
## Rainer Hoefgen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1720608/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | <i>In silico</i> analysis of <i>cis</i> â€elements and identification of transcription factors putatively<br>involved in the regulation of the <scp>OAS</scp> cluster genes <scp><i>SDI1</i></scp> and<br><scp><i>SDI2</i></scp> . Plant Journal, 2022, 110, 1286-1304. | 5.7 | 8         |
| 2  | Developmental stage-specific metabolite signatures in Arabidopsis thaliana under optimal and mild nitrogen limitation. Plant Science, 2021, 303, 110746.                                                                                                                | 3.6 | 5         |
| 3  | Meeting the complexity of plant nutrient metabolism with multi-omics approaches. Journal of Experimental Botany, 2021, 72, 2261-2265.                                                                                                                                   | 4.8 | 3         |
| 4  | Assessing Dynamic Changes of Taste-Related Primary Metabolism During Ripening of Durian Pulp Using<br>Metabolomic and Transcriptomic Analyses. Frontiers in Plant Science, 2021, 12, 687799.                                                                            | 3.6 | 16        |
| 5  | Characterization of the Heat-Stable Proteome during Seed Germination in Arabidopsis with Special Focus on LEA Proteins. International Journal of Molecular Sciences, 2021, 22, 8172.                                                                                    | 4.1 | 12        |
| 6  | Sulfur deficiency-induced genes affect seed protein accumulation and composition under sulfate deprivation. Plant Physiology, 2021, 187, 2419-2434.                                                                                                                     | 4.8 | 20        |
| 7  | Multifaceted regulatory function of tomato SITAF1 in the response to salinity stress. New Phytologist, 2020, 225, 1681-1698.                                                                                                                                            | 7.3 | 42        |
| 8  | The Transcription Factor EIL1 Participates in the Regulation of Sulfur-Deficiency Response. Plant<br>Physiology, 2020, 184, 2120-2136.                                                                                                                                  | 4.8 | 33        |
| 9  | Cysteine and Methionine Biosynthetic Enzymes Have Distinct Effects on Seed Nutritional Quality and on Molecular Phenotypes Associated With Accumulation of a Methionine-Rich Seed Storage Protein in Rice. Frontiers in Plant Science, 2020, 11, 1118.                  | 3.6 | 8         |
| 10 | Coordinating Sulfur Pools under Sulfate Deprivation. Trends in Plant Science, 2020, 25, 1227-1239.                                                                                                                                                                      | 8.8 | 62        |
| 11 | Metabolomic markers and physiological adaptations for high phosphate utilization efficiency in rice.<br>Plant, Cell and Environment, 2020, 43, 2066-2079.                                                                                                               | 5.7 | 19        |
| 12 | H <sup>+</sup> Transport by K <sup>+</sup> EXCHANGE ANTIPORTER3 Promotes Photosynthesis and<br>Growth in Chloroplast ATP Synthase Mutants. Plant Physiology, 2020, 182, 2126-2142.                                                                                      | 4.8 | 32        |
| 13 | Functional Features of TREHALOSE-6-PHOSPHATE SYNTHASE1, an Essential Enzyme in Arabidopsis[OPEN].<br>Plant Cell, 2020, 32, 1949-1972.                                                                                                                                   | 6.6 | 69        |
| 14 | Sulphur systems biology—making sense of omics data. Journal of Experimental Botany, 2019, 70,<br>4155-4170.                                                                                                                                                             | 4.8 | 17        |
| 15 | Effect of Senescence Phenotypes and Nitrate Availability on Wheat Leaf Metabolome during Grain<br>Filling. Agronomy, 2019, 9, 305.                                                                                                                                      | 3.0 | 6         |
| 16 | Non-aqueous fractionation revealed changing subcellular metabolite distribution during apple fruit<br>development. Horticulture Research, 2019, 6, 98.                                                                                                                  | 6.3 | 15        |
| 17 | The ABCB7-Like Transporter PexA in Rhodobacter capsulatus Is Involved in the Translocation of Reactive Sulfur Species. Frontiers in Microbiology, 2019, 10, 406.                                                                                                        | 3.5 | 4         |
| 18 | Opposite fates of the purine metabolite allantoin under water and nitrogen limitations in bread<br>wheat. Plant Molecular Biology, 2019, 99, 477-497.                                                                                                                   | 3.9 | 41        |

| #  | Article                                                                                                                                                                                                   | IF        | CITATIONS                         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------|
| 19 | Multiple circadian clock outputs regulate diel turnover of carbon and nitrogen reserves. Plant, Cell<br>and Environment, 2019, 42, 549-573.                                                               | 5.7       | 49                                |
| 20 | Plasmodium Para-Aminobenzoate Synthesis and Salvage Resolve Avoidance of Folate Competition and Adaptation to Host Diet. Cell Reports, 2019, 26, 356-363.e4.                                              | 6.4       | 21                                |
| 21 | CYSTATHIONINE GAMMA-SYNTHASE activity in rice is developmentally regulated and strongly correlated with sulfate. Plant Science, 2018, 270, 234-244.                                                       | 3.6       | 7                                 |
| 22 | RAPTOR Controls Developmental Growth Transitions by Altering the Hormonal and Metabolic<br>Balance. Plant Physiology, 2018, 177, 565-593.                                                                 | 4.8       | 66                                |
| 23 | Comprehensive Metabolomics Studies of Plant Developmental Senescence. Methods in Molecular<br>Biology, 2018, 1744, 339-358.                                                                               | 0.9       | 19                                |
| 24 | Sulfite Reductase Co-suppression in Tobacco Reveals Detoxification Mechanisms and Downstream Responses Comparable to Sulfate Starvation. Frontiers in Plant Science, 2018, 9, 1423.                       | 3.6       | 5                                 |
| 25 | Feeding the Walls: How Does Nutrient Availability Regulate Cell Wall Composition?. International<br>Journal of Molecular Sciences, 2018, 19, 2691.                                                        | 4.1       | 52                                |
| 26 | Metabolome and Lipidome Profiles of Populus × canescens Twig Tissues During Annual Growth Show<br>Phospholipid-Linked Storage and Mobilization of C, N, and S. Frontiers in Plant Science, 2018, 9, 1292. | 3.6       | 18                                |
| 27 | The Effect of Single and Multiple SERAT Mutants on Serine and Sulfur Metabolism. Frontiers in Plant Science, 2018, 9, 702.                                                                                | 3.6       | 9                                 |
| 28 | Exploring traditional aus-type rice for metabolites conferring drought tolerance. Rice, 2018, 11, 9.                                                                                                      | 4.0       | 42                                |
| 29 | Metabolic variation in the pulps of two durian cultivars: Unraveling the metabolites that contribute to the flavor. Food Chemistry, 2018, 268, 118-125.                                                   | 8.2       | 40                                |
| 30 | Chlorosis caused by two recessively interacting genes reveals a role of <scp>RNA</scp> helicase in hybrid breakdown in <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 91, 251-262.                    | 5.7       | 24                                |
| 31 | Trehalose 6â€phosphate is involved in triggering axillary bud outgrowth in garden pea ( <i>Pisum) Tj ETQq1 10.7</i>                                                                                       | 84314 rgE | 3T /Oyerloc <mark>k</mark><br>147 |
| 32 | The SAL-PAP Chloroplast Retrograde Pathway Contributes to Plant Immunity by Regulating<br>Glucosinolate Pathway and Phytohormone Signaling. Molecular Plant-Microbe Interactions, 2017, 30,<br>829-841.   | 2.6       | 50                                |
| 33 | Tight control of sulfur assimilation: an adaptive mechanism for a plant from a severely phosphorusâ€impoverished habitat. New Phytologist, 2017, 215, 1068-1079.                                          | 7.3       | 14                                |
| 34 | Characterization of the Wheat Leaf Metabolome during Grain Filling and under Varied N-Supply.<br>Frontiers in Plant Science, 2017, 8, 2048.                                                               | 3.6       | 42                                |
| 35 | Re-assessing Systems Biology Approaches on Analyzing Sulfate Metabolism. Proceedings of the<br>International Plant Sulfur Workshop, 2017, , 123-133.                                                      | 0.1       | 0                                 |
| 36 | Trehalose 6–phosphate coordinates organic and amino acid metabolism with carbon availability. Plant<br>Journal, 2016, 85, 410-423.                                                                        | 5.7       | 176                               |

| #  | Article                                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae. Nature Communications, 2016, 7, 12399.                                                                                                           | 12.8 | 145       |
| 38 | Integrating transcriptomic and metabolomic analysis to understand natural leaf senescence in sunflower. Plant Biotechnology Journal, 2016, 14, 719-734.                                                                                                                                     | 8.3  | 53        |
| 39 | Metabolic and Transcriptional Analysis of Durum Wheat Responses to Elevated CO2at Low and High<br>Nitrate Supply. Plant and Cell Physiology, 2016, 57, 2133-2146.                                                                                                                           | 3.1  | 67        |
| 40 | Tight control of nitrate acquisition in a plant species that evolved in an extremely<br>phosphorusâ€impoverished environment. Plant, Cell and Environment, 2016, 39, 2754-2761.                                                                                                             | 5.7  | 22        |
| 41 | Sulfur deficiency–induced repressor proteins optimize glucosinolate biosynthesis in plants. Science<br>Advances, 2016, 2, e1601087.                                                                                                                                                         | 10.3 | 127       |
| 42 | Sulfur and Cysteine Metabolism. Agronomy, 2015, , 83-104.                                                                                                                                                                                                                                   | 0.2  | 6         |
| 43 | The interplay between sulfur and iron nutrition in tomato. Plant Physiology, 2015, 169, pp.00995.2015.                                                                                                                                                                                      | 4.8  | 66        |
| 44 | Medicago truncatula Mtha1-2 mutants loose metabolic responses to mycorrhizal colonization. Plant<br>Signaling and Behavior, 2015, 10, e989025.                                                                                                                                              | 2.4  | 5         |
| 45 | OAS Cluster Genes: A Tightly Co-regulated Network. Proceedings of the International Plant Sulfur<br>Workshop, 2015, , 125-132.                                                                                                                                                              | 0.1  | 8         |
| 46 | SALT-RESPONSIVE ERF1 Is a Negative Regulator of Grain Filling and Gibberellin-Mediated Seedling<br>Establishment in Rice. Molecular Plant, 2014, 7, 404-421.                                                                                                                                | 8.3  | 55        |
| 47 | Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nature<br>Communications, 2014, 5, 3425.                                                                                                                                                             | 12.8 | 293       |
| 48 | Metabolomic profiling of the purple sulfur bacterium Allochromatium vinosum during growth on different reduced sulfur compounds and malate. Metabolomics, 2014, 10, 1094-1112.                                                                                                              | 3.0  | 9         |
| 49 | Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel<br>information on transcriptional regulation of metabolism associated with sulfur, nitrogen and<br>phosphorus nutritional responses in Arabidopsis. Frontiers in Plant Science, 2014, 5, 805. | 3.6  | 96        |
| 50 | Activation of <i><scp>R</scp></i> â€mediated innate immunity and disease susceptibility is affected by mutations in a cytosolic <i><scp>O</scp></i> â€acetylserine (thiol) lyase in <scp>A</scp> rabidopsis.<br>Plant Journal, 2013, 73, 118-130.                                           | 5.7  | 36        |
| 51 | The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of <i>Medicago truncatula</i> . New Phytologist, 2013, 197, 606-616.                                                                                                                                            | 7.3  | 72        |
| 52 | Phylogenetic aspects of the sulfate assimilation genes from Thalassiosira pseudonana. Amino Acids, 2013, 44, 1253-1265.                                                                                                                                                                     | 2.7  | 12        |
| 53 | The evolution of phenylpropanoid metabolism in the green lineage. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 123-152.                                                                                                                                                | 5.2  | 228       |
| 54 | Comprehensive Dissection of Spatiotemporal Metabolic Shifts in Primary, Secondary, and Lipid<br>Metabolism during Developmental Senescence in Arabidopsis Â. Plant Physiology, 2013, 162, 1290-1310.                                                                                        | 4.8  | 278       |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | SALT-RESPONSIVE ERF1 Regulates Reactive Oxygen Species-Dependent Signaling during the Initial Response to Salt Stress in Rice. Plant Cell, 2013, 25, 2115-2131.                                                                                              | 6.6 | 289       |
| 56 | Shikimate and Phenylalanine Biosynthesis in the Green Lineage. Frontiers in Plant Science, 2013, 4, 62.                                                                                                                                                      | 3.6 | 288       |
| 57 | Local and systemic regulation of sulfur homeostasis in roots of <i>Arabidopsis thaliana</i> . Plant<br>Journal, 2012, 72, 625-635.                                                                                                                           | 5.7 | 43        |
| 58 | Improving the nutritive value of rice seeds: elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase. Journal of Experimental Botany, 2012, 63, 5991-6001.                                | 4.8 | 62        |
| 59 | Plant Response to Mineral Ion Availability: Transcriptome Responses to Sulfate, Selenium and Iron. , 2012, , 123-134.                                                                                                                                        |     | 5         |
| 60 | Additional role of <i>O</i> â€acetylserine as a sulfur statusâ€independent regulator during plant growth.<br>Plant Journal, 2012, 70, 666-677.                                                                                                               | 5.7 | 104       |
| 61 | Perturbation of <i>Arabidopsis</i> Amino Acid Metabolism Causes Incompatibility with the Adapted<br>Biotrophic Pathogen <i>Hyaloperonospora arabidopsidis</i> . Plant Cell, 2011, 23, 2788-2803.                                                             | 6.6 | 109       |
| 62 | Impact of sulfur starvation on cysteine biosynthesis in T-DNA mutants deficient for compartment-specific serine-acetyltransferase. Amino Acids, 2010, 39, 1029-1042.                                                                                         | 2.7 | 19        |
| 63 | Photosynthesis and metabolism interact during acclimation of <i>Arabidopsis thaliana</i> to high irradiance and sulphur depletion. Plant, Cell and Environment, 2010, 33, 1974-1988.                                                                         | 5.7 | 71        |
| 64 | General Regulatory Patterns of Plant Mineral Nutrient Depletion as Revealed by serat Quadruple<br>Mutants Disturbed in Cysteine Synthesis. Molecular Plant, 2010, 3, 438-466.                                                                                | 8.3 | 49        |
| 65 | Identification of Arabidopsis Mutants Impaired in the Systemic Regulation of Root Nitrate Uptake by<br>the Nitrogen Status of the Plant  Â. Plant Physiology, 2010, 153, 1250-1260.                                                                          | 4.8 | 50        |
| 66 | Supply of sulphur to S-deficient young barley seedlings restores their capability to cope with iron shortage. Journal of Experimental Botany, 2010, 61, 799-806.                                                                                             | 4.8 | 75        |
| 67 | Metabolomics integrated with transcriptomics: assessing systems response to sulfurâ€deficiency stress. Physiologia Plantarum, 2008, 132, 190-198.                                                                                                            | 5.2 | 122       |
| 68 | Transcription factors relevant to auxin signalling coordinate broad-spectrum metabolic shifts including sulphur metabolism. Journal of Experimental Botany, 2008, 59, 2831-2846.                                                                             | 4.8 | 54        |
| 69 | Analysis of Cytosolic and Plastidic Serine Acetyltransferase Mutants and Subcellular Metabolite<br>Distributions Suggests Interplay of the Cellular Compartments for Cysteine Biosynthesis in<br>Arabidopsis. Plant, Cell and Environment, 2008, 32, 349-67. | 5.7 | 69        |
| 70 | Improving the nutritive value of tubers: Elevation of cysteine and glutathione contents in the potato cultivar White Lady by marker-free transformation. Journal of Biotechnology, 2007, 128, 335-343.                                                       | 3.8 | 31        |
| 71 | On the processing of metabolic information through metabolite–gene communication networks: An approach for modelling causality. Phytochemistry, 2007, 68, 2163-2175.                                                                                         | 2.9 | 9         |
| 72 | Sulfur in plants as part of a metabolic network. Plant Ecophysiology, 2007, , 107-142.                                                                                                                                                                       | 1.5 | 9         |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | On the way to understand biological complexity in plants: S-nutrition as a case study for systems biology. Cellular and Molecular Biology Letters, 2006, 11, 37-56.             | 7.0 | 14        |
| 74 | Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiology and Biochemistry, 2005, 43, 473-483. | 5.8 | 131       |
| 75 | Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response. Journal of Experimental Botany, 2005, 56, 1887-1896.  | 4.8 | 129       |
| 76 | Impact of Reduced O-Acetylserine(thiol)lyase Isoform Contents on Potato Plant Metabolism. Plant<br>Physiology, 2005, 137, 892-900.                                              | 4.8 | 105       |
| 77 | Systems Rebalancing of Metabolism in Response to Sulfur Deprivation, as Revealed by Metabolome<br>Analysis of Arabidopsis Plants. Plant Physiology, 2005, 138, 304-318.         | 4.8 | 377       |
| 78 | Improving the levels of essential amino acids and sulfur metabolites in plants. Biological Chemistry, 2005, 386, 817-31.                                                        | 2.5 | 79        |
| 79 | O-Acetylserine and the Regulation of Expression of Genes Encoding Components for Sulfate Uptake and Assimilation in Potato. Plant Physiology, 2005, 138, 433-440.               | 4.8 | 100       |
| 80 | Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur<br>metabolism. Journal of Experimental Botany, 2004, 55, 1861-1870.                   | 4.8 | 114       |
| 81 | Current understanding of the regulation of methionine biosynthesis in plants. Journal of Experimental Botany, 2004, 55, 1799-1808.                                              | 4.8 | 154       |
| 82 | Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism. Journal of Experimental Botany, 2004, 55, 1283-1292.                   | 4.8 | 151       |
| 83 | Transcriptome analysis of sulfur depletion in Arabidopsis thaliana : interlacing of biosynthetic pathways provides response specificity. Plant Journal, 2003, 33, 633-650.      | 5.7 | 383       |
| 84 | Molecular aspects of methionine biosynthesis. Trends in Plant Science, 2003, 8, 259-262.                                                                                        | 8.8 | 172       |
| 85 | Functional Analysis of Cystathionine γ-Synthase in Genetically Engineered Potato Plants. Plant<br>Physiology, 2003, 131, 1843-1854.                                             | 4.8 | 87        |
| 86 | A defect in cystathionine β-lyase activity causes the severe phenotype of a Nicotiana plumbaginifolia<br>methionine auxotroph. Plant Science, 2002, 162, 607-614.               | 3.6 | 7         |
| 87 | Metabolic Engineering of Amino Acids and Storage Proteins in Plants. Metabolic Engineering, 2002, 4, 3-11.                                                                      | 7.0 | 163       |
| 88 | Cloning and characterization of a cDNA encoding a cobalamin-independent methionine synthase from potato (Solanum tuberosum L.). Plant Molecular Biology, 2002, 48, 255-265.     | 3.9 | 42        |
| 89 | Enhanced cystathionine β-lyase activity in transgenic potato plants does not force metabolite flow<br>towards methionine. Planta, 2001, 214, 163-170.                           | 3.2 | 27        |
| 90 | Antisense Inhibition of Threonine Synthase Leads to High Methionine Content in Transgenic Potato<br>Plants. Plant Physiology, 2001, 127, 792-802.                               | 4.8 | 122       |

6

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. Plant Journal, 2000, 22, 335-343. | 5.7 | 143       |