Haico Van Attikum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1720143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recruitment of the INO80 Complex by H2A Phosphorylation Links ATP-Dependent Chromatin Remodeling with DNA Double-Strand Break Repair. Cell, 2004, 119, 777-788.	28.9	538
2	Crosstalk between histone modifications during the DNA damage response. Trends in Cell Biology, 2009, 19, 207-217.	7.9	457
3	The shieldin complex mediates 53BP1-dependent DNA repair. Nature, 2018, 560, 117-121.	27.8	445
4	PARP Inhibitor Resistance: A Tug-of-War in BRCA-Mutated Cells. Trends in Cell Biology, 2019, 29, 820-834.	7.9	297
5	Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO Journal, 2007, 26, 4113-4125.	7.8	292
6	Selective Loss of PARG Restores PARylation and Counteracts PARP Inhibitor-Mediated Synthetic Lethality. Cancer Cell, 2018, 33, 1078-1093.e12.	16.8	238
7	The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature, 2012, 489, 581-584.	27.8	233
8	PARP1 Links CHD2-Mediated Chromatin Expansion and H3.3 Deposition to DNA Repair by Non-homologous End-Joining. Molecular Cell, 2016, 61, 547-562.	9.7	214
9	The NuRD chromatin–remodeling complex regulates signaling and repair of DNA damage. Journal of Cell Biology, 2010, 190, 741-749.	5.2	211
10	Spatiotemporal regulation of posttranslational modifications in the <scp>DNA</scp> damage response. EMBO Journal, 2016, 35, 6-23.	7.8	174
11	A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy. Molecular Cell, 2016, 63, 514-525.	9.7	140
12	Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. Journal of Cell Science, 2013, 126, 889-903.	2.0	113
13	Chromatin and the DNA damage response: The cancer connection. Molecular Oncology, 2011, 5, 349-367.	4.6	107
14	ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage. Cell Reports, 2016, 17, 783-798.	6.4	100
15	A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. EMBO Journal, 2012, 31, 2511-2527.	7.8	94
16	Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps. Molecular Cell, 2013, 49, 346-358.	9.7	86
17	Antisense Oligonucleotide-Mediated Removal of the Polyglutamine Repeat in Spinocerebellar Ataxia Type 3 Mice. Molecular Therapy - Nucleic Acids, 2017, 8, 232-242.	5.1	78
18	WWP2 ubiquitylates RNA polymerase II for DNA-PK-dependent transcription arrest and repair at DNA breaks. Genes and Development, 2019, 33, 684-704.	5.9	71

ΗΑΙCO VAN ΑΤΤΙΚΟΜ

#	Article	IF	CITATIONS
19	SWI/SNF complex in disorder. Epigenetics, 2012, 7, 1219-1224.	2.7	70
20	Gcn5 and Esa1 function as histone crotonyltransferases to regulate crotonylation-dependent transcription. Journal of Biological Chemistry, 2019, 294, 20122-20134.	3.4	66
21	Opposing ISWI- and CHD-class chromatin remodeling activities orchestrate heterochromatic DNA repair. Journal of Cell Biology, 2014, 207, 717-733.	5.2	65
22	A PALB2-interacting domain in RNF168 couples homologous recombination to DNA break-induced chromatin ubiquitylation. ELife, 2017, 6, .	6.0	65
23	The de-ubiquitylating enzymes USP26 and USP37 regulate homologous recombination by counteracting RAP80. Nucleic Acids Research, 2015, 43, 6919-6933.	14.5	64
24	Yeast PP4 Interacts with ATR Homolog Ddc2-Mec1 and Regulates Checkpoint Signaling. Molecular Cell, 2015, 57, 273-289.	9.7	63
25	Ataxinâ€3 consolidates the <scp>MDC</scp> 1â€dependent <scp>DNA</scp> doubleâ€strand break response by counteracting the <scp>SUMO</scp> â€targeted ubiquitin ligase <scp>RNF</scp> 4. EMBO Journal, 2017, 36, 1066-1083.	7.8	60
26	Bon voyage: A transcriptional journey around DNA breaks. DNA Repair, 2019, 82, 102686.	2.8	55
27	Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription. Nucleic Acids Research, 2014, 42, 8473-8485.	14.5	54
28	DNA repair goes hip-hop: SMARCA and CHD chromatin remodellers join the break dance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160285.	4.0	53
29	<scp>SUMO</scp> ylation and <scp>PAR</scp> ylation cooperate to recruit and stabilize <scp>SLX</scp> 4 at <scp>DNA</scp> damage sites. EMBO Reports, 2015, 16, 512-519.	4.5	51
30	Remodeling and spacing factor 1 (RSF1) deposits centromere proteins at DNA double-strand breaks to promote non-homologous end-joining. Cell Cycle, 2013, 12, 3070-3082.	2.6	50
31	Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation. Molecular Cell, 2019, 75, 483-497.e9.	9.7	50
32	Meta-analysis of DNA double-strand break response kinetics. Nucleic Acids Research, 2017, 45, 12625-12637.	14.5	49
33	Functional analysis of genetic variants in the high-risk breast cancer susceptibility gene PALB2. Nature Communications, 2019, 10, 5296.	12.8	45
34	The CHD6 chromatin remodeler is an oxidative DNA damage response factor. Nature Communications, 2019, 10, 241.	12.8	45
35	Map of synthetic rescue interactions for the Fanconi anemia DNA repair pathway identifies USP48. Nature Communications, 2018, 9, 2280.	12.8	34
36	Antisense oligonucleotide-mediated exon skipping as a strategy to reduce proteolytic cleavage of ataxin-3. Scientific Reports, 2016, 6, 35200.	3.3	31

ΗΑΙCO VAN ΑΤΤΙΚΟΜ

#	Article	IF	CITATIONS
37	CHD7 and 53BP1 regulate distinct pathways for the re-ligation of DNA double-strand breaks. Nature Communications, 2020, 11, 5775.	12.8	28
38	DNA double-strand break repair: Putting zinc fingers on the sore spot. Seminars in Cell and Developmental Biology, 2021, 113, 65-74.	5.0	28
39	TRiC controls transcription resumption after UV damage by regulating Cockayne syndrome protein A. Nature Communications, 2018, 9, 1040.	12.8	27
40	Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome. Journal of Experimental Medicine, 2020, 217, .	8.5	27
41	Functional Analysis Identifies Damaging <i>CHEK2</i> Missense Variants Associated with Increased Cancer Risk. Cancer Research, 2022, 82, 615-631.	0.9	26
42	Dot1 promotes H2B ubiquitination by a methyltransferase-independent mechanism. Nucleic Acids Research, 2018, 46, 11251-11261.	14.5	24
43	PHF6 promotes nonâ€homologous end joining and G2 checkpoint recovery. EMBO Reports, 2020, 21, e48460.	4.5	22
44	PHF2 regulates homology-directed DNA repair by controlling the resection of DNA double strand breaks. Nucleic Acids Research, 2020, 48, 4915-4927.	14.5	19
45	A UV-Induced Genetic Network Links the RSC Complex to Nucleotide Excision Repair and Shows Dose-Dependent Rewiring. Cell Reports, 2013, 5, 1714-1724.	6.4	18
46	<i>ERCC1</i> mutations impede DNA damage repair and cause liver and kidney dysfunction in patients. Journal of Experimental Medicine, 2021, 218, .	8.5	18
47	Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining. Nature Communications, 2021, 12, 6560.	12.8	17
48	CHEK2 variants: linking functional impact to cancer risk. Trends in Cancer, 2022, 8, 759-770.	7.4	16
49	Functional Analysis of Missense Variants in the Putative Breast Cancer Susceptibility Gene <i>XRCC2</i> . Human Mutation, 2016, 37, 914-925.	2.5	12
50	Functional Characterization of PALB2 Variants of Uncertain Significance: Toward Cancer Risk and Therapy Response Prediction. Frontiers in Molecular Biosciences, 2020, 7, 169.	3.5	11
51	Mapping Genomic Targets of DNA Helicases by Chromatin Immunoprecipitation in Saccharomyces cerevisiae. Methods in Molecular Biology, 2009, 587, 113-126.	0.9	11
52	Chemogenetic profiling identifies RAD17 as synthetically lethal with checkpoint kinase inhibition. Oncotarget, 2015, 6, 35755-35769.	1.8	10
53	Poly(ADP-ribosyl)ation temporally confines SUMO-dependent ataxin-3 recruitment to control DNA double-strand break repair. Journal of Cell Science, 2021, 134,	2.0	8
54	Proteomic analysis identifies novel binding partners of BAP1. PLoS ONE, 2021, 16, e0257688.	2.5	8

ΗΑΙCO VAN ΑΤΤΙΚΟΜ

#	Article	IF	CITATIONS
55	Genomic Reporter Constructs to Monitor Pathway-Specific Repair of DNA Double-Strand Breaks. Frontiers in Genetics, 2021, 12, 809832.	2.3	8
56	A BRCA1 Coiled-Coil Domain Variant Disrupting PALB2 Interaction Promotes the Development of Mammary Tumors and Confers a Targetable Defect in Homologous Recombination Repair. Cancer Research, 2021, 81, 6171-6182.	0.9	7
57	RNF168 E3 ligase participates in ubiquitin signaling and recruitment of SLX4 during DNA crosslink repair. Cell Reports, 2021, 37, 109879.	6.4	6
58	A genetic interaction map centered on cohesin reveals auxiliary factors in sister chromatid cohesion. Journal of Cell Science, 2020, 133, .	2.0	5
59	Characterisation of protein-truncating and missense variants in PALB2 in 15 768 women from Malaysia and Singapore. Journal of Medical Genetics, 2021, , jmedgenet-2020-107471.	3.2	4
60	Epigenetics Identifier screens reveal regulators of chromatin acylation and limited specificity of acylation antibodies. Scientific Reports, 2021, 11, 12795.	3.3	1
61	Chl1 helicase controls replication fork progression by regulating dNTP pools. Life Science Alliance, 2022, 5, e202101153.	2.8	1