
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1718974/publications.pdf Version: 2024-02-01

IENIEL F NETT

#	Article	IF	CITATIONS
1	A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans. Cell, 2012, 148, 126-138.	28.9	607
2	Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo. PLoS Pathogens, 2006, 2, e63.	4.7	443
3	Putative Role of \hat{l}^2 -1,3 Glucans in Candida albicans Biofilm Resistance. Antimicrobial Agents and Chemotherapy, 2007, 51, 510-520.	3.2	362
4	Development and Characterization of an In Vivo Central Venous Catheter <i>Candida albicans</i> Biofilm Model. Infection and Immunity, 2004, 72, 6023-6031.	2.2	358
5	Function of Candida albicans Adhesin Hwp1 in Biofilm Formation. Eukaryotic Cell, 2006, 5, 1604-1610.	3.4	321
6	Complementary Adhesin Function in C. albicans Biofilm Formation. Current Biology, 2008, 18, 1017-1024.	3.9	293
7	Biofilm Matrix Regulation by Candida albicans Zap1. PLoS Biology, 2009, 7, e1000133.	5.6	286
8	Antifungal Agents. Infectious Disease Clinics of North America, 2016, 30, 51-83.	5.1	264
9	A Candida Biofilm-Induced Pathway for Matrix Glucan Delivery: Implications for Drug Resistance. PLoS Pathogens, 2012, 8, e1002848.	4.7	240
10	Novel Entries in a Fungal Biofilm Matrix Encyclopedia. MBio, 2014, 5, e01333-14.	4.1	234
11	Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms. PLoS Pathogens, 2011, 7, e1002257.	4.7	231
12	Genetic Basis of <i>Candida</i> Biofilm Resistance Due to Drug equestering Matrix Glucan. Journal of Infectious Diseases, 2010, 202, 171-175.	4.0	220
13	Synergistic Effect of Calcineurin Inhibitors and Fluconazole against <i>Candida albicans</i> Biofilms. Antimicrobial Agents and Chemotherapy, 2008, 52, 1127-1132.	3.2	205
14	Portrait of Candida albicans Adherence Regulators. PLoS Pathogens, 2012, 8, e1002525.	4.7	201
15	Candida albicans biofilm development, modeling a host–pathogen interaction. Current Opinion in Microbiology, 2006, 9, 340-345.	5.1	190
16	Role of Fks1p and Matrix Glucan in <i>Candida albicans</i> Biofilm Resistance to an Echinocandin, Pyrimidine, and Polyene. Antimicrobial Agents and Chemotherapy, 2010, 54, 3505-3508.	3.2	188
17	Time Course Global Gene Expression Analysis of an In Vivo <i>Candida</i> Biofilm. Journal of Infectious Diseases, 2009, 200, 307-313.	4.0	156
18	An expanded regulatory network temporally controls <scp><i>C</i></scp> <i>andida albicans</i> biofilm formation. Molecular Microbiology, 2015, 96, 1226-1239.	2.5	140

#	Article	IF	CITATIONS
19	Interface of Candida albicans Biofilm Matrix-Associated Drug Resistance and Cell Wall Integrity Regulation. Eukaryotic Cell, 2011, 10, 1660-1669.	3.4	139
20	Community participation in biofilm matrix assembly and function. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4092-4097.	7.1	139
21	Development and Validation of an <i>In Vivo Candida albicans</i> Biofilm Denture Model. Infection and Immunity, 2010, 78, 3650-3659.	2.2	138
22	Optimizing a Candida Biofilm Microtiter Plate Model for Measurement of Antifungal Susceptibility by Tetrazolium Salt Assay. Journal of Clinical Microbiology, 2011, 49, 1426-1433.	3.9	127
23	The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps. PLoS Pathogens, 2016, 12, e1005884.	4.7	105
24	The Interface between Fungal Biofilms and Innate Immunity. Frontiers in Immunology, 2017, 8, 1968.	4.8	98
25	Calcineurin Controls Drug Tolerance, Hyphal Growth, and Virulence in Candida dubliniensis. Eukaryotic Cell, 2011, 10, 803-819.	3.4	97
26	Emerging Fungal Pathogen Candida auris Evades Neutrophil Attack. MBio, 2018, 9, .	4.1	89
27	Peptidylarginine deiminase 2 is required for tumor necrosis factor alpha-induced citrullination and arthritis, but not neutrophil extracellular trap formation. Journal of Autoimmunity, 2017, 80, 39-47.	6.5	87
28	βâ€┨,3 Glucan as a Test for Central Venous Catheter Biofilm Infection. Journal of Infectious Diseases, 2007, 195, 1705-1712.	4.0	85
29	Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 2018, 5, 300-326.	3.2	81
30	Conserved Role for Biofilm Matrix Polysaccharides in <i>Candida auris</i> Drug Resistance. MSphere, 2019, 4, .	2.9	81
31	Candida auris Forms High-Burden Biofilms in Skin Niche Conditions and on Porcine Skin. MSphere, 2020, 5, .	2.9	80
32	Neutrophil extracellular traps in fungal infection. Seminars in Cell and Developmental Biology, 2019, 89, 47-57.	5.0	76
33	Future directions for anti-biofilm therapeutics targeting <i>Candida</i> . Expert Review of Anti-Infective Therapy, 2014, 12, 375-382.	4.4	71
34	Comparative analysis of Candidabiofilm quantitation assays. Medical Mycology, 2012, 50, 214-218.	0.7	69
35	Impact of Antimicrobial Dosing Regimen on Evolution of Drug Resistance In Vivo: Fluconazole and Candida albicans. Antimicrobial Agents and Chemotherapy, 2006, 50, 2374-2383.	3.2	66
36	Lipo-chitooligosaccharides as regulatory signals of fungal growth and development. Nature Communications, 2020, 11, 3897.	12.8	65

#	Article	IF	CITATIONS
37	Reduced Biocide Susceptibility in <i>Candida albicans</i> Biofilms. Antimicrobial Agents and Chemotherapy, 2008, 52, 3411-3413.	3.2	61
38	Host Contributions to Construction of Three Device-Associated Candida albicans Biofilms. Infection and Immunity, 2015, 83, 4630-4638.	2.2	58
39	Contributions of the Biofilm Matrix to Candida Pathogenesis. Journal of Fungi (Basel, Switzerland), 2020, 6, 21.	3.5	58
40	Candida albicans FRE8 encodes a member of the NADPH oxidase family that produces a burst of ROS during fungal morphogenesis. PLoS Pathogens, 2017, 13, e1006763.	4.7	57
41	Candida auris Infection and Biofilm Formation: Going Beyond the Surface. Current Clinical Microbiology Reports, 2020, 7, 51-56.	3.4	53
42	Conservation and Divergence in the <i>Candida</i> Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. MBio, 2018, 9, .	4.1	52
43	Mechanisms involved in the triggering of neutrophil extracellular traps (NETs) by Candida glabrata during planktonic and biofilm growth. Scientific Reports, 2017, 7, 13065.	3.3	51
44	Insight into Neutrophil Extracellular Traps through Systematic Evaluation of Citrullination and Peptidylarginine Deiminases. Journal of Immunology Research, 2019, 2019, 1-11.	2.2	50
45	Fungal Biofilms: <i>In Vivo</i> Models for Discovery of Anti-Biofilm Drugs. Microbiology Spectrum, 2015, 3, .	3.0	49
46	An unappreciated role for neutrophil-DC hybrids in immunity to invasive fungal infections. PLoS Pathogens, 2018, 14, e1007073.	4.7	49
47	Candida auris: An emerging pathogen "incognito�. PLoS Pathogens, 2019, 15, e1007638.	4.7	47
48	Time Course of Microbiologic Outcome and Gene Expression in Candida albicans during and following In Vitro and In Vivo Exposure to Fluconazole. Antimicrobial Agents and Chemotherapy, 2006, 50, 1311-1319.	3.2	43
49	How Biofilm Growth Affects Candida-Host Interactions. Frontiers in Microbiology, 2020, 11, 1437.	3.5	42
50	Coordination of fungal biofilm development by extracellular vesicle cargo. Nature Communications, 2021, 12, 6235.	12.8	42
51	Rat Indwelling Urinary Catheter Model of Candida albicans Biofilm Infection. Infection and Immunity, 2014, 82, 4931-4940.	2.2	38
52	The Host's Reply to Candida Biofilm. Pathogens, 2016, 5, 33.	2.8	38
53	In Vivo Fluconazole Pharmacodynamics and Resistance Development in a Previously Susceptible Candida albicans Population Examined by Microbiologic and Transcriptional Profiling. Antimicrobial Agents and Chemotherapy, 2006, 50, 2384-2394.	3.2	35
54	Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms. ISME Journal, 2021, 15, 2012-2027.	9.8	34

#	Article	IF	CITATIONS
55	Identification and Characterization of Antifungal Compounds Using a Saccharomyces cerevisiae Reporter Bioassay. PLoS ONE, 2012, 7, e36021.	2.5	31
56	Conserved Inhibition of Neutrophil Extracellular Trap Release by Clinical Candida albicans Biofilms. Journal of Fungi (Basel, Switzerland), 2017, 3, 49.	3.5	30
57	Spleen Tyrosine Kinase Is a Critical Regulator of Neutrophil Responses to <i>Candida</i> Species. MBio, 2020, 11, .	4.1	25
58	Candida auris Cell Wall Mannosylation Contributes to Neutrophil Evasion through Pathways Divergent from Candida albicans and Candida glabrata. MSphere, 2021, 6, e0040621.	2.9	23
59	Targeting Fibronectin To Disrupt In Vivo Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2016, 60, 3152-3155.	3.2	18
60	Modeling of Fungal Biofilms Using a Rat Central Vein Catheter. Methods in Molecular Biology, 2012, 845, 547-556.	0.9	17
61	Augmenting the Activity of Chlorhexidine for Decolonization of Candida auris from Porcine skin. Journal of Fungi (Basel, Switzerland), 2021, 7, 804.	3.5	16
62	Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis. Journal of Biological Chemistry, 2019, 294, 2700-5412.	3.4	15
63	Ex Vivo Human and Porcine Skin Effectively Model <i>Candida auris</i> Colonization, Differentiating Robust and Poor Fungal Colonizers. Journal of Infectious Diseases, 2022, 225, 1791-1795.	4.0	14
64	Application of the systematic "DAmP―approach to create a partially defective C. albicans mutant. Fungal Genetics and Biology, 2011, 48, 1056-1061.	2.1	13
65	Echinocandin Treatment of Candida albicans Biofilms Enhances Neutrophil Extracellular Trap Formation. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	12
66	Blastomyces dermatitidisserine protease dipeptidyl peptidase IVA (DppIVA) cleaves ELR+CXC chemokines altering their effects on neutrophils. Cellular Microbiology, 2017, 19, e12741.	2.1	8
67	Neutrophils From Patients With Invasive Candidiasis Are Inhibited by Candida albicans Biofilms. Frontiers in Immunology, 2020, 11, 587956.	4.8	7
68	ROSA26 mice carry a modifier of Min-induced mammary and intestinal tumor development. Mammalian Genome, 2000, 11, 1058-1062.	2.2	4
69	Review of techniques for diagnosis of catheter-related Candida biofilm infections. Current Fungal Infection Reports, 2008, 2, 237-243.	2.6	4
70	Fungal Biofilms:In VivoModels for Discovery of Anti-Biofilm Drugs. , 2015, , 33-49.		3
71	Antifungals: Drug Class, Mechanisms of Action, Pharmacokinetics/Pharmacodynamics, Drug-Drug Interactions, Toxicity, and Clinical Use. , 0, , 343-371.		3
72	The Role of Biofilm Matrix in Mediating Antifungal Resistance. , 2017, , 369-384.		2

#	Article	IF	CITATIONS
73	Editorial: Fungal Biofilms in Infection and Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 753650.	3.9	2
74	Examining Neutrophil–Candida auris Interactions with Human Neutrophils Ex Vivo. Methods in Molecular Biology, 2022, , 243-250.	0.9	2
75	Imaging of the Development and Therapeutic Response of an In Vivo Fungal Catheter Biofilm. Microscopy Today, 2005, 13, 30-33.	0.3	Ο
76	970. Emerging Pathogen Candida auris Evades Neutrophil Attack. Open Forum Infectious Diseases, 2018, 5, S37-S37.	0.9	0
77	2889. Skin Niche Conditions Trigger C. auris to Form Robust Biofilms That Resist Desiccation. Open Forum Infectious Diseases, 2019, 6, S78-S78.	0.9	0
78	The Role of Biofilm Matrix in Mediating Antifungal Resistance. , 2014, , 1-14.		0