
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1720308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential Regulation and Production of Secondary Metabolites among Isolates of the Fungal Wheat Pathogen Zymoseptoria tritici. Applied and Environmental Microbiology, 2022, 88, aem0229621.	3.1	9
2	New species of <i>Colletotrichum</i> from wild Poaceae and Cyperaceae plants in Iran. Mycologia, 2022, 114, 89-113.	1.9	6
3	Infection experiments of Pyrenophora teres f. maculata on cultivated and wild barley indicate absence of host specificity. European Journal of Plant Pathology, 2022, 163, 749-759.	1.7	3
4	Genomic landscape of a relict fir-associated fungus reveals rapid convergent adaptation towards endophytism. ISME Journal, 2022, 16, 1294-1305.	9.8	3
5	Plant pathogens provide clues to the potential origin of bat white-nose syndrome <i>Pseudogymnoascus destructans</i> . Virulence, 2022, 13, 1020-1031.	4.4	6
6	Unraveling coevolutionary dynamics using ecological genomics. Trends in Genetics, 2022, 38, 1003-1012.	6.7	4
7	Transposable Elements in Fungi: Coevolution With the Host Genome Shapes, Genome Architecture, Plasticity and Adaptation. , 2021, , 142-155.		5
8	Colonization dynamics of <i>Pantoea agglomerans</i> in the wheat root habitat. Environmental Microbiology, 2021, 23, 2260-2273.	3.8	14
9	Recent loss of the Dim2 DNA methyltransferase decreases mutation rate in repeats and changes evolutionary trajectory in a fungal pathogen. PLoS Genetics, 2021, 17, e1009448.	3.5	32
10	Dynamics of transposable elements in recently diverged fungal pathogens: lineage-specific transposable element content and efficiency of genome defenses. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	30
11	Forest <i>Saccharomyces paradoxus</i> are robust to seasonal biotic and abiotic changes. Ecology and Evolution, 2021, 11, 6604-6619.	1.9	4
12	Genome-wide mapping of histone modifications during axenic growth in two species of Leptosphaeria maculans showing contrasting genomic organization. Chromosome Research, 2021, 29, 219-236.	2.2	17
13	Ago1 Affects the Virulence of the Fungal Plant Pathogen Zymoseptoria tritici. Genes, 2021, 12, 1011.	2.4	8
14	Genome-Wide Association and Selective Sweep Studies Reveal the Complex Genetic Architecture of DMI Fungicide Resistance in <i>Cercospora beticola</i> . Genome Biology and Evolution, 2021, 13, .	2.5	12
15	Epigenetic modifications affect the rate of spontaneous mutations in a pathogenic fungus. Nature Communications, 2021, 12, 5869.	12.8	52
16	Identification and characterization of <i>Cercospora beticola</i> necrosisâ€inducing effector CbNip1. Molecular Plant Pathology, 2021, 22, 301-316.	4.2	14
17	Toward an Investigation of Diversity and Cultivation of Rye (Secale cereale ssp. cereale L.) in Germany: Methodological Insights and First Results from Early Modern Plant Material. Agronomy, 2021, 11, 2451.	3.0	6
18	The transcription factor Zt107320 affects the dimorphic switch, growth and virulence of the fungal wheat pathogen <i>Zymoseptoria tritici</i> . Molecular Plant Pathology, 2020, 21, 124-138.	4.2	22

#	Article	IF	CITATIONS
19	Mating-type locus rearrangements and shifts in thallism states in Citrus-associated Phyllosticta species. Fungal Genetics and Biology, 2020, 144, 103444.	2.1	7
20	<i>Cercospora beticola</i> : The intoxicating lifestyle of the leaf spot pathogen of sugar beet. Molecular Plant Pathology, 2020, 21, 1020-1041.	4.2	39
21	Genome compartmentalization predates species divergence in the plant pathogen genus Zymoseptoria. BMC Genomics, 2020, 21, 588.	2.8	34
22	The insertion of a mitochondrial selfish element into the nuclear genome and its consequences. Ecology and Evolution, 2020, 10, 11117-11132.	1.9	4
23	Dissecting the Biology of the Fungal Wheat Pathogen <i>Zymoseptoria tritici</i> : A Laboratory Workflow. Current Protocols in Microbiology, 2020, 59, e128.	6.5	9
24	Ecological Assembly Processes of the Bacterial and Fungal Microbiota of Wild and Domesticated Wheat Species. Phytobiomes Journal, 2020, 4, 217-224.	2.7	34
25	Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. MBio, 2020, 11, .	4.1	275
26	Evidence for Allele-Specific Levels of Enhanced Susceptibility of Wheat mlo Mutants to the Hemibiotrophic Fungal Pathogen Magnaporthe oryzae pv. Triticum. Genes, 2020, 11, 517.	2.4	19
27	Host-specialized transcriptome of plant-associated organisms. Current Opinion in Plant Biology, 2020, 56, 81-88.	7.1	26
28	Rapid evolution in plant–microbe interactions – an evolutionary genomics perspective. New Phytologist, 2020, 226, 1256-1262.	7.3	35
29	On Variant Discovery in Genomes of Fungal Plant Pathogens. Frontiers in Microbiology, 2020, 11, 626.	3.5	16
30	A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nature Communications, 2020, 11, 1910.	12.8	85
31	Population Genomics of Fungal Plant Pathogens and the Analyses of Rapidly Evolving Genome Compartments. Methods in Molecular Biology, 2020, 2090, 337-355.	0.9	16
32	Seed-Derived Microbial Colonization of Wild Emmer and Domesticated Bread Wheat (<i>Triticum) Tj ETQq0 0 0 and Composition. MBio, 2020, 11, .</i>	rgBT /Ove 4.1	erlock 10 Tf 50 40
33	Increased virulence of Puccinia coronata f. sp.avenae populations through allele frequency changes at multiple putative Avr loci. PLoS Genetics, 2020, 16, e1009291.	3.5	34
34	2 Origin, Function, and Transmission of Accessory Chromosomes. , 2020, , 25-47.		2
35	Quantifying the efficiency and biases of forest <scp><i>Saccharomyces</i></scp> sampling strategies. Yeast, 2019, 36, 657-668.	1.7	9
36	Interactions and Coadaptation in Plant Metaorganisms. Annual Review of Phytopathology, 2019, 57, 483-503.	7.8	28

EVA H STUKENBROCK

#	Article	IF	CITATIONS
37	Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. PLoS Genetics, 2019, 15, e1008223.	3.5	66
38	Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms. Microbiome, 2019, 7, 133.	11.1	141
39	The genomic determinants of adaptive evolution in a fungal pathogen. Evolution Letters, 2019, 3, 299-312.	3.3	61
40	Destabilization of chromosome structure by histone H3 lysine 27 methylation. PLoS Genetics, 2019, 15, e1008093.	3.5	75
41	Highly flexible infection programs in a specialized wheat pathogen. Ecology and Evolution, 2019, 9, 275-294.	1.9	79
42	Interspecific Gene Exchange Introduces High Genetic Variability in Crop Pathogen. Genome Biology and Evolution, 2019, 11, 3095-3105.	2.5	25
43	Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots. Genetics, 2018, 208, 1209-1229.	2.9	61
44	Genomewide signatures of selection in <i>Epichloë</i> reveal candidate genes for host specialization. Molecular Ecology, 2018, 27, 3070-3086.	3.9	28
45	Interspecific Gene Exchange as a Driver of Adaptive Evolution in Fungi. Annual Review of Microbiology, 2018, 72, 377-398.	7.3	40
46	Extraordinary Genome Instability and Widespread Chromosome Rearrangements During Vegetative Growth. Genetics, 2018, 210, 517-529.	2.9	103
47	Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus. ELife, 2018, 7, .	6.0	28
48	Evolution and genome architecture in fungal plant pathogens. Nature Reviews Microbiology, 2017, 15, 756-771.	28.6	378
49	Forward Genetics Approach Reveals Host Genotype-Dependent Importance of Accessory Chromosomes in the Fungal Wheat Pathogen <i>Zymoseptoria tritici</i> . MBio, 2017, 8, .	4.1	47
50	Plant Pathogenic Fungi. , 2017, , 701-726.		22
51	What Defines the "Kingdom―Fungi?. , 2017, , 57-77.		6
52	Fungal Sex: The Mucoromycota. , 2017, , 177-191.		3
53	Host-Microsporidia Interactions in Caenorhabditis elegans, a Model Nematode Host. , 2017, , 975-980.		2
54	Fungal Cell Cycle: A Unicellular versus Multicellular Comparison. , 2017, , 549-570.		0

4

#	Article	IF	CITATIONS
55	The Fungal Tree of Life: From Molecular Systematics to Genome-Scale Phylogenies. , 2017, , 1-34.		25
56	The Complexity of Fungal Vision. , 2017, , 441-461.		0
57	The Geomycology of Elemental Cycling and Transformations in the Environment. , 2017, , 369-386.		1
58	Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases. , 2017, , 35-56.		10
59	Making Time: Conservation of Biological Clocks from Fungi to Animals. , 2017, , 515-534.		8
60	Fungal Ligninolytic Enzymes and Their Applications. , 2017, , 1049-1061.		2
61	Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats. , 2017, , 399-416.		1
62	Nutrient Sensing at the Plasma Membrane of Fungal Cells. , 2017, , 417-439.		4
63	Nematode-Trapping Fungi. , 2017, , 963-974.		4
64	Bacterial Endosymbionts: Master Modulators of Fungal Phenotypes. , 2017, , 981-1004.		6
65	Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi. , 2017, , 215-229.		9
66	Fungi that Infect Humans. , 2017, , 811-843.		8
67	The Mycobiome: Impact on Health and Disease States. , 2017, , 845-854.		3
68	Fungal Biofilms: Inside Out. , 2017, , 873-886.		6
69	Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products. , 2017, , 1027-1048.		3
70	Thigmo Responses: The Fungal Sense of Touch. , 2017, , 487-507.		0
71	Amyloid Prions in Fungi. , 2017, , 673-685.		0
72	Fungal Recognition and Host Defense Mechanisms. , 2017, , 887-902.		1

#	Article	IF	CITATIONS
73	Life cycle specialization of filamentous pathogens — colonization and reproduction in plant tissues. Current Opinion in Microbiology, 2016, 32, 31-37.	5.1	21
74	The Role of Hybridization in the Evolution and Emergence of New Fungal Plant Pathogens. Phytopathology, 2016, 106, 104-112.	2.2	135
75	Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160026.	4.0	240
76	Hybridization speeds up the emergence and evolution of a new pathogen species. Nature Genetics, 2016, 48, 113-115.	21.4	16
77	Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenetics and Chromatin, 2015, 8, 41.	3.9	139
78	Chromatin analyses of Zymoseptoria tritici : Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). Fungal Genetics and Biology, 2015, 79, 63-70.	2.1	35
79	RNA-seq-Based Gene Annotation and Comparative Genomics of Four Fungal Grass Pathogens in the Genus <i>Zymoseptoria</i> Identify Novel Orphan Genes and Species-Specific Invasions of Transposable Elements. G3: Genes, Genomes, Genetics, 2015, 5, 1323-1333.	1.8	122
80	Rapidly Evolving Genes Are Key Players in Host Specialization and Virulence of the Fungal Wheat Pathogen Zymoseptoria tritici (Mycosphaerella graminicola). PLoS Pathogens, 2015, 11, e1005055.	4.7	107
81	Speciation Genomics of Fungal Plant Pathogens. Advances in Botanical Research, 2014, , 397-423.	1.1	2
82	MafFilter: a highly flexible and extensible multiple genome alignment files processor. BMC Genomics, 2014, 15, 53.	2.8	68
83	The evolving fungal genome. Fungal Biology Reviews, 2014, 28, 1-12.	4.7	81
84	Expression Profiling of the Wheat Pathogen Zymoseptoria tritici Reveals Genomic Patterns of Transcription and Host-Specific Regulatory Programs. Genome Biology and Evolution, 2014, 6, 1353-1365.	2.5	92
85	Hitchhiking Selection Is Driving Intron Gain in a Pathogenic Fungus. Molecular Biology and Evolution, 2014, 31, 1741-1749.	8.9	5
86	High levels of genetic and genotypic diversity in field populations of the barley pathogen Ramularia collo-cygni. European Journal of Plant Pathology, 2013, 136, 51-60.	1.7	8
87	Evolution, selection and isolation: a genomic view of speciation in fungal plant pathogens. New Phytologist, 2013, 199, 895-907.	7.3	109
88	Coevolution and Life Cycle Specialization of Plant Cell Wall Degrading Enzymes in a Hemibiotrophic Pathogen. Molecular Biology and Evolution, 2013, 30, 1337-1347.	8.9	77
89	A Population Genomics Perspective on the Emergence and Adaptation of New Plant Pathogens in Agro-Ecosystems. PLoS Pathogens, 2012, 8, e1002893.	4.7	69
90	Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10954-10959.	7.1	171

6

#	Article	IF	CITATIONS
91	<i>Zymoseptoria ardabiliae</i> and <i>Z. pseudotritici</i> , two progenitor species of the septoria tritici leaf blotch fungus <i>Z. tritici</i> (synonym: <i>Mycosphaerella graminicola</i>). Mycologia, 2012, 104, 1397-1407.	1.9	71
92	Comparing Fungal Genomes: Insight into Functional and Evolutionary Processes. Methods in Molecular Biology, 2012, 835, 531-548.	0.9	7
93	Quantitative Variation in Effector Activity of ToxA Isoforms from <i>Stagonospora nodorum</i> and <i>Pyrenophora tritici-repentis</i> . Molecular Plant-Microbe Interactions, 2012, 25, 515-522.	2.6	70
94	Evidence for Extensive Recent Intron Transposition in Closely Related Fungi. Current Biology, 2011, 21, 2017-2022.	3.9	57
95	The making of a new pathogen: Insights from comparative population genomics of the domesticated wheat pathogen <i>Mycosphaerella graminicola</i> and its wild sister species. Genome Research, 2011, 21, 2157-2166.	5.5	191
96	Whole-Genome and Chromosome Evolution Associated with Host Adaptation and Speciation of the Wheat Pathogen Mycosphaerella graminicola. PLoS Genetics, 2010, 6, e1001189.	3.5	142
97	Pathogenicity Determinants in Smut Fungi Revealed by Genome Comparison. Science, 2010, 330, 1546-1548.	12.6	301
98	Population Genetics of Fungal and Oomycete Effectors Involved in Gene-for-Gene Interactions. Molecular Plant-Microbe Interactions, 2009, 22, 371-380.	2.6	134
99	The Origins of Plant Pathogens in Agro-Ecosystems. Annual Review of Phytopathology, 2008, 46, 75-100.	7.8	514
100	Geographical variation and positive diversifying selection in the host-specific toxin SnToxA. Molecular Plant Pathology, 2007, 8, 321-332.	4.2	92
101	Clobal migration patterns in the fungal wheat pathogen Phaeosphaeria nodorum. Molecular Ecology, 2006, 15, 2895-2904.	3.9	154
102	Origin and Domestication of the Fungal Wheat Pathogen Mycosphaerella graminicola via Sympatric Speciation. Molecular Biology and Evolution, 2006, 24, 398-411.	8.9	216
103	Emergence of a new disease as a result of interspecific virulence gene transfer. Nature Genetics, 2006, 38, 953-956.	21.4	667
104	Isolation and characterization of EST-derived microsatellite loci from the fungal wheat pathogen Phaeosphaeria nodorum. Molecular Ecology Notes, 2005, 5, 931-933.	1.7	27
105	Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus spp.) studied by multilocus genotyping of single spores. Molecular Ecology, 2005, 14, 743-752.	3.9	60
106	Distribution of dominant arbuscular mycorrhizal fungi among five plant species in undisturbed vegetation of a coastal grassland. Mycorrhiza, 2005, 15, 497-503.	2.8	43
107	Development and amplification of multiple co-dominant genetic markers from single spores of arbuscular mycorrhizal fungi by nested multiplex PCR. Fungal Genetics and Biology, 2005, 42, 73-80.	2.1	44
108	Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rDNA sequences. Molecular Ecology, 2004, 13, 3179-3186.	3.9	137

20

#	Article	IF	CITATIONS
109	Melanin, Radiation, and Energy Transduction in Fungi. , 0, , 509-514.		2
110	Fungal Diversity Revisited: 2.2 to 3.8 Million Species. , 0, , 79-95.		122
111	Necrotrophic Mycoparasites and Their Genomes. , 0, , 1005-1026.		62
112	Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi. , 0, , 687-699.		32
113	The Fungal Cell Wall: Structure, Biosynthesis, and Function. , 0, , 267-292.		65
114	Antifungal Drugs: The Current Armamentarium and Development of New Agents. , 0, , 903-922.		13
115	Stress Adaptation. , 0, , 463-485.		9
116	Fungal Sex: The <i>Ascomycota</i> ., 0, , 115-145.		4
117	The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. , 0, , 727-747.		6
118	Fungal Genomes and Insights into the Evolution of the Kingdom. , 0, , 619-633.		29
119	Biologically Active Secondary Metabolites from the Fungi. , 0, , 1087-1119.		25
120	Made for Each Other: Ascomycete Yeasts and Insects. , 0, , 945-962.		9
121	Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals. , 0, , 535-548.		2
122	Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. , 0, , 635-655.		3
123	Ploidy Variation in Fungi: Polyploidy, Aneuploidy, and Genome Evolution. , 0, , 599-618.		9
124	RNA Interference in Fungi: Retention and Loss. , 0, , 657-671.		3
125	Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience. , 0, , 787-809.		6

126 Fungal Sex: The Basidiomycota. , 0, , 147-175.

#	Article	IF	CITATIONS
127	Cell Biology of Hyphal Growth. , 0, , 231-265.		15
128	Long-Distance Dispersal of Fungi. , 0, , 309-333.		27
129	The Mycelium as a Network. , 0, , 335-367.		15
130	Fungi as a Source of Food. , 0, , 1063-1085.		9
131	Sex and the Imperfect Fungi. , 0, , 193-214.		8
132	Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi. , 0, , 293-308.		14
133	Ecology of Fungal Plant Pathogens. , 0, , 387-397.		3
134	Lichenized Fungi and the Evolution of Symbiotic Organization. , 0, , 749-765.		1
135	Fungal Plant Pathogenesis Mediated by Effectors. , 0, , 767-785.		1
136	Skin Fungi from Colonization to Infection. , 0, , 855-871.		6
137	The Insect Pathogens. , 0, , 923-943.		7
138	Microsporidia: Obligate Intracellular Pathogens Within the Fungal Kingdom. , 0, , 97-113.		15
139	A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi. , 0, , 571-597.		0