List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1721138/publications.pdf Version: 2024-02-01

YII TIAN WANG

#	Article	IF	CITATIONS
1	The selective dopamine D1 receptor agonist SKF81297 modulates NMDA receptor currents independently of D1 receptors. Neuropharmacology, 2022, 207, 108967.	4.1	2
2	Distinct Functional Alterations and Therapeutic Options of Two Pathological De Novo Variants of the T292 Residue of GABRA1 Identified in Children with Epileptic Encephalopathy and Neurodevelopmental Disorders. International Journal of Molecular Sciences, 2022, 23, 2723.	4.1	6
3	Postsynaptic signaling at glutamatergic synapses as therapeutic targets. Current Opinion in Neurobiology, 2022, 75, 102585.	4.2	6
4	LTD is involved in the formation and maintenance of rat hippocampal CA1 place-cell fields. Nature Communications, 2021, 12, 100.	12.8	13
5	Development of an α-synuclein knockdown peptide and evaluation of its efficacy in Parkinson's disease models. Communications Biology, 2021, 4, 232.	4.4	18
6	Aagab acts as a novel regulator of NEDD4-1-mediated Pten nuclear translocation to promote neurological recovery following hypoxic-ischemic brain damage. Cell Death and Differentiation, 2021, 28, 2367-2384.	11.2	9
7	Disruption of Long-Term Depression Potentiates Latent Inhibition: Key Role for Central Nucleus of the Amygdala. International Journal of Neuropsychopharmacology, 2021, 24, 580-591.	2.1	0
8	GluA1-homomeric AMPA receptor in synaptic plasticity and neurological diseases. Neuropharmacology, 2021, 197, 108708.	4.1	20
9	AMPA and NMDA Receptor Trafficking at Cocaine-Generated Synapses. Journal of Neuroscience, 2021, 41, 1996-2011.	3.6	11
10	Pharmacological properties of TRPM3 isoforms are determined by the length of the pore loop. British Journal of Pharmacology, 2020, , .	5.4	10
11	An Erbin Story: Amygdala Excitation-Inhibition Balance in Anxiety. Biological Psychiatry, 2020, 87, 872-874.	1.3	1
12	Molecular interactions between monoclonal oligomer-specific antibody 5E3 and its amyloid beta cognates. PLoS ONE, 2020, 15, e0232266.	2.5	0
13	Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Molecular Brain, 2020, 13, 92.	2.6	44
14	TRPV1 activation alleviates cognitive and synaptic plasticity impairments through inhibiting AMPAR endocytosis in APP23/PS45 mouse model of Alzheimer's disease. Aging Cell, 2020, 19, e13113.	6.7	58
15	NMDARs in Cell Survival and Death: Implications in Stroke Pathogenesis and Treatment. Trends in Molecular Medicine, 2020, 26, 533-551.	6.7	61
16	Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neuroscience and Biobehavioral Reviews, 2019, 105, 1-23.	6.1	62
17	Pathophysiology of and therapeutic options for a GABRA1 variant linked to epileptic encephalopathy. Molecular Brain, 2019, 12, 92.	2.6	16
18	p97 regulates GluA1 homomeric AMPA receptor formation and plasma membrane expression. Nature Communications, 2019, 10, 4089.	12.8	13

#	Article	IF	CITATIONS
19	MKP-1 reduces Aβ generation and alleviates cognitive impairments in Alzheimer's disease models. Signal Transduction and Targeted Therapy, 2019, 4, 58.	17.1	62
20	Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science, 2019, 363, .	12.6	98
21	Food allergy induces alteration in brain inflammatory status and cognitive impairments. Behavioural Brain Research, 2019, 364, 374-382.	2.2	14
22	Facilitated AMPAR endocytosis causally contributes to the maternal sleep deprivation-induced impairments of synaptic plasticity and cognition in the offspring rats. Neuropharmacology, 2018, 133, 155-162.	4.1	18
23	Activation of caspaseâ€6 and cleavage of caspaseâ€6 substrates is an early event in NMDA receptor–mediated excitotoxicity. Journal of Neuroscience Research, 2018, 96, 391-406.	2.9	18
24	Getting "Ras―ults: Solving Molecular Promiscuity through Microdomain-Selective Targeting. Neuron, 2018, 98, 675-678.	8.1	0
25	Low-Frequency rTMS Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation Through Regulating the Synaptic GABA Transmission. Frontiers in Cellular Neuroscience, 2018, 12, 46.	3.7	27
26	Neuroprotective Effects of Ginsenoside Rf on Amyloid-Î ² -Induced Neurotoxicity in vitro and in vivo. Journal of Alzheimer's Disease, 2018, 64, 309-322.	2.6	44
27	Loss of Synapse Repressor MDGA1 Enhances Perisomatic Inhibition, Confers Resistance to Network Excitation, and Impairs Cognitive Function. Cell Reports, 2017, 21, 3637-3645.	6.4	37
28	Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. Journal of Psychiatry and Neuroscience, 2017, 42, 222-229.	2.4	162
29	Hydroxynorketamine: Implications for the NMDA Receptor Hypothesis of Ketamine's Antidepressant Action. Chronic Stress, 2017, 1, 247054701774351.	3.4	12
30	Maternal sleep deprivation at different stages of pregnancy impairs the emotional and cognitive functions, and suppresses hippocampal long-term potentiation in the offspring rats. Molecular Brain, 2016, 9, 17.	2.6	40
31	Altered Cortical Dynamics and Cognitive Function upon Haploinsufficiency of the Autism-Linked Excitatory Synaptic Suppressor MDGA2. Neuron, 2016, 91, 1052-1068.	8.1	70
32	Neuroprotective strategies for NMDAR-mediated excitotoxicity in Huntington's Disease. Frontiers in Biology, 2016, 11, 439-458.	0.7	1
33	Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses. Nature Neuroscience, 2016, 19, 915-925.	14.8	149
34	A Place at the Table. Neuroscientist, 2016, 22, 359-371.	3.5	54
35	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
36	Blocking Synaptic Removal of GluA2-Containing AMPA Receptors Prevents the Natural Forgetting of Long-Term Memories. Journal of Neuroscience, 2016, 36, 3481-3494.	3.6	117

#	Article	IF	CITATIONS
37	Cognitive Deficits in Calsyntenin-2-deficient Mice Associated with Reduced GABAergic Transmission. Neuropsychopharmacology, 2016, 41, 802-810.	5.4	44
38	Molecular mechanisms of NMDA receptor-mediated excitotoxicity: implications for neuroprotective therapeutics for stroke. Neural Regeneration Research, 2016, 11, 1752.	3.0	41
39	Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. Journal of Clinical Investigation, 2015, 125, 234-247.	8.2	138
40	Mesoscale infraslow spontaneous membrane potential fluctuations recapitulate high-frequency activity cortical motifs. Nature Communications, 2015, 6, 7738.	12.8	81
41	Deletion of Adenosine A2A Receptors From Astrocytes Disrupts Glutamate Homeostasis Leading to Psychomotor and Cognitive Impairment: Relevance to Schizophrenia. Biological Psychiatry, 2015, 78, 763-774.	1.3	135
42	SNIPER Peptideâ€Mediated Degradation of Endogenous Proteins. Current Protocols in Chemical Biology, 2015, 7, 1-16.	1.7	1
43	Interference with AMPA receptor endocytosis: effects on behavioural and neurochemical correlates of amphetamine sensitization in male rats. Journal of Psychiatry and Neuroscience, 2014, 39, 189-199.	2.4	8
44	Allosteric modulation of GABAA receptors by extracellular ATP. Molecular Brain, 2014, 7, 6.	2.6	9
45	The maintenance of longâ€ŧerm memory in the hippocampus depends on the interaction between <i>N</i> â€ethylmaleimideâ€sensitive factor and GluA2. Hippocampus, 2014, 24, 1112-1119.	1.9	32
46	Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Progress in Neurobiology, 2014, 115, 157-188.	5.7	857
47	Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nature Neuroscience, 2014, 17, 471-480.	14.8	132
48	Cognitive flexibility and long-term depression (LTD) are impaired following β-catenin stabilization in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8631-8636.	7.1	75
49	Molecular level activation insights from a NR2A/NR2B agonist. Journal of Biomolecular Structure and Dynamics, 2014, 32, 683-693.	3.5	9
50	A microfluidic based in vitro model of synaptic competition. Molecular and Cellular Neurosciences, 2014, 60, 43-52.	2.2	31
51	GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short- and long-term memories. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130141.	4.0	60
52	The NMDA receptor complex: a multifunctional machine at the glutamatergic synapse. Frontiers in Cellular Neuroscience, 2014, 8, 160.	3.7	85
53	Lithium ameliorates autistic-like behaviors induced by neonatal isolation in rats. Frontiers in Behavioral Neuroscience, 2014, 8, 234.	2.0	45
54	Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nature Neuroscience, 2013, 16, 1426-1435.	14.8	346

#	Article	IF	CITATIONS
55	An LRRTM4-HSPG Complex Mediates Excitatory Synapse Development on Dentate Gyrus Granule Cells. Neuron, 2013, 79, 680-695.	8.1	149
56	The intersections of NMDAR-dependent synaptic plasticity and cell survival. Neuropharmacology, 2013, 74, 59-68.	4.1	43
57	Progranulin promotes activation of microglia/macrophage after pilocarpine-induced status epilepticus. Brain Research, 2013, 1530, 54-65.	2.2	24
58	The Specific α-Neurexin Interactor Calsyntenin-3 Promotes Excitatory and Inhibitory Synapse Development. Neuron, 2013, 80, 113-128.	8.1	132
59	Simultaneous Monitoring of Presynaptic Transmitter Release and Postsynaptic Receptor Trafficking Reveals an Enhancement of Presynaptic Activity in Metabotropic Clutamate Receptor-Mediated Long-Term Depression. Journal of Neuroscience, 2013, 33, 5867-5877.	3.6	18
60	Critical Role of Increased PTEN Nuclear Translocation in Excitotoxic and Ischemic Neuronal Injuries. Journal of Neuroscience, 2013, 33, 7997-8008.	3.6	72
61	Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology, 2013, 64, 65-73.	4.1	182
62	Long-Term Potentiation Promotes Proliferation/Survival and Neuronal Differentiation of Neural Stem/Progenitor Cells. PLoS ONE, 2013, 8, e76860.	2.5	28
63	Directional gating of synaptic plasticity by GPCRs and their distinct downstream signalling pathways. EMBO Journal, 2012, 31, 783-785.	7.8	4
64	Mechanisms of Hippocampal Long-Term Depression Are Required for Memory Enhancement by Novelty Exploration. Journal of Neuroscience, 2012, 32, 11980-11990.	3.6	80
65	A pivotal role of GSK-3 in synaptic plasticity. Frontiers in Molecular Neuroscience, 2012, 5, 13.	2.9	149
66	NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear. Neuropharmacology, 2012, 62, 797-806.	4.1	117
67	Facilitated extinction of morphine conditioned place preference with Tat-GluA23Y interference peptide. Behavioural Brain Research, 2012, 233, 389-397.	2.2	19
68	Direct interaction between GluR2 and GAPDH regulates AMPAR-mediated excitotoxicity. Molecular Brain, 2012, 5, 13.	2.6	36
69	Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice. Neurobiology of Disease, 2012, 48, 40-51.	4.4	74
70	Odor preference learning and memory modify GluA1 phosphorylation and GluA1 distribution in the neonate rat olfactory bulb: Testing the AMPA receptor hypothesis in an appetitive learning model. Learning and Memory, 2011, 18, 283-291.	1.3	24
71	Insulin, Synaptic Function, and Opportunities for Neuroprotection. Progress in Molecular Biology and Translational Science, 2011, 98, 133-186.	1.7	39
72	Sterol regulatory element binding protein-1 (SREBP1) activation in motor neurons in excitotoxicity and amyotrophic lateral sclerosis (ALS): Indip, a potential therapeutic peptide. Biochemical and Biophysical Research Communications, 2011, 413, 159-163.	2.1	18

#	Article	IF	CITATIONS
73	Stroke intervention pathways: NMDA receptors and beyond. Trends in Molecular Medicine, 2011, 17, 266-275.	6.7	147
74	ldentification of the TrkC/PTPσ trans-synaptic complex as a bidirectional excitatory synaptic organizer. Neuroscience Research, 2011, 71, e17.	1.9	0
75	Postsynaptic TrkC and Presynaptic PTPÏ f Function as a Bidirectional Excitatory Synaptic Organizing Complex. Neuron, 2011, 69, 287-303.	8.1	184
76	Illuminating Synapse-Specific Homeostatic Plasticity. Neuron, 2011, 72, 682-685.	8.1	2
77	The regulatory role of long-term depression in juvenile and adult mouse ocular dominance plasticity. Scientific Reports, 2011, 1, 203.	3.3	18
78	Activation of βâ€adrenergic receptors facilitates heterosynaptic translationâ€dependent longâ€ŧerm potentiation. Journal of Physiology, 2011, 589, 4321-4340.	2.9	39
79	Slice orientation and muscarinic acetylcholine receptor activation determine the involvement of N-methyl D-aspartate receptor subunit GluN2B in hippocampal area CA1 long-term depression. Molecular Brain, 2011, 4, 41.	2.6	16
80	Disrupting Protein Complexes Using Tat-Tagged Peptide Mimics. Methods in Molecular Biology, 2011, 756, 381-393.	0.9	4
81	Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB Journal, 2010, 24, 2533-2545.	0.5	198
82	Long-term depression in the CNS. Nature Reviews Neuroscience, 2010, 11, 459-473.	10.2	785
83	PKMζ maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nature Neuroscience, 2010, 13, 630-634.	14.8	258
84	Allosteric potentiation of glycine receptor chloride currents by glutamate. Nature Neuroscience, 2010, 13, 1225-1232.	14.8	34
85	A kinesin signaling complex mediates the ability of CSK-3β to affect mood-associated behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11573-11578.	7.1	110
86	Hippocampal long-term depression is required for the consolidation of spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16697-16702.	7.1	244
87	Blocking the Deadly Effects of the NMDA Receptor in Stroke. Cell, 2010, 140, 174-176.	28.9	67
88	Fashioning drugs for stroke. Nature Medicine, 2010, 16, 1376-1378.	30.7	22
89	Preview: ionotropic glutamate receptor trafficking: AMPA receptors talk back. International Journal of Physiology, Pathophysiology and Pharmacology, 2010, 2, 45-46.	0.8	0
90	Microglial VEGF Receptor Response Is an Integral Chemotactic Component in Alzheimer's Disease Pathology. Journal of Neuroscience, 2009, 29, 3-13.	3.6	95

#	Article	IF	CITATIONS
91	Essential role of SBPâ€1 activation in oxygen deprivation induced lipid accumulation and increase in body width/length ratio in <i>Caenorhabditis elegans</i> . FEBS Letters, 2009, 583, 831-834.	2.8	18
92	Role of NMDA receptor–dependent activation of SREBP1 in excitotoxic and ischemic neuronal injuries. Nature Medicine, 2009, 15, 1399-1406.	30.7	119
93	Mechanisms involved in cholesterol-induced neuronal insulin resistance. Neuropharmacology, 2009, 57, 268-276.	4.1	29
94	Neural progenitor cells attenuate inflammatory reactivity and neuronal loss in an animal model of inflamed AD brain. Journal of Neuroinflammation, 2009, 6, 39.	7.2	62
95	Hook-up of GluA2, GRIP and liprin-α for cholinergic muscarinic receptor-dependent LTD in the hippocampus. Molecular Brain, 2009, 2, 17.	2.6	6
96	Chapter 8 Synaptic plasticity in learning and memory: Stress effects in the hippocampus. Progress in Brain Research, 2008, 169, 145-158.	1.4	210
97	The role of GSKâ€3 in synaptic plasticity. British Journal of Pharmacology, 2008, 153, S428-37.	5.4	228
98	Probing the role of AMPAR endocytosis and longâ€ŧerm depression in behavioural sensitization: relevance to treatment of brain disorders, including drug addiction. British Journal of Pharmacology, 2008, 153, S389-95.	5.4	21
99	Role of AMPA receptor trafficking in NMDA receptorâ€dependent synaptic plasticity in the rat lateral amygdala. Journal of Neurochemistry, 2008, 106, 889-899.	3.9	64
100	Disruption of AMPA Receptor Endocytosis Impairs the Extinction, but not Acquisition of Learned Fear. Neuropsychopharmacology, 2008, 33, 2416-2426.	5.4	144
101	Mechanisms Involved in the Reduction of GABAA Receptor α1-Subunit Expression Caused by the Epilepsy Mutation A322D in the Trafficking-competent Receptor. Journal of Biological Chemistry, 2008, 283, 22043-22050.	3.4	34
102	Effectiveness of PSD95 Inhibitors in Permanent and Transient Focal Ischemia in the Rat. Stroke, 2008, 39, 2544-2553.	2.0	175
103	Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11471-11476.	7.1	205
104	PDZ Protein Interactions Underlying NMDA Receptor-Mediated Excitotoxicity and Neuroprotection by PSD-95 Inhibitors. Journal of Neuroscience, 2007, 27, 9901-9915.	3.6	180
105	NMDA Receptor Function and NMDA Receptor-Dependent Phosphorylation of Huntingtin Is Altered by the Endocytic Protein HIP1. Journal of Neuroscience, 2007, 27, 2298-2308.	3.6	41
106	Modular Competition Driven by NMDA Receptor Subtypes in Spike-Timing-Dependent Plasticity. Journal of Neurophysiology, 2007, 97, 2851-2862.	1.8	42
107	Calpain-Mediated mGluR1α Truncation: A Key Step in Excitotoxicity. Neuron, 2007, 53, 399-412.	8.1	155
108	LTP Inhibits LTD in the Hippocampus via Regulation of GSK3β. Neuron, 2007, 53, 703-717.	8.1	632

#	Article	IF	CITATIONS
109	GABAA receptor-associated phosphoinositide 3-kinase is required for insulin-induced recruitment of postsynaptic GABAA receptors. Neuropharmacology, 2007, 52, 146-155.	4.1	44
110	NMDA Receptor Subunits Have Differential Roles in Mediating Excitotoxic Neuronal Death Both <i>In Vitro</i> and <i>In Vivo</i> . Journal of Neuroscience, 2007, 27, 2846-2857.	3.6	674
111	Tyrosine phosphorylation of the GluR2 subunit is required for long-term depression of synaptic efficacy in young animals in vivo. Hippocampus, 2007, 17, 600-605.	1.9	49
112	Transgenic mice over-expressing GABABR1a receptors acquire an atypical absence epilepsy-like phenotype. Neurobiology of Disease, 2007, 26, 439-451.	4.4	33
113	A Critical Role for Myosin IIB in Dendritic Spine Morphology and Synaptic Function. Neuron, 2006, 49, 175-182.	8.1	158
114	Mechanisms of modulation of pregnanolone on glycinergic response in cultured spinal dorsal horn neurons of rat. Neuroscience, 2006, 141, 2041-2050.	2.3	37
115	Endogenous insulin signaling protects cultured neurons from oxygen–glucose deprivation-induced cell death. Neuroscience, 2006, 143, 165-173.	2.3	68
116	Anisomycin activates p38 MAP kinase to induce LTD in mouse primary visual cortex. Brain Research, 2006, 1085, 68-76.	2.2	39
117	Contribution of NR2A and NR2B NMDA subunits to bidirectional synaptic plasticity in the hippocampus in vivo. Hippocampus, 2006, 16, 907-915.	1.9	155
118	Involvement of Myosin Vb in Glutamate Receptor Trafficking. Journal of Biological Chemistry, 2006, 281, 3669-3678.	3.4	113
119	Interference Peptides: A Novel Therapeutic Approach Targeting Synaptic Plasticity in Drug Addiction. , 2006, , 473-484.		3
120	Direct Receptor Cross-Talk Can Mediate the Modulation of Excitatory and Inhibitory Neurotransmission by Dopamine. Journal of Molecular Neuroscience, 2005, 26, 245-252.	2.3	30
121	Insulin exerts neuroprotection by counteracting the decrease in cellâ€surface GABA _A receptors following oxygen–glucose deprivation in cultured cortical neurons. Journal of Neurochemistry, 2005, 92, 103-113.	3.9	79
122	A biochemical and functional characterization of diet-induced brain insulin resistance. Journal of Neurochemistry, 2005, 93, 1568-1578.	3.9	171
123	Nucleus Accumbens Long-Term Depression and the Expression of Behavioral Sensitization. Science, 2005, 310, 1340-1343.	12.6	261
124	Neuroligins Mediate Excitatory and Inhibitory Synapse Formation. Journal of Biological Chemistry, 2005, 280, 17312-17319.	3.4	242
125	Differential Roles of NR2A- and NR2B-Containing NMDA Receptors in Ras-ERK Signaling and AMPA Receptor Trafficking. Neuron, 2005, 46, 745-760.	8.1	438
126	Excessive Expression of Acetylcholinesterase Impairs Glutamatergic Synaptogenesis in Hippocampal Neurons. Journal of Neuroscience, 2004, 24, 8950-8960.	3.6	52

#	Article	IF	CITATIONS
127	A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13915-13920.	7.1	323
128	Response to Comment on "Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity". Science, 2004, 305, 1912c-1912c.	12.6	15
129	α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Subtype Glutamate Receptor (AMPAR) Endocytosis Is Essential for N-Methyl-D-aspartate-induced Neuronal Apoptosis. Journal of Biological Chemistry, 2004, 279, 41267-41270.	3.4	43
130	Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO Journal, 2004, 23, 1040-1050.	7.8	267
131	Receptor trafficking and synaptic plasticity. Nature Reviews Neuroscience, 2004, 5, 952-962.	10.2	886
132	Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity. Science, 2004, 304, 1021-1024.	12.6	975
133	Hormonal regulation of atypical absence seizures. Annals of Neurology, 2004, 55, 353-361.	5.3	22
134	γ-Hydroxybutyric acid (GHB) and γ-aminobutyric acidB receptor (GABABR) binding sites are distinctive from one another: molecular evidence. Neuropharmacology, 2004, 47, 1146-1156.	4.1	61
135	Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking. EMBO Journal, 2003, 22, 3254-3266.	7.8	102
136	Glycine binding primes NMDA receptor internalization. Nature, 2003, 422, 302-307.	27.8	382
137	Antinociceptive effect of calcitonin gene-related peptide in the central nucleus of amygdala: activating opioid receptors through amygdalaâ€"periaqueductal gray pathway. Neuroscience, 2003, 118, 1015-1022.	2.3	52
138	Activation of PI3-Kinase Is Required for AMPA Receptor Insertion during LTP of mEPSCs in Cultured Hippocampal Neurons. Neuron, 2003, 38, 611-624.	8.1	317
139	Control of Synaptic Strength, a Novel Function of Akt. Neuron, 2003, 38, 915-928.	8.1	233
140	Treatment of Ischemic Brain Damage by Perturbing NMDA Receptor- PSD-95 Protein Interactions. Science, 2002, 298, 846-850.	12.6	927
141	Dual Regulation of NMDA Receptor Functions by Direct Protein-Protein Interactions with the Dopamine D1 Receptor. Cell, 2002, 111, 219-230.	28.9	492
142	Clathrin Adaptor AP2 and NSF Interact with Overlapping Sites of GluR2 and Play Distinct Roles in AMPA Receptor Trafficking and Hippocampal LTD. Neuron, 2002, 36, 661-674.	8.1	390
143	Isolation of various forms of sterol β-d-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS-parkinsonism dementia complex. Journal of Neurochemistry, 2002, 82, 516-528.	3.9	114
144	Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nature Genetics, 2002, 31, 184-189.	21.4	584

#	Article	IF	CITATIONS
145	Cloning and characterization of a novel variant of rat GABABR1 with a truncated C-terminus. Molecular Brain Research, 2001, 89, 103-110.	2.3	25
146	Activation of Synaptic NMDA Receptors Induces Membrane Insertion of New AMPA Receptors and LTP in Cultured Hippocampal Neurons. Neuron, 2001, 29, 243-254.	8.1	822
147	LTP in a Culture Dish. Scientific World Journal, The, 2001, 1, 213-215.	2.1	2
148	Alteration of GLUR2 expression in the rat brain following absence seizures induced by Î ³ -hydroxybutyric acid. Epilepsy Research, 2001, 44, 41-51.	1.6	14
149	γ-Hydroxybutyric acid-induced absence seizures in GluR2 null mutant mice. Brain Research, 2001, 897, 27-35.	2.2	19
150	Endogenous Zn2+ is required for the induction of long-term potentiation at rat hippocampal mossy fiber-CA3 synapses. Synapse, 2000, 38, 187-197.	1.2	122
151	Sodium channels develop a tyrosine phosphatase complex. Nature Neuroscience, 2000, 3, 417-419.	14.8	8
152	Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nature Neuroscience, 2000, 3, 1282-1290.	14.8	523
153	Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors. Nature, 2000, 403, 274-280.	27.8	403
154	Intracellular trafficking of AMPA receptors in synaptic plasticity. Cellular and Molecular Life Sciences, 2000, 57, 1526-1534.	5.4	65
155	PRODUCTION OF TUMOUR NECROSIS FACTOR α BY PRIMARY CULTURED RAT ALVEOLAR EPITHELIAL CELLS. Cytokine, 2000, 12, 644-654.	3.2	73
156	Expression of Cerebellar Long-Term Depression Requires Postsynaptic Clathrin-Mediated Endocytosis. Neuron, 2000, 25, 635-647.	8.1	445
157	Regulation of AMPA Receptor–Mediated Synaptic Transmission by Clathrin-Dependent Receptor Internalization. Neuron, 2000, 25, 649-662.	8.1	631
158	Selective modulation of membrane currents by hypoxia in intact airway chemoreceptors from neonatal rabbit. Journal of Physiology, 1999, 514, 139-150.	2.9	64
159	Differential modulation of GABAA receptor function by Mel1a and Mel1b receptors. Nature Neuroscience, 1999, 2, 401-403.	14.8	177
160	Modulation of baroreflex sensitivity by the state of protein tyrosine phosphorylation in the brainstem of the rat. Brain Research, 1998, 792, 141-148.	2.2	8
161	Protein kinase-mediated bidirectional trafficking and functional regulation of the human dopamine transporter. , 1998, 30, 79-87.		149
162	Modulation of GABA _A Receptor Function by Tyrosine Phosphorylation of Î ² Subunits. Journal of Neuroscience, 1997, 17, 5062-5069.	3.6	83

#	Article	IF	CITATIONS
163	Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature, 1997, 388, 686-690.	27.8	507
164	Ca(2+)-independent reduction of N-methyl-D-aspartate channel activity by protein tyrosine phosphatase Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1721-1725.	7.1	127
165	Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature, 1994, 369, 233-235.	27.8	659
166	Nicotinic cholinoceptor-mediated excitatory postsynaptic potentials in rat nucleus ambiguus. Experimental Brain Research, 1993, 96, 83-88.	1.5	55
167	Somatostatin regulates excitatory amino acid Letterreceptor-mediated fast excitatory postsynaptic potential components in vagal motoneurons. Neuroscience, 1993, 53, 7-9.	2.3	28
168	Rundown of NMDA-receptor mediated currents is resistant to lowering intracellular [Ca2+] and is prevented by ATP in rat spinal dorsal horn neurons. Neuroscience Letters, 1993, 157, 183-186.	2.1	13
169	Somatostatin inhibits nicotinic cholinoceptor mediated-excitation in rat ambigual motoneurons in vitro. Neuroscience Letters, 1991, 123, 236-239.	2.1	15
170	Nicotinic cholinoceptor-mediated excitation in ambigual motoneurons of the rat. Neuroscience, 1991, 40, 759-767.	2.3	27
171	Activation of NMDA receptors in necessary for fast information transfer at brainstem vagal motoneurons. Brain Research, 1991, 567, 260-266.	2.2	42
172	Distinct but overlapping roles of LRRTM1 and LRRTM2 in developing and mature hippocampal circuits. ELife, 0, 11, .	6.0	5