
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1720516/publications.pdf Version: 2024-02-01

Κένλη Μ. Shokat

#	Article	IF	CITATIONS
1	Targeting a splicing-mediated drug resistance mechanism in prostate cancer by inhibiting transcriptional regulation by PKCl²1. Oncogene, 2022, , .	5.9	5
2	Drugging the Next Undruggable KRAS Allele-Gly12Asp. Journal of Medicinal Chemistry, 2022, 65, 3119-3122.	6.4	25
3	Drugging the undruggable: Ross Cagan interviews Kevan Shokat. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	1
4	KRAS is vulnerable to reversible switch-II pocket engagement in cells. Nature Chemical Biology, 2022, 18, 596-604.	8.0	53
5	Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature, 2022, 602, 487-495.	27.8	237
6	Targeting KRAS G12C with Covalent Inhibitors. Annual Review of Cancer Biology, 2022, 6, 49-64.	4.5	16
7	CD74-NRG1 Fusions Are Oncogenic <i>In Vivo</i> and Induce Therapeutically Tractable ERBB2:ERBB3 Heterodimerization. Molecular Cancer Therapeutics, 2022, 21, 821-830.	4.1	4
8	Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science, 2021, 371, 926-931.	12.6	247
9	Spermatogonial Stem Cell Numbers Are Reduced by Transient Inhibition ofÂGDNF Signaling but Restored by Self-Renewing Replication when SignalingÂResumes. Stem Cell Reports, 2021, 16, 597-609.	4.8	6
10	Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science, 2021, 373, 541-547.	12.6	148
11	Brain-specific inhibition of mTORC1 eliminates side effects resulting from mTORC1 blockade in the periphery and reduces alcohol intake in mice. Nature Communications, 2021, 12, 4407.	12.8	8
12	Dissecting the biology of mTORC1 beyond rapamycin. Science Signaling, 2021, 14, eabe0161.	3.6	10
13	Drugging the "Undruggable―MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. Cancer Research, 2021, 81, 1627-1632.	0.9	25
14	Betacellulin drives therapy resistance in glioblastoma. Neuro-Oncology, 2020, 22, 457-469.	1.2	8
15	Cooperative Blockade of PKCα and JAK2 Drives Apoptosis in Glioblastoma. Cancer Research, 2020, 80, 709-718.	0.9	19
16	The splicing modulator sulfonamide indisulam reduces AR-V7 in prostate cancer cells. Bioorganic and Medicinal Chemistry, 2020, 28, 115712.	3.0	16
17	Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 2020, 370, .	12.6	508
18	GTP-State-Selective Cyclic Peptide Ligands of K-Ras(G12D) Block Its Interaction with Raf. ACS Central Science, 2020, 6, 1753-1761.	11.3	78

#	Article	IF	CITATIONS
19	Unbiased Proteomic Profiling Uncovers a Targetable GNAS/PKA/PP2A Axis in Small Cell Lung Cancer Stem Cells. Cancer Cell, 2020, 38, 129-143.e7.	16.8	57
20	The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell, 2020, 182, 685-712.e19.	28.9	825
21	A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583, 459-468.	27.8	3,542
22	PI4KIIIβ is a therapeutic target in chromosome 1q–amplified lung adenocarcinoma. Science Translational Medicine, 2020, 12, .	12.4	41
23	A Bounty of New Challenging Targets in Oncology for Chemical Discovery. Biochemistry, 2019, 58, 3328-3330.	2.5	6
24	Bifunctional Smallâ€Molecule Ligands of Kâ€Ras Induce Its Association with Immunophilin Proteins. Angewandte Chemie, 2019, 131, 16460-16465.	2.0	5
25	Bifunctional Smallâ€Molecule Ligands of Kâ€Ras Induce Its Association with Immunophilin Proteins. Angewandte Chemie - International Edition, 2019, 58, 16314-16319.	13.8	36
26	Chemically reprogramming the phosphoâ€ŧransfer reaction to crosslink protein kinases to their substrates. Protein Science, 2019, 28, 654-662.	7.6	2
27	KRAS ^{G12C} inhibition produces a driver-limited state revealing collateral dependencies. Science Signaling, 2019, 12, .	3.6	123
28	Phosphoregulation of the oncogenic protein regulator of cytokinesis 1 (PRC1) by the atypical CDK16/CCNY complex. Experimental and Molecular Medicine, 2019, 51, 1-17.	7.7	19
29	A Legionella pneumophila Kinase Phosphorylates the Hsp70 Chaperone Family to Inhibit Eukaryotic Protein Synthesis. Cell Host and Microbe, 2019, 25, 454-462.e6.	11.0	54
30	Chronic TGF- $\hat{1}^2$ exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition. Science Signaling, 2019, 12, .	3.6	166
31	p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science, 2019, 366, .	12.6	132
32	Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP. Cell, 2018, 173, 1254-1264.e11.	28.9	42
33	Novel K-Ras G12C Switch-II Covalent Binders Destabilize Ras and Accelerate Nucleotide Exchange. Journal of Chemical Information and Modeling, 2018, 58, 464-471.	5.4	45
34	Stepwise processing analyses of the single-turnover PCSK9 protease reveal its substrate sequence specificity and link clinical genotype to lipid phenotype. Journal of Biological Chemistry, 2018, 293, 1875-1886.	3.4	15
35	A new generation of mTORC1 inhibitor attenuates alcohol intake and reward in mice. Addiction Biology, 2018, 23, 713-722.	2.6	20
36	A Patient-derived Xenograft Model of Pancreatic Neuroendocrine Tumors Identifies Sapanisertib as a Possible New Treatment for Everolimus-resistant Tumors. Molecular Cancer Therapeutics, 2018, 17, 2702-2709.	4.1	30

#	Article	IF	CITATIONS
37	Type II Kinase Inhibitors Targeting Cys-Gatekeeper Kinases Display Orthogonality with Wild Type and Ala/Gly-Gatekeeper Kinases. ACS Chemical Biology, 2018, 13, 2956-2965.	3.4	10
38	Comprehensive analysis of T cell leukemia signals reveals heterogeneity in the PI3 kinase-Akt pathway and limitations of PI3 kinase inhibitors as monotherapy. PLoS ONE, 2018, 13, e0193849.	2.5	14
39	A High-Throughput Luciferase Assay to Evaluate Proteolysis of the Single-Turnover Protease PCSK9. Journal of Visualized Experiments, 2018, , .	0.3	1
40	Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer. Nature Chemical Biology, 2018, 14, 768-777.	8.0	64
41	Chemical genetic inhibition of DEAD-box proteins using covalent complementarity. Nucleic Acids Research, 2018, 46, 8689-8699.	14.5	9
42	Inhibition of Carbonyl Reductase 1 Safely Improves the Efficacy of Doxorubicin in Breast Cancer Treatment. Antioxidants and Redox Signaling, 2017, 26, 70-83.	5.4	26
43	INPP4B and PTEN Loss Leads to PI-3,4-P2 Accumulation and Inhibition of PI3K in TNBC. Molecular Cancer Research, 2017, 15, 765-775.	3.4	26
44	Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks. Nature, 2017, 545, 311-316.	27.8	425
45	Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease. Neurochemistry International, 2017, 109, 106-116.	3.8	39
46	Expanding the Scope of Electrophiles Capable of Targeting K-Ras Oncogenes. Biochemistry, 2017, 56, 3178-3183.	2.5	60
47	Drugging the 'undruggable' cancer targets. Nature Reviews Cancer, 2017, 17, 502-508.	28.4	620
48	Farnesyltransferase-Mediated Delivery of a Covalent Inhibitor Overcomes Alternative Prenylation to Mislocalize K-Ras. ACS Chemical Biology, 2017, 12, 1956-1962.	3.4	33
49	Site-specific incorporation of phosphotyrosine using an expanded genetic code. Nature Chemical Biology, 2017, 13, 842-844.	8.0	82
50	Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors. Science Translational Medicine, 2017, 9, .	12.4	55
51	A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma. Cancer Cell, 2017, 31, 424-435.	16.8	138
52	An Optimized Chromatographic Strategy for Multiplexing In Parallel Reaction Monitoring Mass Spectrometry: Insights from Quantitation of Activated Kinases. Molecular and Cellular Proteomics, 2017, 16, 265-277.	3.8	42
53	Ras Binder Induces a Modified Switch-II Pocket in GTP and GDP States. Cell Chemical Biology, 2017, 24, 1455-1466.e14.	5.2	78
54	Inhibition of Calcium Dependent Protein Kinase 1 (CDPK1) by Pyrazolopyrimidine Analogs Decreases Establishment and Reoccurrence of Central Nervous System Disease by <i>Toxoplasma gondii</i> . Journal of Medicinal Chemistry, 2017, 60, 9976-9989.	6.4	57

#	Article	IF	CITATIONS
55	Discovery of new substrates of the elongation factor-2 kinase suggests a broader role in the cellular nutrient response. Cellular Signalling, 2017, 29, 78-83.	3.6	16
56	Endosomal Phosphatidylinositol 3-Kinase Is Essential for Canonical GPCR Signaling. Molecular Pharmacology, 2017, 91, 65-73.	2.3	9
57	Using hydrogen deuterium exchange mass spectrometry to engineer optimized constructs for crystallization of protein complexes: Case study of PI4KIIIÎ ² with Rab11. Protein Science, 2016, 25, 826-839.	7.6	39
58	Isocitrate Dehydrogenase Mutations Confer Dasatinib Hypersensitivity and SRC Dependence in Intrahepatic Cholangiocarcinoma. Cancer Discovery, 2016, 6, 727-739.	9.4	126
59	Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature, 2016, 534, 272-276.	27.8	358
60	Multistep Compositional Remodeling of Supported Lipid Membranes by Interfacially Active Phosphatidylinositol Kinases. Analytical Chemistry, 2016, 88, 5042-5045.	6.5	11
61	N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells. Cancer Cell, 2016, 29, 536-547.	16.8	278
62	Overcoming resistance to HER2 inhibitors through state-specific kinase binding. Nature Chemical Biology, 2016, 12, 923-930.	8.0	29
63	Innate immunity kinase TAK1 phosphorylates Rab1 on a hotspot for posttranslational modifications by host and pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4776-83.	7.1	47
64	Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nature Reviews Drug Discovery, 2016, 15, 771-785.	46.4	457
65	Synthetic Lethal Targeting of <i>ARID1A</i> -Mutant Ovarian Clear Cell Tumors with Dasatinib. Molecular Cancer Therapeutics, 2016, 15, 1472-1484.	4.1	73
66	Inhibition of Calcium-Dependent Protein Kinase 1 (CDPK1) <i>In Vitro</i> by Pyrazolopyrimidine Derivatives Does Not Correlate with Sensitivity of Cryptosporidium parvum Growth in Cell Culture. Antimicrobial Agents and Chemotherapy, 2016, 60, 570-579.	3.2	31
67	Analog sensitive chemical inhibition of the <scp>DEAD</scp> â€box protein <scp>DDX</scp> 3. Protein Science, 2016, 25, 638-649.	7.6	14
68	Design and Structural Characterization of Potent and Selective Inhibitors of Phosphatidylinositol 4 Kinase IIIβ. Journal of Medicinal Chemistry, 2016, 59, 1830-1839.	6.4	52
69	P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates. Genes and Development, 2016, 30, 117-131.	5.9	105
70	Downregulation of MYCN through PI3K Inhibition in Mouse Models of Pediatric Neural Cancer. Frontiers in Oncology, 2015, 5, 111.	2.8	20
71	Radiotherapy Followed by Aurora Kinase Inhibition Targets Tumor-Propagating Cells in Human Glioblastoma. Molecular Cancer Therapeutics, 2015, 14, 419-428.	4.1	23
72	Structure of the Human Autophagy Initiating Kinase ULK1 in Complex with Potent Inhibitors. ACS Chemical Biology, 2015, 10, 257-261.	3.4	132

#	Article	IF	CITATIONS
73	SR protein kinases promote splicing of nonconsensus introns. Nature Structural and Molecular Biology, 2015, 22, 611-617.	8.2	38
74	WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons. Science Signaling, 2015, 8, ra65.	3.6	133
75	The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner. Biochemical Journal, 2015, 467, 47-62.	3.7	70
76	Discovery and functional characterization of a neomorphic PTEN mutation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13976-13981.	7.1	38
77	Differential genetic interactions of yeast stress response <scp>MAPK</scp> pathways. Molecular Systems Biology, 2015, 11, 800.	7.2	47
78	Identification of AMPK Phosphorylation Sites Reveals a Network of Proteins Involved in Cell Invasion and Facilitates Large-Scale Substrate Prediction. Cell Metabolism, 2015, 22, 907-921.	16.2	149
79	Discovery and structure of a new inhibitor scaffold of the autophagy initiating kinase ULK1. Bioorganic and Medicinal Chemistry, 2015, 23, 5483-5488.	3.0	58
80	Linking Tumor Mutations to Drug Responses via a Quantitative Chemical–Genetic Interaction Map. Cancer Discovery, 2015, 5, 154-167.	9.4	57
81	Endoplasmic reticulum stress-independent activation of unfolded protein response kinases by a small molecule ATP-mimic. ELife, 2015, 4, .	6.0	49
82	Small molecule inhibition of Csk alters affinity recognition by T cells. ELife, 2015, 4, .	6.0	37
83	Overcoming myelosuppression due to synthetic lethal toxicity for FLT3-targeted acute myeloid leukemia therapy. ELife, 2014, 3, .	6.0	38
84	Structures of PI4KIIIÎ ² complexes show simultaneous recruitment of Rab11 and its effectors. Science, 2014, 344, 1035-1038.	12.6	131
85	The Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Active Site and Cleavage Sequence Differentially Regulate Protein Secretion from Proteolysis. Journal of Biological Chemistry, 2014, 289, 29030-29043.	3.4	31
86	The Logic and Design of Analog-Sensitive Kinases and Their Small Molecule Inhibitors. Methods in Enzymology, 2014, 548, 189-213.	1.0	71
87	MST3 Kinase Phosphorylates TAO1/2 to Enable Myosin Va Function in Promoting Spine Synapse Development. Neuron, 2014, 84, 968-982.	8.1	75
88	Targeting osteosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18100-18101.	7.1	13
89	A Crosslinker Based on a Tethered Electrophile for Mapping Kinase-Substrate Networks. Chemistry and Biology, 2014, 21, 585-590.	6.0	12
90	Inhibition of the kinase Csk in thymocytes reveals a requirement for actin remodeling in the initiation of full TCR signaling. Nature Immunology, 2014, 15, 186-194.	14.5	84

#	Article	IF	CITATIONS
91	TrkB kinase activity maintains synaptic function and structural integrity at adult neuromuscular junctions. Journal of Applied Physiology, 2014, 117, 910-920.	2.5	47
92	A sharp T-cell antigen receptor signaling threshold for T-cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3679-88.	7.1	134
93	OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9983-9988.	7.1	203
94	Responses to Glial Cell Line-Derived Neurotrophic Factor Change in Mice as Spermatogonial Stem Cells Form Progenitor Spermatogonia which Replicate and Give Rise to More Differentiated Progeny1. Biology of Reproduction, 2014, 91, 92.	2.7	17
95	Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nature Immunology, 2014, 15, 687-694.	14.5	65
96	Drugging MYCN through an Allosteric Transition in Aurora Kinase A. Cancer Cell, 2014, 26, 414-427.	16.8	231
97	Oncogene Mimicry as a Mechanism of Primary Resistance to BRAF Inhibitors. Cell Reports, 2014, 8, 1037-1048.	6.4	69
98	Adipocyte ALK7 links nutrient overload to catecholamine resistance in obesity. ELife, 2014, 3, e03245.	6.0	65
99	A Neo-Substrate that Amplifies Catalytic Activity of Parkinson's-Disease-Related Kinase PINK1. Cell, 2013, 154, 737-747.	28.9	229
100	Chemical Genetics of Rapamycin-Insensitive TORC2 in S.Âcerevisiae. Cell Reports, 2013, 5, 1725-1736.	6.4	31
101	K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 2013, 503, 548-551.	27.8	1,713
102	Optimizing Small Molecule Inhibitors of Calcium-Dependent Protein Kinase 1 to Prevent Infection by Toxoplasma gondii. Journal of Medicinal Chemistry, 2013, 56, 3068-3077.	6.4	64
103	Structure-Guided Inhibitor Design Expands the Scope of Analog-Sensitive Kinase Technology. ACS Chemical Biology, 2013, 8, 1931-1938.	3.4	53
104	Staurosporine-Derived Inhibitors Broaden the Scope of Analog-Sensitive Kinase Technology. Journal of the American Chemical Society, 2013, 135, 18153-18159.	13.7	31
105	Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways. Molecular Biology of the Cell, 2012, 23, 2388-2398.	2.1	125
106	Combination of ATP-competitive mammalian target of rapamycin inhibitors with standard chemotherapy for colorectal cancer. Investigational New Drugs, 2012, 30, 2219-2225.	2.6	15
107	Chemical Genetic Identification of NDR1/2 Kinase Substrates AAK1 and Rabin8ÂUncovers Their Roles in Dendrite Arborization and Spine Development. Neuron, 2012, 73, 1127-1142.	8.1	117
108	Hierarchical Modularity and the Evolution of Genetic Interactomes across Species. Molecular Cell, 2012, 46, 691-704.	9.7	185

#	Article	IF	CITATIONS
109	The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature, 2012, 485, 55-61.	27.8	1,114
110	Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature, 2012, 486, 80-84.	27.8	312
111	A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature, 2011, 472, 366-369.	27.8	223
112	The Evolution of Protein Kinase Inhibitors from Antagonists to Agonists of Cellular Signaling. Annual Review of Biochemistry, 2011, 80, 769-795.	11.1	316
113	Chemical genetic strategy for targeting protein kinases based on covalent complementarity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15046-15052.	7.1	76
114	Akt and Autophagy Cooperate to Promote Survival of Drug-Resistant Glioma. Science Signaling, 2010, 3, ra81.	3.6	253
115	Genetic Dissection of the Oncogenic mTOR Pathway Reveals Druggable Addiction to Translational Control via 4EBP-eIF4E. Cancer Cell, 2010, 17, 249-261.	16.8	420
116	RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature, 2010, 464, 427-430.	27.8	1,590
117	Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature, 2010, 465, 359-362.	27.8	321
118	Targeting the cancer kinome through polypharmacology. Nature Reviews Cancer, 2010, 10, 130-137.	28.4	618
119	Resiliency and Vulnerability in the HER2-HER3 Tumorigenic Driver. Science Translational Medicine, 2010, 2, 16ra7.	12.4	154
120	A Drug-Drug Interaction Crystallizes a New Entry Point into the UPR. Molecular Cell, 2010, 38, 161-163.	9.7	3
121	Rewiring of Genetic Networks in Response to DNA Damage. Science, 2010, 330, 1385-1389.	12.6	408
122	Chemical Genetic Approach for Kinaseâ€Substrate Mapping by Covalent Capture of Thiophosphopeptides and Analysis by Mass Spectrometry. Current Protocols in Chemical Biology, 2010, 2, 15-36.	1.7	72
123	Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18351-18356.	7.1	251
124	Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2. PLoS Biology, 2009, 7, e1000038.	5.6	973
125	Functional Organization of the S. cerevisiae Phosphorylation Network. Cell, 2009, 136, 952-963.	28.9	235
126	EGFR Signals to mTOR Through PKC and Independently of Akt in Glioma. Science Signaling, 2009, 2, ra4.	3.6	153

#	Article	IF	CITATIONS
127	PI3 Kinase, Phospholipase C (PLC)-γ, and RasGRPs Act Cooperatively to Activate the Ras-Extracellular-Related Kinase (ERK) Pathway in Response to Cytokines in Normal and Kras Mutant Myeloid Cells Blood, 2009, 114, 2512-2512.	1.4	0
128	Small Molecule Recognition of c-Src via the Imatinib-Binding Conformation. Chemistry and Biology, 2008, 15, 1015-1022.	6.0	84
129	Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nature Chemical Biology, 2008, 4, 691-699.	8.0	393
130	Analysis of 3-phosphoinositide-dependent kinase-1 signaling and function in ES cells. Experimental Cell Research, 2008, 314, 2299-2312.	2.6	28
131	Corrigendum to "ldentification of otubain 1 as a novel substrate for theYersiniaprotein kinase using chemical genetics and mass spectrometry―[FEBS Lett. 580 (2006) 179-183]. FEBS Letters, 2008, 582, 3159-3159.	2.8	0
132	Tuning a Three-Component Reaction For Trapping Kinase Substrate Complexes. Journal of the American Chemical Society, 2008, 130, 17568-17574.	13.7	67
133	Genetic or pharmaceutical blockade of p110 \hat{l} phosphoinositide 3-kinase enhances IgE production. Journal of Allergy and Clinical Immunology, 2008, 122, 811-819.e2.	2.9	67
134	Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proceedings of the United States of America, 2008, 105, 1442-1447.	7.1	274
135	Access Denied: Snf1 Activation Loop Phosphorylation Is Controlled by Availability of the Phosphorylated Threonine 210 to the PP1 Phosphatase. Journal of Biological Chemistry, 2008, 283, 222-230.	3.4	106
136	Beyond the Gatekeeper: Imatinib- and Dasatinib-Resistant BCR-ABL/F317 Mutations Confer Cross-Resistance to VX-680 but Are Sensitive to a Structural Derivative of VX-680. Blood, 2008, 112, 725-725.	1.4	0
137	Chemical Genetics: Where Genetics and Pharmacology Meet. Cell, 2007, 128, 425-430.	28.9	228
138	A membrane capture assay for lipid kinase activity. Nature Protocols, 2007, 2, 2459-2466.	12.0	44
139	Enhanced selectivity for inhibition of analog-sensitive protein kinases through scaffold optimization. Tetrahedron, 2007, 63, 5832-5838.	1.9	12
140	Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nature Chemical Biology, 2007, 3, 229-238.	8.0	190
141	A semisynthetic epitope for kinase substrates. Nature Methods, 2007, 4, 511-516.	19.0	278
142	PI-103, a Dual Inhibitor of Class I Phosphatidylinositide 3-Kinase and mTOR, Has Anti-Leukemic Activity in Acute Myeloid Leukemia Blood, 2007, 110, 876-876.	1.4	1
143	Selective Kinase Inhibition by Exploiting Differential Pathway Sensitivity. Chemistry and Biology, 2006, 13, 399-407.	6.0	25
144	A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell, 2006, 9, 341-349.	16.8	575

#	Article	IF	CITATIONS
145	Chemical Immunological Identification of Direct Kinase Substrates. FASEB Journal, 2006, 20, A76.	0.5	0
146	Chemical genetic methods for studying protein kinases. FASEB Journal, 2006, 20, A888.	0.5	0
147	Targeting the gatekeeper residue in phosphoinositide 3-kinases. Bioorganic and Medicinal Chemistry, 2005, 13, 2825-2836.	3.0	64
148	Features of Selective Kinase Inhibitors. Chemistry and Biology, 2005, 12, 621-637.	6.0	582
149	A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases. Nature Methods, 2005, 2, 435-441.	19.0	127
150	An Unbiased Cell Morphology–Based Screen for New, Biologically Active Small Molecules. PLoS Biology, 2005, 3, e128.	5.6	215
151	Structural Bioinformatics-Based Design of Selective, Irreversible Kinase Inhibitors. Science, 2005, 308, 1318-1321.	12.6	470
152	Bio-orthogonal Affinity Purification of Direct Kinase Substrates. Journal of the American Chemical Society, 2005, 127, 5288-5289.	13.7	92
153	Chemicals Call Bacteria, and A New Membrane Protein Machine Answers. Cell, 2005, 121, 163-166.	28.9	7
154	A Mechanism-Based Cross-Linker for the Identification of Kinaseâ^'Substrate Pairs. Journal of the American Chemical Society, 2004, 126, 9160-9161.	13.7	75
155	A kinase sequence database: sequence alignments and family assignment. Bioinformatics, 2002, 18, 1274-1275.	4.1	55
156	Chemical Genetic Analysis of Protein Kinase Cascades. Scientific World Journal, The, 2002, 2, 108-110.	2.1	1
157	Novel chemical genetic approaches to the discovery of signal transduction inhibitors. Drug Discovery Today, 2002, 7, 872-879.	6.4	84
158	The emerging power of chemical genetics. Current Opinion in Cell Biology, 2002, 14, 155-159.	5.4	122
159	The LuxS family of bacterial autoinducers: biosynthesis of a novel quorumâ€sensing signal molecule. Molecular Microbiology, 2001, 41, 463-476.	2.5	909
160	Phage-display evolution of tyrosine kinases with altered nucleotide specificity. Biopolymers, 2001, 60, 220-228.	2.4	19
161	ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nature Cell Biology, 2001, 3, 325-330.	10.3	267
162	A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature, 2000, 407, 395-401.	27.8	1,001

#	Article	IF	CITATIONS
163	Chemical genetic analysis of the budding-yeast p21-activated kinase Cla4p. Nature Cell Biology, 2000, 2, 677-685.	10.3	139
164	Unnatural Ligands for Engineered Proteins: New Tools for Chemical Genetics. Annual Review of Biophysics and Biomolecular Structure, 2000, 29, 577-606.	18.3	156
165	Entry of B Cell Receptor into Signaling Domains Is Inhibited in Tolerant B Cells. Journal of Experimental Medicine, 2000, 191, 1443-1448.	8.5	84
166	Srcâ^'Abl Tyrosine Kinase Chimeras:  Replacement of the Adenine Binding Pocket of c-Abl with v-Src To Swap Nucleotide and Inhibitor Specificities. Biochemistry, 2000, 39, 14400-14408.	2.5	26
167	Engineering of the Myosin-Iβ Nucleotide-binding Pocket to Create Selective Sensitivity to N 6-modified ADP Analogs. Journal of Biological Chemistry, 1999, 274, 31373-31381.	3.4	68
168	Structural basis for selective inhibition of Src family kinases by PP1. Chemistry and Biology, 1999, 6, 671-678.	6.0	227
169	Blocking HIV entry. , 1999, 6, 906-908.		7
170	Design of allele-specific inhibitors to probe protein kinase signaling. Current Biology, 1998, 8, 257-266.	3.9	211
171	The Generation of Antibody Combining Sites Containing Catalytic Residues. Novartis Foundation Symposium, 1991, 159, 118-144.	1.1	1
172	Catalytic Antibodies: A New Class of Transition-State Analogues Used to Elicit Hydrolytic Antibodies. Angewandte Chemie International Edition in English, 1990, 29, 1296-1303.	4.4	48
173	Katalytische Antikörper: Eine neue Klasse von Übergangszustandsâ€Analoga zur Erzeugung hydrolytischer Antikörper. Angewandte Chemie, 1990, 102, 1339-1346.	2.0	8
174	Eine über Antikörper gesteuerte Redoxreaktion. Angewandte Chemie, 1988, 100, 1227-1229.	2.0	13
175	An Antibody-Mediated Redox Reaction. Angewandte Chemie International Edition in English, 1988, 27, 1172-1174.	4.4	63