
Wonwoo Nam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1721338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Valent Iron(IV)–Oxo Complexes of Heme and Non-Heme Ligands in Oxygenation Reactions. Accounts of Chemical Research, 2007, 40, 522-531.	7.6	1,035
2	Crystallographic and Spectroscopic Characterization of a Nonheme Fe(IV)&cjs0811O Complex. Science, 2003, 299, 1037-1039.	6.0	870
3	A Highly Selective Fluorescent Chemosensor for Pb2+. Journal of the American Chemical Society, 2005, 127, 10107-10111.	6.6	618
4	Nonheme FeIVO Complexes That Can Oxidize the Câ^'H Bonds of Cyclohexane at Room Temperature. Journal of the American Chemical Society, 2004, 126, 472-473.	6.6	591
5	Photofunctional triplet excited states of cyclometalated Ir(iii) complexes: beyond electroluminescence. Chemical Society Reviews, 2012, 41, 7061.	18.7	583
6	A Highly Active Zinc Catalyst for the Controlled Polymerization of Lactide. Journal of the American Chemical Society, 2003, 125, 11350-11359.	6.6	579
7	Tuning Reactivity and Mechanism in Oxidation Reactions by Mononuclear Nonheme Iron(IV)-Oxo Complexes. Accounts of Chemical Research, 2014, 47, 1146-1154.	7.6	434
8	Status of Reactive Non-Heme Metal–Oxygen Intermediates in Chemical and Enzymatic Reactions. Journal of the American Chemical Society, 2014, 136, 13942-13958.	6.6	391
9	Axial ligand tuning of a nonheme iron(Ⅳ)–oxo unit for hydrogen atom abstraction. Proceedings of the United States of America, 2007, 104, 19181-19186.	3.3	376
10	An FeIVO complex of a tetradentate tripodal nonheme ligand. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3665-3670.	3.3	322
11	Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex. Nature, 2011, 478, 502-505.	13.7	292
12	Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions. ACS Central Science, 2019, 5, 13-28.	5.3	275
13	Synthetic Mononuclear Nonheme Iron–Oxygen Intermediates. Accounts of Chemical Research, 2015, 48, 2415-2423.	7.6	264
14	A Thiolate-Ligated Nonheme Oxoiron(IV) Complex Relevant to Cytochrome P450. Science, 2005, 310, 1000-1002.	6.0	246
15	Dioxygen Activation by Metalloenzymes and Models. Accounts of Chemical Research, 2007, 40, 465-465.	7.6	241
16	Synthesis, Characterization, and Reactivities of Manganese(V)â^'Oxo Porphyrin Complexes. Journal of the American Chemical Society, 2007, 129, 1268-1277.	6.6	238
17	Phosphorescent Sensor for Robust Quantification of Copper(II) Ion. Journal of the American Chemical Society, 2011, 133, 11488-11491.	6.6	238
18	New Insights into the Mechanisms of Oâ^'O Bond Cleavage of Hydrogen Peroxide andtert-Alkyl Hydroperoxides by Iron(III) Porphyrin Complexes. Journal of the American Chemical Society, 2000, 122, 8677-8684.	6.6	233

#	Article	IF	CITATIONS
19	Reactivities of Mononuclear Non-Heme Iron Intermediates Including Evidence that Iron(III)â^'Hydroperoxo Species Is a Sluggish Oxidant. Journal of the American Chemical Society, 2006, 128, 2630-2634.	6.6	230
20	Crystal structure of a metal ion-bound oxoiron(IV) complex and implications for biological electron transfer. Nature Chemistry, 2010, 2, 756-759.	6.6	227
21	Phosphorescent Sensor for Biological Mobile Zinc. Journal of the American Chemical Society, 2011, 133, 18328-18342.	6.6	217
22	Iron-cyclam complexes as catalysts for the epoxidation of olefins by 30% aqueous hydrogen peroxide in acetonitrile and methanol. Journal of the American Chemical Society, 1991, 113, 7052-7054.	6.6	208
23	Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation. Energy and Environmental Science, 2012, 5, 7606.	15.6	208
24	A Twoâ€State Reactivity Rationale for Counterintuitive Axial Ligand Effects on the CH Activation Reactivity of Nonheme Fe ^{IV} O Oxidants. Chemistry - A European Journal, 2008, 14, 1740-1756.	1.7	198
25	A Highly Reactive Mononuclear Non-Heme Manganese(Ⅳ)–Oxo Complex That Can Activate the Strong C–H Bonds of Alkanes. Journal of the American Chemical Society, 2011, 133, 20088-20091.	6.6	198
26	Metal Complex-Catalyzed Epoxidation of Olefins by Dioxygen with Co-Oxidation of Aldehydes. A Mechanistic Study. Inorganic Chemistry, 1996, 35, 1045-1049.	1.9	197
27	Mononuclear Metal–O ₂ Complexes Bearing Macrocyclic <i>N</i> -Tetramethylated Cyclam Ligands. Accounts of Chemical Research, 2012, 45, 1321-1330.	7.6	187
28	A Mononuclear Non-Heme Manganese(IV)–Oxo Complex Binding Redox-Inactive Metal Ions. Journal of the American Chemical Society, 2013, 135, 6388-6391.	6.6	182
29	Axial Ligand Effects on the Geometric and Electronic Structures of Nonheme Oxoiron(IV) Complexes. Journal of the American Chemical Society, 2008, 130, 12394-12407.	6.6	177
30	Combined Experimental and Theoretical Study on Aromatic Hydroxylation by Mononuclear Nonheme Iron(IV)â~'Oxo Complexes. Inorganic Chemistry, 2007, 46, 4632-4641.	1.9	174
31	Metal Ion-Coupled Electron Transfer of a Nonheme Oxoiron(IV) Complex: Remarkable Enhancement of Electron-Transfer Rates by Sc ³⁺ . Journal of the American Chemical Society, 2011, 133, 403-405.	6.6	172
32	A mononuclear nonheme iron(iv)-oxo complex which is more reactive than cytochrome P450 model compound I. Chemical Science, 2011, 2, 1039.	3.7	170
33	Metal Ion Effect on the Switch of Mechanism from Direct Oxygen Transfer to Metal Ion-Coupled Electron Transfer in the Sulfoxidation of Thioanisoles by a Non-Heme Iron(IV)â^Oxo Complex. Journal of the American Chemical Society, 2011, 133, 5236-5239.	6.6	169
34	To rebound or dissociate? This is the mechanistic question in C–H hydroxylation by heme and nonheme metal–oxo complexes. Chemical Society Reviews, 2016, 45, 1197-1210.	18.7	167
35	Iron and manganese oxo complexes, oxo wall and beyond. Nature Reviews Chemistry, 2020, 4, 404-419.	13.8	167
36	Water Oxidation Catalysis with Nonheme Iron Complexes under Acidic and Basic Conditions: Homogeneous or Heterogeneous?. Inorganic Chemistry, 2013, 52, 9522-9531.	1.9	164

Wonwoo Nam

#	Article	IF	CITATIONS
37	Mechanistic Insight into Alcohol Oxidation by High-Valent Iron-Oxo Complexes of Heme and Nonheme Ligands. Angewandte Chemie - International Edition, 2005, 44, 4235-4239.	7.2	157
38	Dioxygen Activation by a Non-Heme Iron(II) Complex: Formation of an Iron(IV)â^'Oxo Complex via Câ^'H Activation by a Putative Iron(III)â^'Superoxo Species. Journal of the American Chemical Society, 2010, 132, 10668-10670.	6.6	157
39	Intrinsic properties and reactivities of mononuclear nonheme iron–oxygen complexes bearing the tetramethylcyclam ligand. Coordination Chemistry Reviews, 2013, 257, 381-393.	9.5	157
40	Oxoiron(IV) porphyrin ï€-cation radical complexes with a chameleon behavior in cytochrome P450 model reactions. Journal of Biological Inorganic Chemistry, 2005, 10, 294-304.	1.1	153
41	Geometric and electronic structure and reactivity of a mononuclear â€~side-on' nickel(iii)–peroxo complex. Nature Chemistry, 2009, 1, 568-572.	6.6	153
42	Evidence for the Participation of Two Distinct Reactive Intermediates in Iron(III) Porphyrin Complex-Catalyzed Epoxidation Reactions. Journal of the American Chemical Society, 2000, 122, 6641-6647.	6.6	150
43	Structural Insights into Nonheme Alkylperoxoiron(III) and Oxoiron(IV) Intermediates by X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2004, 126, 16750-16761.	6.6	149
44	Axial Ligand Substituted Nonheme FeIVO Complexes:  Observation of Near-UV LMCT Bands and FeO Raman Vibrations. Journal of the American Chemical Society, 2005, 127, 12494-12495.	6.6	149
45	First Direct Evidence for Stereospecific Olefin Epoxidation and Alkane Hydroxylation by an Oxoiron(IV) Porphyrin Complex. Journal of the American Chemical Society, 2003, 125, 14674-14675.	6.6	146
46	Spectroscopic Capture and Reactivity of a Lowâ€Spin Cobalt(IV)â€Oxo Complex Stabilized by Binding Redoxâ€inactive Metal Ions. Angewandte Chemie - International Edition, 2014, 53, 10403-10407.	7.2	145
47	Fundamental Electron-Transfer Properties of Non-heme Oxoiron(IV) Complexes. Journal of the American Chemical Society, 2008, 130, 434-435.	6.6	144
48	Cobalt analogs of Ru-based water oxidation catalysts: overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O2 evolution. Chemical Science, 2012, 3, 3058.	3.7	140
49	Dioxygen Activation and Catalytic Aerobic Oxidation by a Mononuclear Nonheme Iron(II) Complex. Journal of the American Chemical Society, 2005, 127, 4178-4179.	6.6	139
50	Reevaluation of the significance of oxygen-18 incorporation in metal complex-catalyzed oxygenation reactions carried out in the presence of oxygen-18-labeled water (H218O). Journal of the American Chemical Society, 1993, 115, 1772-1778.	6.6	138
51	Significant Electronic Effect of Porphyrin Ligand on the Reactivities of High-Valent Iron(IV) Oxo Porphyrin Cation Radical Complexes. Inorganic Chemistry, 1999, 38, 914-920.	1.9	137
52	Evidence for an Alternative to the Oxygen Rebound Mechanism in C–H Bond Activation by Non-Heme Fe ^{IV} O Complexes. Journal of the American Chemical Society, 2012, 134, 20222-20225.	6.6	137
53	Cyclometalated Iridium(III) Complexes for Phosphorescence Sensing of Biological Metal Ions. Inorganic Chemistry, 2014, 53, 1804-1815.	1.9	137
54	Dioxygen activation chemistry by synthetic mononuclear nonheme iron, copper and chromium complexes. Coordination Chemistry Reviews, 2017, 334, 25-42.	9.5	136

#	Article	IF	CITATIONS
55	Isolation of an Oxomanganese(V) Porphyrin Intermediate in the Reaction of a Manganese(III) Porphyrin Complex and H2O2 in Aqueous Solution. Chemistry - A European Journal, 2002, 8, 2067-2071.	1.7	135
56	Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes. Nature Chemistry, 2014, 6, 934-940.	6.6	135
57	Lewis Acid Coupled Electron Transfer of Metal–Oxygen Intermediates. Chemistry - A European Journal, 2015, 21, 17548-17559.	1.7	132
58	Synthesis and reactivity of a mononuclear non-haem cobalt(IV)-oxo complex. Nature Communications, 2017, 8, 14839.	5.8	132
59	Enhanced Electron-Transfer Reactivity of Nonheme Manganese(IV)–Oxo Complexes by Binding Scandium Ions. Journal of the American Chemical Society, 2013, 135, 9186-9194.	6.6	131
60	Determination of Reactive Intermediates in Iron Porphyrin Complex-Catalyzed Oxygenations of Hydrocarbons Using Isotopically Labeled Water:Â Mechanistic Insights. Journal of the American Chemical Society, 1997, 119, 1916-1922.	6.6	130
61	[Mn(tmc)(O2)]+: A Side-On Peroxido Manganese(III) Complex Bearing a Non-Heme Ligand. Angewandte Chemie - International Edition, 2007, 46, 377-380.	7.2	127
62	Highly efficient photocatalytic oxygenation reactions using water as an oxygen source. Nature Chemistry, 2011, 3, 38-41.	6.6	126
63	Anionic Ligand Effect on the Nature of Epoxidizing Intermediates in Iron Porphyrin Complex-Catalyzed Epoxidation Reactions. Inorganic Chemistry, 2002, 41, 3647-3652.	1.9	124
64	Synthesis, Structural, and Spectroscopic Characterization and Reactivities of Mononuclear Cobalt(III)â^Peroxo Complexes. Journal of the American Chemical Society, 2010, 132, 16977-16986.	6.6	124
65	Fluorescent Zinc Sensor with Minimized Proton-Induced Interferences: Photophysical Mechanism for Fluorescence Turn-On Response and Detection of Endogenous Free Zinc Ions. Inorganic Chemistry, 2012, 51, 8760-8774.	1.9	119
66	Synthetic Control Over Photoinduced Electron Transfer in Phosphorescence Zinc Sensors. Journal of the American Chemical Society, 2013, 135, 4771-4787.	6.6	119
67	Identification of an "End-on―Nickelâ`'Superoxo Adduct, [Ni(tmc)(O2)]+. Journal of the American Chemical Society, 2006, 128, 14230-14231.	6.6	118
68	A Manganese(V)–Oxo Complex: Synthesis by Dioxygen Activation and Enhancement of Its Oxidizing Power by Binding Scandium Ion. Journal of the American Chemical Society, 2016, 138, 8523-8532.	6.6	118
69	Crystallographic and spectroscopic characterization and reactivities of a mononuclear non-haem iron(III)-superoxo complex. Nature Communications, 2014, 5, 5440.	5.8	117
70	An "End-On―Chromium(III)-Superoxo Complex: Crystallographic and Spectroscopic Characterization and Reactivity in Câ^'H Bond Activation of Hydrocarbons. Journal of the American Chemical Society, 2010, 132, 5958-5959.	6.6	116
71	Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. Coordination Chemistry Reviews, 2018, 355, 54-73.	9.5	116
72	Structural Characterization and Remarkable Axial Ligand Effect on the Nucleophilic Reactivity of a Nonheme Manganese(III)–Peroxo Complex. Angewandte Chemie - International Edition, 2009, 48, 4150-4153.	7.2	115

#	Article	IF	CITATIONS
73	Oxidizing intermediates in cytochrome P450 model reactions. Journal of Biological Inorganic Chemistry, 2004, 9, 654-660.	1.1	114
74	Proton-Promoted and Anion-Enhanced Epoxidation of Olefins by Hydrogen Peroxide in the Presence of Nonheme Manganese Catalysts. Journal of the American Chemical Society, 2016, 138, 936-943.	6.6	114
75	Hydrogen Atom Abstraction and Hydride Transfer Reactions by Iron(IV)–Oxo Porphyrins. Angewandte Chemie - International Edition, 2008, 47, 7321-7324.	7.2	113
76	Transition metal-mediated O–O bond formation and activation in chemistry and biology. Chemical Society Reviews, 2021, 50, 4804-4811.	18.7	113
77	Direct Evidence for Oxygen-Atom Exchange between Nonheme Oxoiron(IV) Complexes and Isotopically Labeled Water. Angewandte Chemie - International Edition, 2004, 43, 2417-2420.	7.2	111
78	Unified View of Oxidative C–H Bond Cleavage and Sulfoxidation by a Nonheme Iron(IV)–Oxo Complex via Lewis Acid-Promoted Electron Transfer. Inorganic Chemistry, 2014, 53, 3618-3628.	1.9	111
79	Enhanced Reactivities of Iron(IV)â€Oxo Porphyrin Ï€â€Cation Radicals in Oxygenation Reactions by Electronâ€Donating Axial Ligands. Chemistry - A European Journal, 2009, 15, 10039-10046.	1.7	110
80	Reactive Intermediates in Oxygenation Reactions with Mononuclear Nonheme Iron Catalysts. Angewandte Chemie - International Edition, 2009, 48, 1257-1260.	7.2	107
81	Dioxygen Activation by Mononuclear Nonheme Iron(II) Complexes Generates Ironâ^'Oxygen Intermediates in the Presence of an NADH Analogue and Proton. Journal of the American Chemical Society, 2009, 131, 13910-13911.	6.6	107
82	Catalytic Four-Electron Reduction of O ₂ via Rate-Determining Proton-Coupled Electron Transfer to a Dinuclear Cobalt-μ-1,2-peroxo Complex. Journal of the American Chemical Society, 2012, 134, 9906-9909.	6.6	106
83	Solarâ€Driven Production of Hydrogen Peroxide from Water and Dioxygen. Chemistry - A European Journal, 2018, 24, 5016-5031.	1.7	106
84	Comparison of High-Spin and Low-Spin Nonheme Fe ^{III} –OOH Complexes in O–O Bond Homolysis and H-Atom Abstraction Reactivities. Journal of the American Chemical Society, 2013, 135, 3286-3299.	6.6	105
85	Mechanisms of catalytic reduction of CO ₂ with heme and nonheme metal complexes. Chemical Science, 2018, 9, 6017-6034.	3.7	105
86	Participation of Two Distinct Hydroxylating Intermediates in Iron(III) Porphyrin Complex-Catalyzed Hydroxylation of Alkanes. Journal of the American Chemical Society, 2000, 122, 10805-10809.	6.6	104
87	Formation, stability, and reactivity of a mononuclear nonheme oxoiron(iv) complex in aqueous solution. Chemical Communications, 2005, , 1405.	2.2	102
88	Remarkable Anionic Axial Ligand Effects of Iron(III) Porphyrin Complexes on the Catalytic Oxygenations of Hydrocarbons by H2O2 and the Formation of Oxoiron(IV) Porphyrin Intermediates bym-Chloroperoxybenzoic Acid. Angewandte Chemie - International Edition, 2000, 39, 3646-3649.	7.2	101
89	Nonheme Oxoiron(IV) Complexes of Tris(2-pyridylmethyl)amine withcis-Monoanionic Ligands. Inorganic Chemistry, 2006, 45, 6435-6445.	1.9	101
90	Oxidative N-Dealkylation Reactions by Oxoiron(IV) Complexes of Nonheme and Heme Ligands. Inorganic Chemistry, 2007, 46, 293-298.	1.9	101

#	Article	IF	CITATIONS
91	Hydrogenâ€Atom Abstraction Reactions by Manganese(V)– and Manganese(IV)–Oxo Porphyrin Complexes in Aqueous Solution. Chemistry - A European Journal, 2009, 15, 11482-11489.	1.7	100
92	Water as an Oxygen Source in the Generation of Mononuclear Nonheme Iron(IV) Oxo Complexes. Angewandte Chemie - International Edition, 2009, 48, 1803-1806.	7.2	98
93	A highly efficient non-heme manganese complex in oxygenation reactions. Chemical Communications, 2007, , 4623.	2.2	97
94	First success of catalytic epoxidation of olefins by an electron-rich iron(III) porphyrin complex and H2O2: imidazole effect on the activation of H2O2 by iron porphyrin complexes in aprotic solvent. Journal of Inorganic Biochemistry, 2000, 80, 219-225.	1.5	96
95	Ligand Topology Effect on the Reactivity of a Mononuclear Nonheme Iron(IV)-Oxo Complex in Oxygenation Reactions. Journal of the American Chemical Society, 2011, 133, 11876-11879.	6.6	94
96	BrÃ,nsted Acid-Promoted C–H Bond Cleavage via Electron Transfer from Toluene Derivatives to a Protonated Nonheme Iron(IV)-Oxo Complex with No Kinetic Isotope Effect. Journal of the American Chemical Society, 2013, 135, 5052-5061.	6.6	94
97	Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal–Oxygen Intermediates. Accounts of Chemical Research, 2018, 51, 2014-2022.	7.6	94
98	Mononuclear nickel(ii)-superoxo and nickel(iii)-peroxo complexes bearing a common macrocyclic TMC ligand. Chemical Science, 2013, 4, 1502.	3.7	93
99	Fuel Production from Seawater and Fuel Cells Using Seawater. ChemSusChem, 2017, 10, 4264-4276.	3.6	93
100	Reversible Formation of Iodosylbenzene–Iron Porphyrin Intermediates in the Reaction of Oxoiron(IV) Porphyrinlë-Cation Radicals and Iodobenzene. Angewandte Chemie - International Edition, 2003, 42, 109-111.	7.2	91
101	Zinc(II) complexes and aluminum(III) porphyrin complexes catalyze the epoxidation of olefins by iodosylbenzene. Journal of the American Chemical Society, 1990, 112, 4977-4979.	6.6	90
102	Water as an Oxygen Source: Synthesis, Characterization, and Reactivity Studies of a Mononuclear Nonheme Manganese(IV) Oxo Complex. Angewandte Chemie - International Edition, 2010, 49, 8190-8194.	7.2	90
103	Tuning the reactivity of mononuclear nonheme manganese(<scp>iv</scp>)-oxo complexes by triflic acid. Chemical Science, 2015, 6, 3624-3632.	3.7	87
104	Bioinspired Chemical Inversion ofl-Amino Acids tod-Amino Acids. Journal of the American Chemical Society, 2007, 129, 1518-1519.	6.6	86
105	Proton-Promoted Oxygen Atom Transfer vs Proton-Coupled Electron Transfer of a Non-Heme Iron(IV)-Oxo Complex. Journal of the American Chemical Society, 2012, 134, 3903-3911.	6.6	86
106	Interplay of Experiment and Theory in Elucidating Mechanisms of Oxidation Reactions by a Nonheme Ru ^{IV} O Complex. Journal of the American Chemical Society, 2015, 137, 8623-8632.	6.6	85
107	Amphoteric reactivity of metal–oxygen complexes in oxidation reactions. Coordination Chemistry Reviews, 2018, 365, 41-59.	9.5	85
108	Sequential Electron-Transfer and Proton-Transfer Pathways in Hydride-Transfer Reactions from Dihydronicotinamide Adenine Dinucleotide Analogues to Non-heme Oxoiron(IV) Complexes and <i>p</i> -Chloranil. Detection of Radical Cations of NADH Analogues in Acid-Promoted Hydride-Transfer Reactions. Journal of the American Chemical Society, 2008, 130, 15134-15142.	6.6	84

#	Article	IF	CITATIONS
109	Factors That Control Catalytic Two- versus Four-Electron Reduction of Dioxygen by Copper Complexes. Journal of the American Chemical Society, 2012, 134, 7025-7035.	6.6	84
110	Mononuclear nonheme ferric-peroxo complex in aldehyde deformylation. Chemical Communications, 2005, , 4529.	2.2	82
111	How Does the Axial Ligand of Cytochrome P450 Biomimetics Influence the Regioselectivity of Aliphatic versus Aromatic Hydroxylation?. Chemistry - A European Journal, 2009, 15, 5577-5587.	1.7	82
112	Protonation Equilibrium and Hydrogen Production by a Dinuclear Cobalt–Hydride Complex Reduced by Cobaltocene with Trifluoroacetic Acid. Journal of the American Chemical Society, 2013, 135, 15294-15297.	6.6	82
113	Mechanisms of Twoâ€Electron versus Fourâ€Electron Reduction of Dioxygen Catalyzed by Earthâ€Abundant Metal Complexes. ChemCatChem, 2018, 10, 9-28.	1.8	82
114	Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coordination Chemistry Reviews, 2020, 421, 213443.	9.5	82
115	Reversible Oâ^'O Bond Cleavage and Formation between Mn(IV)-Peroxo and Mn(V)-Oxo Corroles. Journal of the American Chemical Society, 2010, 132, 14030-14032.	6.6	81
116	Water-Soluble Iron Porphyrin Complex-Catalyzed Epoxidation of Olefins with Hydrogen Peroxide andtert-Butyl Hydroperoxide in Aqueous Solution. Inorganic Chemistry, 1998, 37, 606-607.	1.9	80
117	Effect of Anionic Axial Ligands on the Formation of Oxoiron(IV) Porphyrin Intermediates. Inorganic Chemistry, 2000, 39, 5572-5575.	1.9	79
118	Crystal structure of the two-dimensional framework [Mn(salen)]4n[Re6Te8(CN)6]n [salen = N,N′-ethylenebis(salicylideneaminato)]. Chemical Communications, 2001, , 1470-1471.	2.2	79
119	High conversion of olefins to cis-diols by non-heme iron catalysts and H2O2. Chemical Communications, 2002, , 1288-1289.	2.2	79
120	Factors Affecting the Catalytic Epoxidation of Olefins by Iron Porphyrin Complexes and H2O2in Protic Solvents. Journal of Organic Chemistry, 2003, 68, 7903-7906.	1.7	79
121	A mononuclear nonheme iron(iii)–peroxo complex binding redox-inactive metal ions. Chemical Science, 2013, 4, 3917.	3.7	79
122	High-valent metal-oxo intermediates in energy demanding processes: from dioxygen reduction to water splitting. Current Opinion in Chemical Biology, 2015, 25, 159-171.	2.8	79
123	Effect of Porphyrin Ligands on the Regioselective Dehydrogenation versus Epoxidation of Olefins by Oxoiron(IV) Mimics of Cytochrome P450. Journal of Physical Chemistry A, 2009, 113, 11713-11722.	1.1	78
124	Electronâ€Transfer Reduction of Dinuclear Copper Peroxo and Bisâ€Î¼â€oxo Complexes Leading to the Catalytic Fourâ€Electron Reduction of Dioxygen to Water. Chemistry - A European Journal, 2012, 18, 1084-1093.	1.7	78
125	Theoretical Investigations into C–H Bond Activation Reaction by Nonheme Mn ^{IV} O Complexes: Multistate Reactivity with No Oxygen Rebound. Journal of Physical Chemistry Letters, 2012, 3, 2851-2856.	2.1	77
126	Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex. Journal of the American Chemical Society, 2021, 143, 14613-14621.	6.6	77

#	Article	IF	CITATIONS
127	Biomimetic Alkane Hydroxylations by an Iron(III) Porphyrin Complex with H2O2and by a High-Valent Iron(IV) Oxo Porphyrin Cation Radical Complex. Inorganic Chemistry, 1999, 38, 3238-3240.	1.9	76
128	Scandium Ion-Enhanced Oxidative Dimerization and <i>N</i> -Demethylation of <i>N</i> , <i>N</i> -Dimethylanilines by a Non-Heme Iron(IV)-Oxo Complex. Inorganic Chemistry, 2011, 50, 11612-11622.	1.9	76
129	Mechanistic Borderline of One-Step Hydrogen Atom Transfer versus Stepwise Sc ³⁺ -Coupled Electron Transfer from Benzyl Alcohol Derivatives to a Non-Heme Iron(IV)-Oxo Complex. Inorganic Chemistry, 2012, 51, 10025-10036.	1.9	76
130	Highly Enantioselective Oxidation of Spirocyclic Hydrocarbons by Bioinspired Manganese Catalysts and Hydrogen Peroxide. ACS Catalysis, 2018, 8, 2479-2487.	5.5	75
131	Experiment and Theory Reveal the Fundamental Difference between Twoâ€State and Singleâ€State Reactivity Patterns in Nonheme Fe ^{IV} O versus Ru ^{IV} O Oxidants. Angewandte Chemie - International Edition, 2008, 47, 3356-3359.	7.2	74
132	Photocatalytic Generation of a Non-Heme Oxoiron(IV) Complex with Water as an Oxygen Source. Journal of the American Chemical Society, 2011, 133, 3249-3251.	6.6	74
133	Manganese displacement from Zinpyr-1 allows zinc detection by fluorescence microscopy and magnetic resonance imaging. Chemical Communications, 2010, 46, 4139.	2.2	72
134	Mechanistic Insights into the Enantioselective Epoxidation of Olefins by Bioinspired Manganese Complexes: Role of Carboxylic Acid and Nature of Active Oxidant. ACS Catalysis, 2018, 8, 4528-4538.	5.5	72
135	[Fe ^{IV} â•O(TBC)(CH ₃ CN)] ²⁺ : Comparative Reactivity of Iron(IV)-Oxo Species with Constrained Equatorial Cyclam Ligation. Journal of the American Chemical Society, 2012, 134, 11791-11806.	6.6	71
136	Chromium(IV)–Peroxo Complex Formation and Its Nitric Oxide Dioxygenase Reactivity. Journal of the American Chemical Society, 2012, 134, 15269-15272.	6.6	71
137	A fluorescence turn-on H2O2 probe exhibits lysosome-localized fluorescence signals. Chemical Communications, 2012, 48, 5449.	2.2	71
138	A Mononuclear Non-Heme High-Spin Iron(III)–Hydroperoxo Complex as an Active Oxidant in Sulfoxidation Reactions. Journal of the American Chemical Society, 2013, 135, 8838-8841.	6.6	71
139	Reactivity Patterns of (Protonated) Compoundâ€II and Compoundâ€I of Cytochrome P450: Which is the Better Oxidant?. Chemistry - A European Journal, 2017, 23, 6406-6418.	1.7	71
140	Redox Reactivity of a Mononuclear Manganese-Oxo Complex Binding Calcium Ion and Other Redox-Inactive Metal Ions. Journal of the American Chemical Society, 2019, 141, 1324-1336.	6.6	70
141	Temperature-Independent Catalytic Two-Electron Reduction of Dioxygen by Ferrocenes with a Copper(II) Tris[2-(2-pyridyl)ethyl]amine Catalyst in the Presence of Perchloric Acid. Journal of the American Chemical Society, 2013, 135, 2825-2834.	6.6	68
142	Mechanistic Insight into the Aromatic Hydroxylation by High-Valent Iron(IV)-oxo Porphyrin π-Cation Radical Complexes. Journal of Organic Chemistry, 2007, 72, 6301-6304.	1.7	67
143	Experimental and Theoretical Evidence for Nonheme Iron(III) Alkylperoxo Species as Sluggish Oxidants in Oxygenation Reactions. Angewandte Chemie - International Edition, 2007, 46, 2291-2294.	7.2	67
144	Mechanistic Insights into Hydride-Transfer and Electron-Transfer Reactions by a Manganese(IV)â^'Oxo Porphyrin Complex. Journal of the American Chemical Society, 2009, 131, 17127-17134.	6.6	67

#	Article	IF	CITATIONS
145	Mechanistic insight into the hydroxylation of alkanes by a nonheme iron(<scp>v</scp>)–oxo complex. Chemical Communications, 2014, 50, 5572-5575.	2.2	67
146	Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate. Chemistry - an Asian Journal, 2016, 11, 1138-1150.	1.7	67
147	Mononuclear Nonheme High-Spin Iron(III)-Acylperoxo Complexes in Olefin Epoxidation and Alkane Hydroxylation Reactions. Journal of the American Chemical Society, 2016, 138, 2426-2436.	6.6	67
148	Nonheme iron(II) complexes of macrocyclic ligands in the generation of oxoiron(IV) complexes and the catalytic epoxidation of olefins. Journal of Inorganic Biochemistry, 2006, 100, 627-633.	1.5	66
149	A Chromium(III)–Superoxo Complex in Oxygen Atom Transfer Reactions as a Chemical Model of Cysteine Dioxygenase. Journal of the American Chemical Society, 2012, 134, 11112-11115.	6.6	66
150	Ratiometric Fluorescent Probes for Detection of Intracellular Singlet Oxygen. Organic Letters, 2013, 15, 3582-3585.	2.4	66
151	Dioxygen Activation by a Non-Heme Iron(II) Complex: Theoretical Study toward Understanding Ferric–Superoxo Complexes. Journal of Chemical Theory and Computation, 2012, 8, 915-926.	2.3	65
152	Photocatalytic oxidation of benzene to phenol using dioxygen as an oxygen source and water as an electron source in the presence of a cobalt catalyst. Chemical Science, 2017, 8, 7119-7125.	3.7	65
153	Determination of Spin Inversion Probability, H-Tunneling Correction, and Regioselectivity in the Two-State Reactivity of Nonheme Iron(IV)-Oxo Complexes. Journal of Physical Chemistry Letters, 2015, 6, 1472-1476.	2.1	64
154	Oxygen-Atom Transfer between Mononuclear Nonheme Iron(IV)–Oxo and Iron(II) Complexes. Angewandte Chemie - International Edition, 2006, 45, 3992-3995.	7.2	63
155	Designing photoluminescent molecular probes for singlet oxygen, hydroxyl radical, and iron–oxygen species. Chemical Science, 2014, 5, 4123-4135.	3.7	63
156	High-valent metal-oxo complexes generated in catalytic oxidation reactions using water as an oxygen source. Coordination Chemistry Reviews, 2017, 333, 44-56.	9.5	62
157	Iodobenzene diacetate as an efficient terminal oxidant in iron(III) porphyrin complex-catalyzed oxygenation reactions. Inorganica Chimica Acta, 2003, 343, 373-376.	1.2	61
158	A Biomimetic Ferric Hydroperoxo Porphyrin Intermediate. Angewandte Chemie - International Edition, 2010, 49, 2099-2101.	7.2	61
159	Chromium(v)-oxo and chromium(iii)-superoxo complexes bearing a macrocyclic TMC ligand in hydrogen atom abstraction reactions. Chemical Science, 2011, 2, 2057.	3.7	61
160	Reactivity comparison of high-valent iron(iv)-oxo complexes bearing N-tetramethylated cyclam ligands with different ring size. Dalton Transactions, 2013, 42, 7842.	1.6	61
161	Photocatalytic Asymmetric Epoxidation of Terminal Olefins Using Water as an Oxygen Source in the Presence of a Mononuclear Non-Heme Chiral Manganese Complex. Journal of the American Chemical Society, 2016, 138, 15857-15860.	6.6	61
162	Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chemical Society Reviews, 2020, 49, 8988-9027.	18.7	61

Wonwoo Nam

#	Article	IF	CITATIONS
163	A Mononuclear Nonheme Iron(V)-Imido Complex. Journal of the American Chemical Society, 2017, 139, 8800-8803.	6.6	60
164	Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles. Journal of the American Chemical Society, 2017, 139, 15858-15867.	6.6	60
165	Self-hydroxylation of perbenzoic acids at a nonheme iron(ii) center. Chemical Communications, 2005, , 5644.	2.2	59
166	Highly Reactive Nonheme Iron(III) Iodosylarene Complexes in Alkane Hydroxylation and Sulfoxidation Reactions. Angewandte Chemie - International Edition, 2014, 53, 6388-6392.	7.2	59
167	Biomimetic alkane hydroxylation by cobalt(iii) porphyrin complex and m-chloroperbenzoic acid. Chemical Communications, 2001, , 1262-1263.	2.2	57
168	Sulfur versus Iron Oxidation in an Ironâ^'Thiolate Model Complex. Journal of the American Chemical Society, 2010, 132, 17118-17129.	6.6	57
169	Reactivity of a cobalt(III)-peroxo complex in oxidative nucleophilic reactions. Journal of Inorganic Biochemistry, 2008, 102, 2155-2159.	1.5	56
170	Acid-Induced Mechanism Change and Overpotential Decrease in Dioxygen Reduction Catalysis with a Dinuclear Copper Complex. Journal of the American Chemical Society, 2013, 135, 4018-4026.	6.6	56
171	Use of 2-methyl-1-phenylpropan-2-yl hydroperoxide (MPPH) as a mechanistic probe for the heterolytic versus homolytic O–O bond cleavage of tert-alkyl hydroperoxide by iron(III) porphyrin complex. Chemical Communications, 1999, , 387-388.	2.2	54
172	Accelerated cerebral ischemic injury by activated macrophages/microglia after lipopolysaccharide microinjection into rat corpus callosum. Glia, 2005, 50, 168-181.	2.5	54
173	Double Action: Toward Phosphorescence Ratiometric Sensing of Chromium Ion. Advanced Materials, 2012, 24, 2748-2754.	11.1	53
174	Highly Reactive Manganese(IV)-Oxo Porphyrins Showing Temperature-Dependent Reversed Electronic Effect in C–H Bond Activation Reactions. Journal of the American Chemical Society, 2019, 141, 12187-12191.	6.6	53
175	Mechanistic Insights into the C–H Bond Activation of Hydrocarbons by Chromium(IV) Oxo and Chromium(III) Superoxo Complexes. Inorganic Chemistry, 2014, 53, 645-652.	1.9	52
176	Catalytic oxidation of alkanes by iron bispidine complexes and dioxygen: oxygen activation versus autoxidation. Chemical Communications, 2014, 50, 412-414.	2.2	52
177	Factors Controlling the Chemoselectivity in the Oxidation of Olefins by Nonheme Manganese(IV)-Oxo Complexes. Journal of the American Chemical Society, 2016, 138, 10654-10663.	6.6	52
178	XAS and DFT Investigation of Mononuclear Cobalt(III) Peroxo Complexes: Electronic Control of the Geometric Structure in CoO ₂ versus NiO ₂ Systems. Inorganic Chemistry, 2011, 50, 614-620.	1.9	51
179	Efficient Epoxidation of Styrene Derivatives by a Nonheme Iron(IV)-Oxo Complex via Proton-Coupled Electron Transfer with Triflic Acid. Inorganic Chemistry, 2015, 54, 5806-5812.	1.9	51
180	Recent progress in production and usage of hydrogen peroxide. Chinese Journal of Catalysis, 2021, 42, 1241-1252.	6.9	51

#	Article	IF	CITATIONS
181	Solid-state and solvent-free synthesis of azines, pyrazoles, and pyridazinones using solid hydrazine. Tetrahedron Letters, 2013, 54, 1384-1388.	0.7	50
182	Demonstration of the Heterolytic OO Bond Cleavage of Putative Nonheme Iron(II)OOH(R) Complexes for Fenton and Enzymatic Reactions. Angewandte Chemie - International Edition, 2014, 53, 7843-7847.	7.2	50
183	Structure and reactivity of the first-row d-block metal-superoxo complexes. Dalton Transactions, 2019, 48, 9469-9489.	1.6	50
184	Nickel Complexes as Antioxidants. Inhibition of Aldehyde Autoxidation by Nickel(II) Tetraazamacrocycles. Inorganic Chemistry, 1996, 35, 6632-6633.	1.9	49
185	Enantioselective Recognition of 1,2-Amino Alcohols by Reversible Formation of Imines with Resonance-Assisted Hydrogen Bonds. Organic Letters, 2005, 7, 3525-3527.	2.4	49
186	Reactions of a Chromium(III)-Superoxo Complex and Nitric Oxide That Lead to the Formation of Chromium(IV)-Oxo and Chromium(III)-Nitrito Complexes. Journal of the American Chemical Society, 2013, 135, 14900-14903.	6.6	49
187	Spectroscopic Characterization and Reactivity Studies of a Mononuclear Nonheme Mn(III)–Hydroperoxo Complex. Journal of the American Chemical Society, 2014, 136, 12229-12232.	6.6	49
188	Mononuclear Nonheme Iron(III)â€iodosylarene and Highâ€Valent Ironâ€Oxo Complexes in Olefin Epoxidation Reactions. Angewandte Chemie - International Edition, 2015, 54, 11740-11744.	7.2	49
189	A Highly Reactive Oxoiron(IV) Complex Supported by a Bioinspired N ₃ O Macrocyclic Ligand. Angewandte Chemie - International Edition, 2017, 56, 14384-14388.	7.2	49
190	Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide. Chemical Science, 2017, 8, 7476-7482.	3.7	49
191	Base specific complex formation of norfloxacin with DNA. Biophysical Chemistry, 1998, 74, 225-236.	1.5	48
192	Stereoselective alkane hydroxylations by metal salts and m-chloroperbenzoic acid. Tetrahedron Letters, 2002, 43, 5487-5490.	0.7	48
193	Metal ion-coupled electron-transfer reactions of metal-oxygen complexes. Coordination Chemistry Reviews, 2020, 410, 213219.	9.5	47
194	Conversion of high-spin iron(<scp>iii</scp>)–alkylperoxo to iron(<scp>iv</scp>)–oxo species via O–O bond homolysis in nonheme iron models. Chemical Science, 2014, 5, 156-162.	3.7	46
195	Mononuclear Nonheme High‣pin (<i>S</i> =2) versus Intermediate‣pin (<i>S</i> =1) Iron(IV)–Oxo Complexes in Oxidation Reactions. Angewandte Chemie - International Edition, 2016, 55, 8027-8031.	7.2	46
196	Selective Oxygenation of Cyclohexene by Dioxygen via an Iron(V)-Oxo Complex-Autocatalyzed Reaction. Inorganic Chemistry, 2017, 56, 5096-5104.	1.9	46
197	Fine Control of the Redox Reactivity of a Nonheme Iron(III)–Peroxo Complex by Binding Redoxâ€Inactive Metal Ions. Angewandte Chemie - International Edition, 2017, 56, 801-805.	7.2	46
198	High-Spin Mn(V)-Oxo Intermediate in Nonheme Manganese Complex-Catalyzed Alkane Hydroxylation Reaction: Experimental and Theoretical Approach. Inorganic Chemistry, 2019, 58, 14842-14852.	1.9	46

#	Article	IF	CITATIONS
199	Mechanistic Insights into the Reversible Formation of Iodosylarene-Iron Porphyrin Complexes in the Reactions of Oxoiron(IV) Porphyrin I€-Cation Radicals and Iodoarenes: Equilibrium, Epoxidizing Intermediate, and Oxygen Exchange. Chemistry - A European Journal, 2006, 12, 130-137.	1.7	45
200	Direct evidence for an iron(iv)-oxo porphyrin π-cation radical as an active oxidant in catalytic oxygenation reactions. Chemical Communications, 2008, , 1076.	2.2	45
201	Highly efficient cycloreversion of photochromic dithienylethene compounds using visible light-driven photoredox catalysis. Chemical Science, 2014, 5, 1463.	3.7	45
202	Achieving One-Electron Oxidation of a Mononuclear Nonheme Iron(V)-Imido Complex. Journal of the American Chemical Society, 2017, 139, 14372-14375.	6.6	45
203	The Axial Ligand Effect on Aliphatic and Aromatic Hydroxylation by Nonâ€heme Iron(IV)–oxo Biomimetic Complexes. Chemistry - an Asian Journal, 2011, 6, 493-504.	1.7	44
204	Mononuclear Manganese–Peroxo and Bis(μâ€oxo)dimanganese Complexes Bearing a Common Nâ€Methylate Macrocyclic Ligand. Chemistry - A European Journal, 2013, 19, 14119-14125.	ed 1.7	44
205	Switchover of the Mechanism between Electron Transfer and Hydrogenâ€Atom Transfer for a Protonated Manganese(IV)–Oxo Complex by Changing Only the Reaction Temperature. Angewandte Chemie - International Edition, 2016, 55, 7450-7454.	7.2	44
206	High-valent manganese(v)–oxo porphyrin complexes in hydride transfer reactions. Chemical Communications, 2009, , 704-706.	2.2	43
207	A mononuclear manganese(<scp>iii</scp>)–hydroperoxo complex: synthesis by activating dioxygen and reactivity in electrophilic and nucleophilic reactions. Chemical Communications, 2018, 54, 1209-1212.	2.2	43
208	Electron-Transfer and Redox Reactivity of High-Valent Iron Imido and Oxo Complexes with the Formal Oxidation States of Five and Six. Journal of the American Chemical Society, 2020, 142, 3891-3904.	6.6	43
209	Contrasting Effects of Axial Ligands on Electronâ€Transfer Versus Protonâ€Coupled Electronâ€Transfer Reactions of Nonheme Oxoiron(IV) Complexes. Chemistry - A European Journal, 2010, 16, 354-361.	1.7	42
210	Mononuclear nonheme iron(<scp>iv</scp>)–oxo and manganese(<scp>iv</scp>)–oxo complexes in oxidation reactions: experimental results prove theoretical prediction. Chemical Communications, 2015, 51, 13094-13097.	2.2	42
211	Kinetics and mechanisms of catalytic water oxidation. Dalton Transactions, 2019, 48, 779-798.	1.6	42
212	How axial ligands control the reactivity of high-valent iron(Ⅳ)–oxo porphyrin Ï€-cation radicals in alkane hydroxylation: A computational study. Journal of Inorganic Biochemistry, 2006, 100, 751-754.	1.5	41
213	The Fe ^{III} (H ₂ O ₂) Complex as a Highly Efficient Oxidant in Sulfoxidation Reactions: Revival of an Underrated Oxidant in Cytochrome P450. Journal of Chemical Theory and Computation, 2013, 9, 2519-2525.	2.3	41
214	Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. Angewandte Chemie - International Edition, 2019, 58, 4012-4016.	7.2	41
215	Highly Efficient Catalytic Two-Electron Two-Proton Reduction of Dioxygen to Hydrogen Peroxide with a Cobalt Corrole Complex. ACS Catalysis, 2021, 11, 3073-3083.	5.5	41
216	Synthesis and reactivity of rhenium cluster-supported manganese porphyrin complexes. Inorganic Chemistry Communication, 2002, 5, 612-615.	1.8	40

#	Article	IF	CITATIONS
217	Mutable Properties of Nonheme Iron(III)–Iodosylarene Complexes Result in the Elusive Multiple-Oxidant Mechanism. Journal of the American Chemical Society, 2017, 139, 7444-7447.	6.6	40
218	Spectroscopic and computational characterization of Cull–OOR (R = H or cumyl) complexes bearing a Me6-tren ligand. Dalton Transactions, 2011, 40, 2234.	1.6	39
219	Manganese substituted Compound I of cytochrome P450 biomimetics: A comparative reactivity study of MnV-oxo versus MnIV-oxo species. Archives of Biochemistry and Biophysics, 2011, 507, 4-13.	1.4	39
220	Nonheme iron-oxo and -superoxo reactivities: O2 binding and spin inversion probability matter. Chemical Communications, 2012, 48, 2189.	2.2	39
221	Long-Lived Photoexcited State of a Mn(IV)-Oxo Complex Binding Scandium Ions That is Capable of Hydroxylating Benzene. Journal of the American Chemical Society, 2018, 140, 8405-8409.	6.6	39
222	Parallel mechanistic studies on the counterion effect of manganese salen and porphyrin complexes on olefin epoxidation by iodosylarenes. Journal of Inorganic Biochemistry, 2005, 99, 424-431.	1.5	38
223	Reactions of Co(III)–Nitrosyl Complexes with Superoxide and Their Mechanistic Insights. Journal of the American Chemical Society, 2015, 137, 4284-4287.	6.6	38
224	Catalytic recycling of NAD(P)H. Journal of Inorganic Biochemistry, 2019, 199, 110777.	1.5	38
225	Unified Mechanism of Oxygen Atom Transfer and Hydrogen Atom Transfer Reactions with a Triflic Acid-Bound Nonheme Manganese(IV)–Oxo Complex via Outer-Sphere Electron Transfer. Journal of the American Chemical Society, 2019, 141, 2614-2622.	6.6	38
226	Fundamental Differences of Substrate Hydroxylation by High-Valent Iron(IV)-Oxo Models of Cytochrome P450. Inorganic Chemistry, 2009, 48, 6661-6669.	1.9	37
227	Photoelectrocatalysis to Improve Cycloreversion Quantum Yields of Photochromic Dithienylethene Compounds. Angewandte Chemie - International Edition, 2012, 51, 13154-13158.	7.2	36
228	Electron-transfer properties of a nonheme manganese(iv)–oxo complex acting as a stronger one-electron oxidant than the iron(iv)–oxo analogue. Chemical Communications, 2012, 48, 11187.	2.2	36
229	Factors That Control the Reactivity of Cobalt(III)–Nitrosyl Complexes in Nitric Oxide Transfer and Dioxygenation Reactions: A Combined Experimental and Theoretical Investigation. Journal of the American Chemical Society, 2016, 138, 7753-7762.	6.6	36
230	Protection by a manganese porphyrin of endogenous peroxynitrite-induced death of glial cells via inhibition of mitochondrial transmembrane potential decrease. Glia, 2000, 31, 155-164.	2.5	35
231	Immobilization of Molecular Catalysts for Enhanced Redox Catalysis. ChemCatChem, 2018, 10, 1686-1702.	1.8	35
232	Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coordination Chemistry Reviews, 2021, 435, 213807.	9.5	35
233	Synthesis of Azines in Solid State: Reactivity of Solid Hydrazine with Aldehydes and Ketones. Organic Letters, 2011, 13, 6386-6389.	2.4	34
234	Autocatalytic Formation of an Iron(IV)–Oxo Complex via Scandium Ion-Promoted Radical Chain Autoxidation of an Iron(II) Complex with Dioxygen and Tetraphenylborate. Journal of the American Chemical Society, 2014, 136, 8042-8049.	6.6	34

#	Article	IF	CITATIONS
235	A Mononuclear Non-heme Manganese(III)–Aqua Complex as a New Active Oxidant in Hydrogen Atom Transfer Reactions. Journal of the American Chemical Society, 2018, 140, 12695-12699.	6.6	34
236	A Highâ€Valent Manganese(IV)–Oxo–Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. Angewandte Chemie - International Edition, 2019, 58, 16124-16129.	7.2	34
237	Photocatalytic Oxygenation Reactions with a Cobalt Porphyrin Complex Using Water as an Oxygen Source and Dioxygen as an Oxidant. Journal of the American Chemical Society, 2019, 141, 9155-9159.	6.6	34
238	Synthesis, Characterization, and Reactivity of Cobalt(III)–Oxygen Complexes Bearing a Macrocyclic Nâ€Tetramethylated Cyclam Ligand. Chemistry - A European Journal, 2013, 19, 14112-14118.	1.7	33
239	Photocatalytic Oxygenation Reactions Using Water and Dioxygen. ChemSusChem, 2019, 12, 3931-3940.	3.6	33
240	Molecular Photocatalytic Water Splitting by Mimicking Photosystems I and II. Journal of the American Chemical Society, 2022, 144, 695-700.	6.6	32
241	Tunneling Controls the Reaction Pathway in the Deformylation of Aldehydes by a Nonheme Iron(III)–Hydroperoxo Complex: Hydrogen Atom Abstraction versus Nucleophilic Addition. Journal of the American Chemical Society, 2019, 141, 7675-7679.	6.6	31
242	Mechanism and Fluorescence Application of Electrochromism in Photochromic Dithienylcyclopentene. Organic Letters, 2012, 14, 2238-2241.	2.4	30
243	A nonheme manganese(<scp>iv</scp>)–oxo species generated in photocatalytic reaction using water as an oxygen source. Chemical Communications, 2015, 51, 4013-4016.	2.2	30
244	Mn(III)-Iodosylarene Porphyrins as an Active Oxidant in Oxidation Reactions: Synthesis, Characterization, and Reactivity Studies. Inorganic Chemistry, 2018, 57, 10232-10240.	1.9	30
245	Hydroxylation of Aliphatic Hydrocarbons withm-Chloroperbenzoic Acid Catalyzed by Electron-Deficient Iron(III) Porphyrin Complexes. Bulletin of the Chemical Society of Japan, 1999, 72, 707-713.	2.0	29
246	Artificial Photosynthesis for Production of ATP, NAD(P)H, and Hydrogen Peroxide. ChemPhotoChem, 2018, 2, 121-135.	1.5	29
247	Title is missing!. Angewandte Chemie, 2003, 115, 113-115.	1.6	28
248	Activation of hydrocarbon C–H bonds by iodosylbenzene: how does it compare with iron(iv)–oxo oxidants?. Chemical Communications, 2009, , 1562.	2.2	28
249	Isolation and structural characterization of the elusive 1 : 1 adduct of hydrazine and carbon dioxide. Chemical Communications, 2011, 47, 11219.	2.2	28
250	Acid Catalysis via Acidâ€Promoted Electron Transfer. Bulletin of the Korean Chemical Society, 2020, 41, 1217-1232.	1.0	28
251	An iron(II) complex with a N3S2 thioether ligand in the generation of an iron(IV)-oxo complex and its reactivity in olefin epoxidation. Inorganica Chimica Acta, 2009, 362, 1031-1034.	1.2	27
252	Manganese(v)–oxo corroles in hydride-transfer reactions. Chemical Communications, 2010, 46, 8160.	2.2	27

Wonwoo Nam

#	Article	IF	CITATIONS
253	Fluorescence ratiometric zinc sensors based on controlled energy transfer. Journal of Materials Chemistry, 2012, 22, 17100.	6.7	27
254	Enhanced Electron Transfer Reactivity of a Nonheme Iron(IV)–Imido Complex as Compared to the Iron(IV)â€Oxo Analogue. Angewandte Chemie - International Edition, 2016, 55, 3709-3713.	7.2	27
255	Remarkable Acid Catalysis in Proton-Coupled Electron-Transfer Reactions of a Chromium(III)-Superoxo Complex. Journal of the American Chemical Society, 2018, 140, 8372-8375.	6.6	27
256	Non-Heme Manganese Catalysts for On-Demand Production of Chlorine Dioxide in Water and Under Mild Conditions. Journal of the American Chemical Society, 2014, 136, 3680-3686.	6.6	26
257	A mononuclear nonheme cobalt(<scp>iii</scp>)–hydroperoxide complex with an amphoteric reactivity in electrophilic and nucleophilic oxidative reactions. Dalton Transactions, 2016, 45, 14511-14515.	1.6	26
258	Effects of Lewis Acids on Photoredox Catalysis. Asian Journal of Organic Chemistry, 2017, 6, 397-409.	1.3	26
259	Mimicry and functions of photosynthetic reaction centers. Biochemical Society Transactions, 2018, 46, 1279-1288.	1.6	26
260	Combined Experimental and Theoretical Approach To Understand the Reactivity of a Mononuclear Cu(II)â^'Hydroperoxo Complex in Oxygenation Reactions. Journal of Physical Chemistry A, 2008, 112, 13102-13108.	1.1	25
261	An isoelectronic NO dioxygenase reaction using a nonheme iron(<scp>iii</scp>)-peroxo complex and nitrosonium ion. Chemical Communications, 2014, 50, 1742-1744.	2.2	25
262	Dioxygen Activation by a Macrocyclic Copper Complex Leads to a Cu ₂ O ₂ Core with Unexpected Structure and Reactivity. Chemistry - A European Journal, 2016, 22, 5133-5137.	1.7	25
263	Structure and spin state of nonheme Fe ^{IV} O complexes depending on temperature: predictive insights from DFT calculations and experiments. Chemical Science, 2017, 8, 5460-5467.	3.7	25
264	Photodriven Oxidation of Water by Plastoquinone Analogs with a Nonheme Iron Catalyst. Journal of the American Chemical Society, 2019, 141, 6748-6754.	6.6	25
265	Oxidative properties of a nonheme Ni(ii)(O2) complex: Reactivity patterns for C–H activation, aromatic hydroxylation and heteroatom oxidation. Chemical Communications, 2011, 47, 10674.	2.2	24
266	Correlating DFT alculated Energy Barriers to Experiments in Nonheme Octahedral Fe ^{IV} O Species. Chemistry - A European Journal, 2012, 18, 10444-10453.	1.7	24
267	Effects of Proton Acceptors on Formation of a Non-Heme Iron(IV)–Oxo Complex via Proton-Coupled Electron Transfer. Inorganic Chemistry, 2013, 52, 3094-3101.	1.9	24
268	An amphoteric reactivity of a mixed-valent bis(μ-oxo)dimanganese(<scp>iii</scp> , <scp>iv</scp>) complex acting as an electrophile and a nucleophile. Dalton Transactions, 2016, 45, 376-383.	1.6	24
269	Deuterium kinetic isotope effects as redox mechanistic criterions. Bulletin of the Korean Chemical Society, 2021, 42, 1558-1568.	1.0	24
270	Theoretical predictions of a highly reactive non-heme Fe(iv)î€O complex with a high-spin ground state. Chemical Communications, 2010, 46, 4511.	2.2	23

#	Article	IF	CITATIONS
271	Mechanistic Insight into the Nitric Oxide Dioxygenation Reaction of Nonheme Iron(III)–Superoxo and Manganese(IV)–Peroxo Complexes. Angewandte Chemie - International Edition, 2016, 55, 12403-12407.	7.2	23
272	Tunneling Effect That Changes the Reaction Pathway from Epoxidation to Hydroxylation in the Oxidation of Cyclohexene by a Compound I Model of Cytochrome P450. Journal of Physical Chemistry Letters, 2017, 8, 1557-1561.	2.1	23
273	Multiâ€Electron Oxidation of Anthracene Derivatives by Nonheme Manganese(IV)â€Oxo Complexes. Chemistry - A European Journal, 2017, 23, 7125-7131.	1.7	22
274	A Mononuclear Nonheme Iron(IV)–Amido Complex Relevant for the Compound II Chemistry of Cytochrome P450. Journal of the American Chemical Society, 2019, 141, 80-83.	6.6	22
275	Oxidation of hydroquinones by a nonheme iron(IV)-oxo species. Inorganica Chimica Acta, 2008, 361, 2557-2561.	1.2	21
276	Mechanistic insights into the reactions of hydride transfer versus hydrogen atom transfer by a trans-dioxoruthenium(<scp>vi</scp>) complex. Dalton Transactions, 2015, 44, 7634-7642.	1.6	21
277	Tuning the Reactivity of Chromium(III)-Superoxo Species by Coordinating Axial Ligands. Inorganic Chemistry, 2015, 54, 10513-10520.	1.9	21
278	Tuning Electron-Transfer Reactivity of a Chromium(III)–Superoxo Complex Enabled by Calcium Ion and Other Redox-Inactive Metal Ions. Journal of the American Chemical Society, 2020, 142, 365-372.	6.6	21
279	Bioinspired artificial photosynthesis systems. Tetrahedron, 2020, 76, 131024.	1.0	21
280	Predictive studies of H-atom abstraction reactions by an iron(iv)–oxo corrole cation radical oxidant. Chemical Communications, 2012, 48, 3491.	2.2	20
281	Enhanced Redox Reactivity of a Nonheme Iron(V)–Oxo Complex Binding Proton. Journal of the American Chemical Society, 2020, 142, 15305-15319.	6.6	20
282	Direct oxygen atom transfer versus electron transfer mechanisms in the phosphine oxidation by nonheme Mn(<scp>iv</scp>)-oxo complexes. Chemical Communications, 2017, 53, 9352-9355.	2.2	19
283	Thermal and photocatalytic oxidation of organic substrates by dioxygen with water as an electron source. Green Chemistry, 2018, 20, 948-963.	4.6	19
284	Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angewandte Chemie - International Edition, 2020, 59, 13581-13585.	7.2	19
285	A Mononuclear Non-Heme Manganese(III)–Aqua Complex in Oxygen Atom Transfer Reactions via Electron Transfer. Journal of the American Chemical Society, 2021, 143, 1521-1528.	6.6	19
286	Augmented death in immunostimulated astrocytes deprived of glucose: inhibition by an iron porphyrin FeTMPyP. Journal of Neuroimmunology, 2001, 112, 55-62.	1.1	18
287	Alkyne oxidation by nonheme iron catalysts and hydroperoxides. Inorganic Chemistry Communication, 2004, 7, 534-537.	1.8	18
288	The Effect and Influence of <i>cis</i> -Ligands on the Electronic and Oxidizing Properties of Nonheme Oxoiron Biomimetics. A Density Functional Study. Journal of Physical Chemistry A, 2008, 112, 12887-12895.	1.1	18

#	Article	IF	CITATIONS
289	An autocatalytic radical chain pathway in formation of an iron(iv)–oxo complex by oxidation of an iron(ii) complex with dioxygen and isopropanol. Chemical Communications, 2013, 49, 2500.	2.2	18
290	Lysosome-specific one-photon fluorescence staining and two-photon singlet oxygen generation by molecular dyad. RSC Advances, 2014, 4, 16913-16916.	1.7	17
291	Phosphorescent Zinc Probe for Reversible Turn-On Detection with Bathochromically Shifted Emission. Inorganic Chemistry, 2015, 54, 9704-9714.	1.9	17
292	A Chromium(III)-Superoxo Complex as a Three-Electron Oxidant with a Large Tunneling Effect in Multi-Electron Oxidation of NADH Analogues. Angewandte Chemie - International Edition, 2017, 56, 3510-3515.	7.2	17
293	Autocatalytic dioxygen activation to produce an iron(<scp>v</scp>)-oxo complex without any reductants. Chemical Communications, 2017, 53, 8348-8351.	2.2	17
294	A Manganese(V)–Oxo Tetraamido Macrocyclic Ligand (TAML) Cation Radical Complex: Synthesis, Characterization, and Reactivity Studies. Chemistry - A European Journal, 2018, 24, 17927-17931.	1.7	17
295	Photocatalytic redox reactions with metalloporphyrins. Journal of Porphyrins and Phthalocyanines, 2020, 24, 21-32.	0.4	17
296	Unprecedented Reactivities of Highly Reactive Manganese(III)–Iodosylarene Porphyrins in Oxidation Reactions. Journal of the American Chemical Society, 2020, 142, 19879-19884.	6.6	17
297	Bromoacetic Acid-Promoted Nonheme Manganese-Catalyzed Alkane Hydroxylation Inspired by α-Ketoglutarate-Dependent Oxygenases. ACS Catalysis, 2022, 12, 6756-6769.	5.5	17
298	Epoxidation of Olefins with H2O2Catalyzed by an Electronegatively-Substituted Iron Porphyrin Complex in Aprotic Solvent. Chemistry Letters, 1998, 27, 837-838.	0.7	16
299	Singly Unified Driving Force Dependence of Outer-Sphere Electron-Transfer Pathways of Nonheme Manganese(IV)â^'Oxo Complexes in the Absence and Presence of Lewis Acids. Inorganic Chemistry, 2019, 58, 13761-13765.	1.9	16
300	Deeper Understanding of Mononuclear Manganese(Ⅳ)–Oxo Binding BrÃ,nsted and Lewis Acids and the Manganese(Ⅳ)–Hydroxide Complex. Inorganic Chemistry, 2021, 60, 16996-17007.	1.9	16
301	Enthalpy–Entropy Compensation Effect in Oxidation Reactions by Manganese(IV)-Oxo Porphyrins and Nonheme Iron(IV)-Oxo Models. Journal of the American Chemical Society, 2021, 143, 18559-18570.	6.6	16
302	A chiral ketone for enantioselective recognition of 1,2-amino alcohols. Tetrahedron Letters, 2007, 48, 6582-6585.	0.7	14
303	Intercalation of bulky Δ,Δ- and Î>,Î-bis-Ru(II) complex between DNA base pairs. Journal of Inorganic Biochemistry, 2008, 102, 1885-1891.	1.5	14
304	Hydride transfer from NADH analogues to a nonheme manganese(<scp>iv</scp>)–oxo complex via rate-determining electron transfer. Chemical Communications, 2014, 50, 12944-12946.	2.2	14
305	Tuning the Redox Properties of a Nonheme Iron(III)–Peroxo Complex Binding Redoxâ€Inactive Zinc Ions by Water Molecules. Chemistry - A European Journal, 2015, 21, 10676-10680.	1.7	14
306	Enhanced Electron-Transfer Reactivity of a Long-Lived Photoexcited State of a Cobalt–Oxygen Complex. Inorganic Chemistry, 2018, 57, 10945-10952.	1.9	14

#	Article	IF	CITATIONS
307	Conversion of olefins into trans-diols or trans-diol mono-ethers by using iron porphyrin(III) complex and H2O2. Inorganic Chemistry Communication, 2003, 6, 1148-1151.	1.8	13
308	High-Valent Iron-Oxo Porphyrins in Oxygenation Reactions. Handbook of Porphyrin Science, 2010, , 85-139.	0.3	13
309	Direct Synthesis of Imines <i>via</i> Solid State Reactions of Carbamates with Aldehydes. Advanced Synthesis and Catalysis, 2013, 355, 389-394.	2.1	13
310	Highly stereoselective directed reactions and an efficient synthesis of azafuranoses from a chiral aziridine. Organic and Biomolecular Chemistry, 2013, 11, 3629.	1.5	13
311	A theoretical study into a trans-dioxo Mn ^V porphyrin complex that does not follow the oxygen rebound mechanism in C–H bond activation reactions. Chemical Communications, 2016, 52, 904-907.	2.2	13
312	A Highly Reactive Oxoiron(IV) Complex Supported by a Bioinspired N ₃ O Macrocyclic Ligand. Angewandte Chemie, 2017, 129, 14576-14580.	1.6	13
313	Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. Angewandte Chemie, 2019, 131, 4052-4056.	1.6	13
314	Iron porphyrins anchored to a thermosensitive polymeric core-shell nanosphere as a thermotropic catalyst. Chemical Communications, 2005, , 2960.	2.2	12
315	Mononuclear Nonheme High‣pin (<i>S</i> =2) versus Intermediate‣pin (<i>S</i> =1) Iron(IV)–Oxo Complexes in Oxidation Reactions. Angewandte Chemie, 2016, 128, 8159-8163.	1.6	12
316	A theoretical investigation into the first-row transition metal–O ₂ adducts. Inorganic Chemistry Frontiers, 2019, 6, 2071-2081.	3.0	12
317	Small Reorganization Energy for Ligand-Centered Electron-Transfer Reduction of Compound I to Compound II in a Heme Model Study. Inorganic Chemistry, 2019, 58, 8263-8266.	1.9	12
318	Catalytic Four-Electron Reduction of Dioxygen by Ferrocene Derivatives with a Nonheme Iron(III) TAML Complex. Inorganic Chemistry, 2020, 59, 18010-18017.	1.9	12
319	The Oxo-Wall Remains Intact: A Tetrahedrally Distorted Co(Ⅳ)–Oxo Complex. Journal of the American Chemical Society, 2021, 143, 16943-16959.	6.6	12
320	Regioselectivity of aliphatic versus aromatic hydroxylation by a nonheme iron(ii)-superoxo complex. Physical Chemistry Chemical Physics, 2012, 14, 2518.	1.3	11
321	Thermal and photoinduced electron-transfer catalysis of high-valent metal-oxo porphyrins in oxidation of substrates. Journal of Porphyrins and Phthalocyanines, 2016, 20, 35-44.	0.4	11
322	A mononuclear nonheme {FeNO} ⁶ complex: synthesis and structural and spectroscopic characterization. Chemical Science, 2018, 9, 6952-6960.	3.7	11
323	A Mononuclear Non-heme Iron(III)–Peroxo Complex with an Unprecedented High O–O Stretch and Electrophilic Reactivity. Journal of the American Chemical Society, 2021, 143, 15556-15561.	6.6	11
324	Temperature effect on the epoxidation of olefins by an iron(iii) porphyrin complex and tert-alkyl hydroperoxides. Chemical Communications, 2000, , 1787-1788.	2.2	10

#	Article	IF	CITATIONS
325	A cobalt(<scp>ii</scp>) iminoiodane complex and its scandium adduct: mechanistic promiscuity in hydrogen atom abstraction reactions. Dalton Transactions, 2016, 45, 14538-14543.	1.6	10
326	Photocatalytic Hydrogen Evolution from Plastoquinol Analogues as a Potential Functional Model of Photosystem I. Inorganic Chemistry, 2020, 59, 14838-14846.	1.9	10
327	A Highly Reactive Chromium(V)–Oxo TAML Cation Radical Complex in Electron Transfer and Oxygen Atom Transfer Reactions. ACS Catalysis, 2021, 11, 2889-2901.	5.5	10
328	Fine Control of the Redox Reactivity of a Nonheme Iron(III)–Peroxo Complex by Binding Redoxâ€Inactive Metal Ions. Angewandte Chemie, 2017, 129, 819-823.	1.6	9
329	Electronic properties and reactivity patterns of <scp>highâ€valent metalâ€oxo</scp> species of Mn, Fe, Co, and Ni. Bulletin of the Korean Chemical Society, 2021, 42, 1506-1512.	1.0	9
330	Enhanced Electron Transfer Reactivity of a Nonheme Iron(IV)–Imido Complex as Compared to the Iron(IV)â€Oxo Analogue. Angewandte Chemie, 2016, 128, 3773-3777.	1.6	8
331	Switchover of the Mechanism between Electron Transfer and Hydrogenâ€Atom Transfer for a Protonated Manganese(IV)–Oxo Complex by Changing Only the Reaction Temperature. Angewandte Chemie, 2016, 128, 7576-7580.	1.6	8
332	Photoexcited state chemistry of metal–oxygen complexes. Dalton Transactions, 2018, 47, 16019-16026.	1.6	8
333	Regioselective Oxybromination of Benzene and Its Derivatives by Bromide Anion with a Mononuclear Nonheme Mn(IV)–Oxo Complex. Inorganic Chemistry, 2019, 58, 14299-14303.	1.9	8
334	Heme compound II models in chemoselectivity and disproportionation reactions. Chemical Science, 0, ,	3.7	8
335	Flexibility of Inorganic Tennis Ball Structures Inducing Anion Selectivity. Chemistry - A European Journal, 2006, 12, 7078-7083.	1.7	7
336	Theoretical Investigation on the Mechanism of Oxygen Atom Transfer between Two Non-Heme Iron Centres. European Journal of Inorganic Chemistry, 2008, 2008, 1027-1030.	1.0	7
337	Investigating Superoxide Transfer through a μ-1,2-O ₂ Bridge between Nonheme Ni ^{III} –Peroxo and Mn ^{II} Species by DFT Methods to Bridge Theoretical and Experimental Views. Journal of Physical Chemistry Letters, 2014, 5, 2437-2442.	2.1	7
338	Properties and reactivities of nonheme iron(<scp>iv</scp>)–oxo versus iron(<scp>v</scp>)–oxo: long-range electron transfer versus hydrogen atom abstraction. Physical Chemistry Chemical Physics, 2014, 16, 22611-22622.	1.3	7
339	A Highâ€Valent Manganese(IV)–Oxo–Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. Angewandte Chemie, 2019, 131, 16270-16275.	1.6	7
340	A Mn(<scp>iv</scp>)–peroxo complex in the reactions with proton donors. Dalton Transactions, 2019, 48, 5203-5213.	1.6	7
341	Ligand Architecture Perturbation Influences the Reactivity of Nonheme Iron(V)-Oxo Tetraamido Macrocyclic Ligand Complexes: A Combined Experimental and Theoretical Study. Inorganic Chemistry, 2021, 60, 4058-4067.	1.9	7
342	Theoretical investigation on the elusive biomimetic iron(III)-iodosylarene chemistry: An unusual hydride transfer triggers the Ritter reaction. Chinese Chemical Letters, 2021, 32, 3857-3861.	4.8	7

#	Article	IF	CITATIONS
343	Nonheme Iron-Catalyzed Enantioselective <i>cis</i> -Dihydroxylation of Aliphatic Acrylates as Mimics of Rieske Dioxygenases. CCS Chemistry, 2022, 4, 2369-2381.	4.6	7
344	A ferric-cyanide-bridged one-dimensional dirhodium complex with (18-crown-6)potassium cations. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 266-268.	0.4	6
345	Nuclear Resonance Vibrational Spectroscopic Definition of Peroxy Intermediates in Nonheme Iron Sites. Journal of the American Chemical Society, 2016, 138, 14294-14302.	6.6	6
346	Proton-promoted disproportionation of iron(<scp>v</scp>)-imido TAML to iron(<scp>v</scp>)-imido TAML cation radical and iron(<scp>iv</scp>) TAML. Chemical Communications, 2020, 56, 11207-11210.	2.2	6
347	EPR spectroscopy elucidates the electronic structure of [Fe ^V (O)(TAML)] complexes. Inorganic Chemistry Frontiers, 2021, 8, 3775-3783.	3.0	6
348	Formation of cobalt–oxygen intermediates by dioxygen activation at a mononuclear nonheme cobalt(<scp>ii</scp>) center. Dalton Transactions, 2021, 50, 11889-11898.	1.6	6
349	The chameleon-like nature of elusive cobalt–oxygen intermediates in C–H bond activation reactions. Dalton Transactions, 2022, 51, 4317-4323.	1.6	6
350	Zinc Tetrakis(N-methyl-4′-pyridyl) Porphyrinato Is an Effective Inhibitor of Stimulant-Induced Activation of RAW 264.7 Cells. Toxicology and Applied Pharmacology, 2001, 172, 140-149.	1.3	5
351	Mechanistic Insight into the Nitric Oxide Dioxygenation Reaction of Nonheme Iron(III)–Superoxo and Manganese(IV)–Peroxo Complexes. Angewandte Chemie, 2016, 128, 12591-12595.	1.6	5
352	A Chromium(III)-Superoxo Complex as a Three-Electron Oxidant with a Large Tunneling Effect in Multi-Electron Oxidation of NADH Analogues. Angewandte Chemie, 2017, 129, 3564-3569.	1.6	5
353	Ceneration and Electronâ€Transfer Reactivity of the Longâ€Lived Photoexcited State of a Manganese(IV)â€Oxoâ€Scandium Nitrate Complex. Israel Journal of Chemistry, 2020, 60, 1049-1056.	1.0	5
354	How does Lewis acid affect the reactivity of mononuclear <scp>highâ€valent chromium–oxo</scp> species? A theoretical study. Bulletin of the Korean Chemical Society, 2021, 42, 1501-1505.	1.0	5
355	Acid Catalysis in the Oxidation of Substrates by Mononuclear Manganese(III)–Aqua Complexes. Inorganic Chemistry, 2022, 61, 6594-6603.	1.9	5
356	Identification of a cobalt(<scp>IV</scp>)–oxo intermediate as an active oxidant in catalytic oxidation reactions. Bulletin of the Korean Chemical Society, 2022, 43, 1075-1082.	1.0	5
357	Intermetal oxygen atom transfer from an Fe ^V O complex to a Mn ^{III} complex: an experimental and theoretical approach. Chemical Communications, 2016, 52, 12968-12971.	2.2	4
358	Acid-promoted hydride transfer from an NADH analogue to a Cr(<scp>iii</scp>)–superoxo complex <i>via</i> a proton-coupled hydrogen atom transfer. Dalton Transactions, 2021, 50, 675-680.	1.6	4
359	Oxidative <i>versus</i> basic asynchronous hydrogen atom transfer reactions of Mn(<scp>iii</scp>)-hydroxo and Mn(<scp>iii</scp>)-aqua complexes. Inorganic Chemistry Frontiers, 2022, 9, 3233-3243.	3.0	4
360	Blockade of peroxynitrite-mediated astrocyte death by manganese(III)-cyclam. Neuroscience Research, 2003, 45, 157-161.	1.0	3

#	Article	IF	CITATIONS
361	Novel platinum complexes having chirality and free tertiary amine groups for multiple interactions with DNA. Inorganic Chemistry Communication, 2004, 7, 1178-1180.	1.8	3
362	Synthesis and crystal structure of nickel(II) complexes with bis(5-methyl-2-thiophenemethyl)(2-pyridylmethyl)amine. Polyhedron, 2010, 29, 446-450.	1.0	3
363	Photoinduced Generation of Superoxidants for the Oxidation of Substrates with High Câ^'H Bond Dissociation Energies. ChemPhotoChem, 2020, 4, 271-281.	1.5	3
364	Long- and short-range NMR coupling parameters in closo-2,4-C2B5H7 and a number of its derivatives. Journal of Magnetic Resonance, 1984, 59, 399-405.	0.5	2
365	Methoxy[meso-5,10,15,20-tetrakis(2,6-difluorophenyl)porphyrinato]iron(III), [Fe(TDFPP)(OCH3)]. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 556-557.	0.4	2
366	Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angewandte Chemie, 2020, 132, 13683-13687.	1.6	2
367	Nonheme Iron Imido Complexes Bearing a Nonâ€Innocent Ligand: A Synthetic Chameleon Species in Oxidation Reactions. Chemistry - A European Journal, 2021, 27, 17495-17503.	1.7	2
368	Tuning the intermolecular dative interactions by altering the ligand planarity and counter cations in vanadyl(iv) complexes. Dalton Transactions, 2005, , 1567.	1.6	1
369	Frontispiece: Solar-Driven Production of Hydrogen Peroxide from Water and Dioxygen. Chemistry - A European Journal, 2018, 24, .	1.7	1
370	Aromatic hydroxylation of anthracene derivatives by a chromium(<scp>iii</scp>)-superoxo complex <i>via</i> proton-coupled electron transfer. Chemical Communications, 2019, 55, 8286-8289.	2.2	1
371	Stable carbamate pathway towards organic–inorganic hybrid perovskites and aromatic imines. RSC Advances, 2020, 10, 38055-38062.	1.7	1
372	Iron Porphyrins Anchored to a Thermosensitive Polymeric Core-Shell Nanosphere as a Thermotropic Catalyst ChemInform, 2005, 36, no.	0.1	0
373	Frontispiz: A Highly Reactive Oxoiron(IV) Complex Supported by a Bioinspired N ₃ O Macrocyclic Ligand. Angewandte Chemie, 2017, 129, .	1.6	0
374	Frontispiece: A Highly Reactive Oxoiron(IV) Complex Supported by a Bioinspired N ₃ O Macrocyclic Ligand. Angewandte Chemie - International Edition, 2017, 56, .	7.2	0