromosome rearrangements. Human Molecular Genetics, 2009, 18, 2957-2962.	2.9	63
25	Functional evaluation of a PTSD-associated genetic variant: estradiol regulation and ADCYAP1R1. Translational Psychiatry, 2016, 6, e978-e978.	4.8	61
26	Protocol for the Emory University African American Vaginal, Oral, and Gut Microbiome in Pregnancy Cohort Study. BMC Pregnancy and Childbirth, 2017, 17, 161.	2.4	58
27	Osteomicrobiology: The influence of gut microbiota on bone in health and disease. Bone, 2018, 115, 59-67.	2.9	57
28	5-Hydroxymethylation-associated epigenetic modifiers of Alzheimer's disease modulate Tau-induced neurotoxicity. Human Molecular Genetics, 2016, 25, ddw109.	2.9	53
29	Exome Sequencing Identifies a Novel <i>FOXP3</i> Mutation in a 2â€Generation Family With Inflammatory Bowel Disease. Journal of Pediatric Gastroenterology and Nutrition, 2014, 58, 561-568.	1.8	47
30	Schizophrenia genetics: progress, at last. Current Opinion in Genetics and Development, 2012, 22, 238-244.	3.3	46
31	Cardiovascular Disease, Psychosocial Factors, and Genetics: The Case of Depression. Progress in Cardiovascular Diseases, 2013, 55, 557-562.	3.1	42
32	No evidence for association to the G72/G30 locus in an independent sample of schizophrenia families. Molecular Psychiatry, 2005, 10, 431-433.	7.9	41
33	Study protocol for The Emory 3q29 Project: evaluation of neurodevelopmental, psychiatric, and medical symptoms in 3q29 deletion syndrome. BMC Psychiatry, 2018, 18, 183.	2.6	40
34	New discoveries in schizophrenia genetics reveal neurobiological pathways: A review of recent findings. European Journal of Medical Genetics, 2015, 58, 704-714.	1.3	39
35	Neuropsychiatric phenotypes and a distinct constellation of ASD features in 3q29 deletion syndrome: results from the 3q29 registry. Molecular Autism, 2019, 10, 30.	4.9	38
36	Unraveling the genetic architecture of copy number variants associated with schizophrenia and other neuropsychiatric disorders. Journal of Neuroscience Research, 2017, 95, 1144-1160.	2.9	37

#	Article	lF	Citations
37	Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements. Human Molecular Genetics, 2011, 20, 3769-3778.	2.9	35
38	Behavioral changes and growth deficits in a CRISPR engineered mouse model of the schizophrenia-associated 3q29 deletion. Molecular Psychiatry, 2021, 26, 772-783.	7.9	35
39	Deep phenotyping in 3q29 deletion syndrome: recommendations for clinical care. Genetics in Medicine, 2021, 23, 872-880.	2.4	32
40	PEMapper and PECaller provide a simplified approach to whole-genome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1923-E1932.	7.1	31
41	Stability of the vaginal, oral, and gut microbiota across pregnancy among African American women: the effect of socioeconomic status and antibiotic exposure. Peerl, 2019, 7, e8004.	2.0	31
42	Mouse model implicates GNB3 duplication in a childhood obesity syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14990-14994.	7.1	30
43	Genome-Wide Association Study of Down Syndrome-Associated Atrioventricular Septal Defects. G3: Genes, Genomes, Genetics, 2015, 5, 1961-1971.	1.8	28
44	Genome-wide association study in two populations to determine genetic variants associated with Toxoplasma gondii infection and relationship to schizophrenia risk. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 92, 133-147.	4.8	26
45	Contribution of copy-number variation to Down syndrome–associated atrioventricular septal defects. Genetics in Medicine, 2015, 17, 554-560.	2.4	24
46	Inhibition of recombinant Ca2+ channels by benzothiazepines and phenylalkylamines: class-specific pharmacology and underlying molecular determinants. Molecular Pharmacology, 1997, 51, 872-81.	2.3	16
47	Dense SNP association study for bipolar I disorder on chromosome 18p11 suggests two loci with excess paternal transmission. Molecular Psychiatry, 2007, 12, 367-375.	7.9	15
48	Empirical Evaluation of Oligonucleotide Probe Selection for DNA Microarrays. PLoS ONE, 2010, 5, e9921.	2.5	14
49	Assessment of microbial DNA extraction methods of cadaver soil samples for criminal investigations. Australian Journal of Forensic Sciences, 2016, 48, 265-272.	1.2	14
50	Identifying genetic factors that contribute to the increased risk of congenital heart defects in infants with Down syndrome. Scientific Reports, 2020, 10, 18051.	3.3	14
51	New phenotypes associated with 3q29 duplication syndrome: Results from the 3q29 registry. American Journal of Medical Genetics, Part A, 2020, 182, 1152-1166.	1.2	14
52	Genomic structural variation and schizophrenia. Current Psychiatry Reports, 2008, 10, 171-177.	4.5	13
53	Analysis of Copy Number Variants on Chromosome 21 in Down Syndrome-Associated Congenital Heart Defects. G3: Genes, Genomes, Genetics, 2018, 8, 105-111.	1.8	13
54	Craniofacial features of 3q29 deletion syndrome: Application of nextâ€generation phenotyping technology. American Journal of Medical Genetics, Part A, 2021, 185, 2094-2101.	1.2	13

#	Article	IF	CITATIONS
55	Comprehensive phenotyping of neuropsychiatric traits in a multiplex 3q29 deletion family: a case report. BMC Psychiatry, 2020, 20, 184.	2.6	12
56	Convergent and distributed effects of the 3q29 deletion on the human neural transcriptome. Translational Psychiatry, 2021, 11, 357.	4.8	12
57	A distinct cognitive profile in individuals with 3q29 deletion syndrome. Journal of Intellectual Disability Research, 2023, 67, 216-227.	2.0	12
58	Evidence for linkage to chromosome 13q32 in an independent sample of schizophrenia families. Molecular Psychiatry, 2005, 10, 429-431.	7.9	11
59	Short Communication: Anatomic Site of Sampling and the Rectal Mucosal Microbiota in HIV Negative Men Who Have Sex with Men Engaging in Condomless Receptive Anal Intercourse. AIDS Research and Human Retroviruses, 2018, 34, 277-281.	1.1	10
60	HLA typing using genome wide data reveals susceptibility types for infections in a psychiatric disease enriched sample. Brain, Behavior, and Immunity, 2018, 70, 203-213.	4.1	10
61	Robust Regression Analysis of Copy Number Variation Data based on a Univariate Score. PLoS ONE, 2014, 9, e86272.	2.5	5
62	Polygenic risk scores differentiate schizophrenia patients with toxoplasma gondii compared to toxoplasma seronegative patients. Comprehensive Psychiatry, 2021, 107, 152236.	3.1	5
63	Caregiver Perspectives on a Child's Diagnosis of 3q29 Deletion: "We Can't Just Wish This Thing Away― Journal of Developmental and Behavioral Pediatrics, 2022, 43, e94-e102.	1.1	4
64	Metabolic effects of the schizophrenia-associated 3q29 deletion. Translational Psychiatry, 2022, 12, 66.	4.8	4
65	Deletion 17q12 Is a Recurrent Copy Number Variant that Confers High Risk of Autism and Schizophrenia. American Journal of Human Genetics, 2011, 88, 121.	6.2	3
66	Editorial overview: Rare CNV disorders and neuropsychiatric phenotypes: opportunities, challenges, solutions. Current Opinion in Genetics and Development, 2021, 68, iii-ix.	3.3	3
67	Symptoms of Pediatric Feeding Disorders Among Individuals with 3q29 Deletion Syndrome: A Case-Control Study. Journal of Developmental and Behavioral Pediatrics, 2022, 43, e170-e178.	1.1	3
68	Glucocorticoid receptor sensitivity in early pregnancy in an African American cohort. American Journal of Reproductive Immunology, 2020, 84, e13252.	1.2	2
69	Sex-specific recombination patterns predict parent of origin for recurrent genomic disorders. BMC Medical Genomics, 2021, 14, 154.	1.5	2
70	Harnessing rare variants in neuropsychiatric and neurodevelopment disordersâ€"a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, , .	3.8	2
71	Genomic Tics in Tourette Syndrome. Biological Psychiatry, 2012, 71, 390-391.	1.3	1
72	Reply to PlÃ $\frac{1}{4}$ ss et al.: The strength of PEMapper/PECaller lies in unbiased calling using large sample sizes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8323-E8323.	7.1	1

#	Article	IF	CITATIONS
73	The microbiome: current and future view of an ancient paradigm. Future Microbiology, 2017, 12, 831-834.	2.0	1
74	A cross-comparison of cognitive ability across 8 genomic disorders. Current Opinion in Genetics and Development, 2021, 68, 106-116.	3.3	1
75	Response to Astley's Letter to the Editor. Alcoholism: Clinical and Experimental Research, 2017, 41, 219-219.	2.4	0
76	S184. IN SILICO PREDICTION OF T-CELL-MEDIATED MOLECULAR MIMICRY IN TOXOPLASMOSIS AND SCHIZOPHRENIA. Schizophrenia Bulletin, 2020, 46, S108-S108.	4.3	0