Lynette K Abbott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1718595/publications.pdf

Version: 2024-02-01

		25014	29127
136	11,394	57	104
papers	citations	h-index	g-index
138	138	138	7830
130	130	130	7630
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Arbuscular mycorrhizal fungus-mediated interspecific nutritional competition of a pasture legume and grass under drought-stress. Rhizosphere, 2021, 18, 100349.	1.4	7
2	Co-application of a biosolids product and biochar to two coarse-textured pasture soils influenced microbial N cycling genes and potential for N leaching. Scientific Reports, 2021, 11, 955.	1.6	10
3	Polymer-coated rock mineral fertilizer has potential to substitute soluble fertilizer for increasing growth, nutrient uptake, and yield of wheat. Biology and Fertility of Soils, 2020, 56, 381-394.	2.3	17
4	Foliar application of nano-Zn and mycorrhizal inoculation enhanced Zn in grain and yield of two barley (Hordeum vulgare) cultivars under field conditions. Australian Journal of Crop Science, 2020, , 475-484.	0.1	1
5	Nutrient recovery from anaerobic digestion of food waste: impacts of digestate on plant growth and rhizosphere bacterial community composition and potential function in ryegrass. Biology and Fertility of Soils, 2020, 56, 973-989.	2.3	34
6	Plant-Dependent Soil Bacterial Responses Following Amendment With a Multispecies Microbial Biostimulant Compared to Rock Mineral and Chemical Fertilizers. Frontiers in Plant Science, 2020, 11, 550169.	1.7	10
7	Sequential defoliation impacts on colonisation of roots of Lolium rigidum by arbuscular mycorrhizal fungi were primarily determined by root responses. Biology and Fertility of Soils, 2019, 55, 789-800.	2.3	9
8	Reconciling disparate responses to grazing in the arbuscular mycorrhizal symbiosis. Rhizosphere, 2019, 11, 100167.	1.4	21
9	Dairy soil bacterial responses to nitrogen application in simulated Italian ryegrass and white clover pasture. Journal of Dairy Science, 2019, 102, 9495-9504.	1.4	2
10	Fungal Communities Resist Recovery in Sand Mine Restoration. Frontiers in Forests and Global Change, 2019, 2, .	1.0	11
11	Effect of zinc foliar application and mycorrhizal inoculation on morpho-physiological traits and yield parameters of two barley cultivars. Italian Journal of Agronomy, 2019, 14, 67-77.	0.4	5
12	Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phosphorus cycling. Scientific Reports, 2019, 9, 5062.	1.6	53
13	Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biology and Fertility of Soils, 2019, 55, 53-66.	2.3	54
14	Potential roles of biological amendments for profitable grain production – A review. Agriculture, Ecosystems and Environment, 2018, 256, 34-50.	2.5	107
15	Fungal inoculants in the field: Is the reward greater than the risk?. Functional Ecology, 2018, 32, 126-135.	1.7	173
16	Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biology and Fertility of Soils, 2018, 54, 55-70.	2.3	53
17	The provision of pest and disease information using Information Communication Tools (ICT); an Australian example. Crop Protection, 2018, 103, 20-29.	1.0	20
18	Response of Wheat to a Multiple Species Microbial Inoculant Compared to Fertilizer Application. Frontiers in Plant Science, 2018, 9, 1601.	1.7	33

#	Article	IF	Citations
19	Amending Poultry Broiler Litter to Prevent the Development of Stable Fly, Stomoxys calcitrans (Diptera: Muscidae) and Other Nuisance Flies. Journal of Economic Entomology, 2018, 111, 2966-2973.	0.8	3
20	A farmer–scientist investigation of soil carbon sequestration potential in a chronosequence of perennial pastures. Land Degradation and Development, 2018, 29, 4301-4312.	1.8	3
21	Nitrogen Additions Promote Decomposition of Soil Organic Carbon in a Tibetan Alpine Meadow. Soil Science Society of America Journal, 2018, 82, 614-621.	1.2	12
22	Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza, 2017, 27, 431-440.	1.3	85
23	Biological Indicators for Soil Health: Potential for Development and Use of On-Farm Tests. , 2017, , 123-134.		5
24	Unknown risks to soil biodiversity from commercial fungal inoculants. Nature Ecology and Evolution, 2017, 1, 115.	3.4	41
25	Molecular divergence of fungal communities in soil, roots and hyphae highlight the importance of sampling strategies. Rhizosphere, 2017, 4, 104-111.	1.4	14
26	Farmers' knowledge and use of soil fauna in agriculture: a worldwide review. Ecology and Society, 2016, 21, .	1.0	40
27	Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza, 2016, 26, 565-574.	1.3	72
28	Microbial phylogenetic and functional responses within acidified wastewater communities exhibiting enhanced phosphate uptake. Bioresource Technology, 2016, 220, 55-61.	4.8	17
29	Forage yield, soil water depletion, shoot nitrogen and phosphorus uptake and concentration, of young and old stands of alfalfa in response to nitrogen and phosphorus fertilisation in a semiarid environment. Field Crops Research, 2016, 198, 247-257.	2.3	52
30	Coastal Mycology and Invasive Species: Boundary Conditions for Arbuscular Mycorrhizal (AM) Fungi in Incipient Sand Dunes. Journal of Coastal Research, 2016, 75, 283-287.	0.1	3
31	Predicting infectivity of Arbuscular Mycorrhizal fungi from soil variables using Generalized Additive Models and Generalized Linear Models. Biodiversitas, 2016, 11 , .	0.2	2
32	Soil Health and Related Ecosystem Services in Organic Agriculture. Sustainable Agriculture Research, 2015, 4, 116.	0.2	29
33	Potential for Recycling Nutrients from Biosolids Amended with Clay and Lime in Coarse-Textured Water Repellence, Acidic Soils of Western Australia. Applied and Environmental Soil Science, 2015, 2015, 1-11.	0.8	3
34	Residual Effects of Lime- and Clay-Amended Biosolids Applied to Coarse-Textured Pasture Soil. Applied and Environmental Soil Science, 2015, 2015, 1-9.	0.8	2
35	Biochar-Soil Interactions in Four Agricultural Soils. Pedosphere, 2015, 25, 729-736.	2.1	30
36	Soil Microbial Responses to Biochars Varying in Particle Size, Surface and Pore Properties. Pedosphere, 2015, 25, 770-780.	2.1	95

#	Article	IF	Citations
37	Microscopy Observations of Habitable Space in Biochar for Colonization by Fungal Hyphae From Soil. Journal of Integrative Agriculture, 2014, 13, 483-490.	1.7	122
38	Clay addition to lime-amended biosolids overcomes water repellence and provides nitrogen supply in an acid sandy soil. Biology and Fertility of Soils, 2014, 50, 1047-1059.	2.3	18
39	The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 2013, 164, 80-99.	2.5	1,143
40	Soil Security: Solving the Global Soil Crisis. Global Policy, 2013, 4, 434-441.	1.0	219
41	Comparison of morphological and molecular genetic quantification of relative abundance of arbuscular mycorrhizal fungi within roots. Mycorrhiza, 2012, 22, 501-513.	1.3	17
42	Synergistic impacts of clay and organic matter on structural and biological properties of a sandy soil. Geoderma, 2012, 183-184, 19-24.	2.3	14
43	Biochars influence seed germination and early growth of seedlings. Plant and Soil, 2012, 353, 273-287.	1.8	201
44	Soil Science teaching principles. Geoderma, 2011, 167-168, 9-14.	2.3	59
45	Relationships between soil organic matter and the soil microbial biomass (size, functional diversity,) Tj ETQq1 1 (49, 582.	0.784314 0.6	rgBT /Overlo 67
46	Soil-plant-microbe interactions from microscopy to field practice. Plant and Soil, 2011, 348, 1-5.	1.8	7
47	Determination and Prediction of Some Soil Properties using Partial Least Square (PLS) Calibration and Mid-Infra Red (MIR) Spectroscopy Analysis. Jurnal Tanah Tropika, 2011, 16, 93-98.	0.2	3
48	Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Research, 2010, 48, 546.	0.6	181
49	Association between Burkholderia species and arbuscular mycorrhizal fungus spores in soil. Soil Biology and Biochemistry, 2009, 41, 1757-1759.	4.2	14
50	Influence of arbuscular mycorrhizal fungi, inoculum level and phosphorus placement on growth and phosphorus uptake of Phyllanthus calycinus under jarrah forest soil. Biology and Fertility of Soils, 2008, 44, 815-821.	2.3	12
51	Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza, 2008, 19, 1-6.	1.3	30
52	Functional Diversity of Arbuscular Mycorrhizal Fungi on Root Surfaces., 2008,, 331-349.		1
53	What is Soil Biological Fertility?., 2007,, 1-15.		19
54	Arbuscular mycorrhizal fungi from three genera induce two-phase plant growth responses on a high P-fixing soil. Plant and Soil, 2007, 292, 181-192.	1.8	20

#	Article	IF	CITATIONS
55	The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecology Letters, 2006, 9, 501-515.	3.0	285
56	Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza, 2006, 16, 371-379.	1.3	228
57	Correlation between mite community structure and gross N fluxes. Soil Biology and Biochemistry, 2004, 36, 191-194.	4.2	13
58	Structure and diversity among rhizobial strains, populations and communities?a review. Soil Biology and Biochemistry, 2004, 36, 1295-1308.	4.2	64
59	Indigenous and introduced arbuscular mycorrhizal fungi contribute to plant growth in two agricultural soils from south-western Australia. Mycorrhiza, 2004, 14, 355-362.	1.3	31
60	A change in the concentration of NaCl in soil alters the rate of hyphal extension of some arbuscular mycorrhizal fungi. Canadian Journal of Botany, 2004, 82, 1235-1242.	1.2	9
61	Limited evidence for short-term succession of microarthropods during early phases of surface litter decomposition. Pedobiologia, 2004, 48, 37-49.	0.5	16
62	Phosphorus uptake by a community of arbuscular mycorrhizal fungi in jarrah forest. Plant and Soil, 2003, 248, 313-320.	1.8	11
63	Invasion of Spores of the Arbuscular Mycorrhizal Fungus Gigaspora decipiens by Burkholderia spp. Applied and Environmental Microbiology, 2003, 69, 6250-6256.	1.4	80
64	Field inoculation with arbuscular mycorrhizal fungi in rehabilitation of mine sites with native vegetation, including Acacia spp Australian Systematic Botany, 2003, 16, 131.	0.3	20
65	Diversity and symbiotic effectiveness of Rhizobium leguminosarum bv. trifolii isolates from pasture soils in south-western Australia. Soil Research, 2002, 40, 1319.	0.6	15
66	Effect of low root-zone temperature on nodule initiation in narrow-leafed lupin (Lupinus) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Tf	50 _, 302 Td (a
67	Influence of liming, inoculum level and inoculum placement on root colonization of subterranean clover. Mycorrhiza, 2002, 12, 285-290.	1.3	13
68	Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. New Phytologist, 2001, 149, 95-103.	3.5	99
69	Changes in free living soil nematode and micro-arthropod communities under a canola - wheat - lupin rotation in Western Australia. Soil Research, 2000, 38, 47.	0.6	15
70	Soil biota and crop residue decomposition during summer and autumn in south-western Australia. Applied Soil Ecology, 2000, 14, 111-124.	2.1	30
71	Glomalean mycorrhizal fungi from tropical Australia. Mycorrhiza, 1999, 8, 305-314.	1.3	101
72	Morphology and infectivity of fine endophyte in a mediterranean environment. Mycological Research, 1999, 103, 1369-1379.	2.5	51

#	Article	IF	Citations
73	Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biology and Biochemistry, 1998, 30, 1639-1646.	4.2	126
74	Increasing the length of hyphae in a sandy soil increases the amount of water-stable aggregates. Applied Soil Ecology, 1996, 3, 149-159.	2.1	112
75	Mycorrhizal fungus propagules in the jarrah forest. New Phytologist, 1995, 131, 461-469.	3.5	71
76	Managing Soils to Enhance Mycorrhizal Benefits in Mediterranean Agriculture. Critical Reviews in Biotechnology, 1995, 15, 213-228.	5.1	21
77	An ecological view of the formation of VA mycorrhizas. Plant and Soil, 1994, 159, 69.	1.8	78
78	Mycorrhizal fungus propagules in the jarrah forest. New Phytologist, 1994, 127, 539-546.	3.5	89
79	Phosphorus, soluble carbohydrates and the competition between two arbuscular mycorrhizal fungi colonizing subterranean clover. New Phytologist, 1994, 127, 101-106.	3.5	57
80	The effect of rain in the dryâ€season on the formation of vesicularâ€arbuscular mycorrhizas in the growing season of annual cloverâ€based pastures. New Phytologist, 1994, 127, 107-114.	3.5	25
81	The contribution from hyphae, roots and organic carbon constituents to the aggregation of a sandy loam under long-term clover-based and grass pastures. European Journal of Soil Science, 1994, 45, 459-468.	1.8	69
82	Effects of phosphate and nitrogen application on death of the root cortex in spring wheat. New Phytologist, 1993, 123, 375-382.	3.5	13
83	The survival of infective hyphae of vesicular-arbuscular mycorrhizal fungi in dry soil: an interaction with sporulation. New Phytologist, 1993, 124, 473-479.	3.5	65
84	Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza, 1993, 4, 45-57.	1.3	241
85	VA mycorrhizal spores from three species of Acaulospora : germination, longevity and hyphal growth. Mycological Research, 1993, 97, 785-790.	2.5	31
86	Mediation of competition between two colonizing VA mycorrhizal fungi by the host plant. New Phytologist, 1993, 123, 93-98.	3.5	81
87	1 Selection of Inoculant Vesicular-arbuscular Mycorrhizal Fungi. Methods in Microbiology, 1992, 24, 1-21.	0.4	27
88	The effect of long-term applications of phosphorus fertilizer on populations of vesicular-arbuscular mycorrhizal fungi in pastures. Australian Journal of Agricultural Research, 1992, 43, 1131.	1.5	44
89	Calcium modifies pH effects on the growth of acid-tolerant and acid-sensitive Rhizobium meliloti. Australian Journal of Agricultural Research, 1992, 43, 765.	1.5	51
90	The rate of development of mycorrhizas affects the onset of sporulation and production of external hyphae by two species of Acaulospora. Mycological Research, 1992, 96, 643-650.	2.5	97

#	Article	IF	Citations
91	The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. Plant and Soil, 1992, 146, 169-179.	1.8	90
92	External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L 1. Spread of hyphae and phosphorus inflow into roots. New Phytologist, 1992, 120, 371-380.	3.5	836
93	External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L 2. Hyphal transport of 32P over defined distances. New Phytologist, 1992, 120, 509-516.	3.5	313
94	Roots of Jarrah Forest Plants .I. Mycorrhizal Associations of Shrubs and Herbaceous Plants. Australian Journal of Botany, 1991, 39, 445.	0.3	121
95	Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agriculture, Ecosystems and Environment, 1991, 35, 121-150.	2.5	277
96	Soil mediated effects of phosphorus supply on the formation of mycorrhizas by Scutellispora calospora (Nicol. & Gerd.) Walker & Sanders on subterranean clover. New Phytologist, 1991, 118, 463-469.	3.5	53
97	The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytologist, 1991, 118, 471-476.	3.5	207
98	Mycorrhizas formed by Gigaspora calospora and Glomus fasciculatum on subterranean clover in relation to soluble carbohydrate concentrations in roots. New Phytologist, 1990, 114, 217-225.	3.5	79
99	Acacias respond to additions of phosphorus and to inoculation with VA mycorrhizal fungi in soils stockpiled during mineral sand mining. Plant and Soil, 1989, 115, 99-108.	1.8	58
100	Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytologist, 1989, 112, 93-99.	3.5	230
101	Hyphae of a vesicular-arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytologist, 1989, 112, 101-107.	3.5	151
102	The Loss of Va Mycorrhizal Infectivity During Bauxite Mining May Limit the Growth of Acacia pulchella R.Br Australian Journal of Botany, 1989, 37, 33.	0.3	45
103	Revegetation in an iron ore mine - Nutrient requirements for plant growth and the potential role of vesicular arbuscular (VA) mycorrhizal fungi. Soil Research, 1988, 26, 497.	0.6	42
104	The Effect of Surface Mining on the Infectivity of Vesicular-Arbuscular Mycorrhizal Fungi. Australian Journal of Botany, 1987, 35, 641.	0.3	78
105	Seasonal variation in the infectivity of VA mycorrhizal fungi in annual pastures in a Mediterranean environment. Australian Journal of Agricultural Research, 1987, 38, 707.	1.5	33
106	THE SPREAD OF MYCORRHIZAL INFECTION BY GIGASPORA CALOSPORA FROM A LOCALIZED INOCULUM. New Phytologist, 1987, 106, 727-734.	3.5	16
107	EFFECTS OF PHOSPHATE SUPPLY AND INOCULATION WITH A VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGUS ON THE DEATH OF THE ROOT CORTEX OF WHEAT, RAPE AND SUBTERRANEAN CLOVER. New Phytologist, 1986, 103, 349-357.	3.5	20
108	EFFECTS OF PHOSPHORUS ON THE FORMATION OF MYCORRHIZAS BY GIGASPORA CALOSPORA AND GLOMUS FASCICULATUM IN RELATION TO ROOT CARBOHYDRATES. New Phytologist, 1986, 103, 751-765.	3.5	197

#	Article	IF	CITATIONS
109	Variation in the size and shape of Darwin's finches. Biological Journal of the Linnean Society, 1985, 25, 1-39.	0.7	87
110	THE SPREAD OF GLOMUS FASCICULATUM THROUGH ROOTS OF TRIFOLIUM SUBTERRANEUM AND LOLIUM RIGIDUM. New Phytologist, 1985, 100, 105-114.	3.5	18
111	FORMATION OF EXTERNAL HYPHAE IN SOIL BY FOUR SPECIES OF VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGI. New Phytologist, 1985, 99, 245-255.	3.5	163
112	The effect of soil pH on the formation of VA mycorrhizas by two species of Glomus. Soil Research, 1985, 23, 253.	0.6	66
113	Sulfur supply and the formation of vesicular-arbuscular mycorrhizas by Glomus fasciculatum on subterranean clover. Soil Biology and Biochemistry, 1985, 17, 877-879.	4.2	6
114	COLONIZATION OF THE ROOT SYSTEM OF SUBTERRANEAN CLOVER BY THREE SPECIES OF VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGI. New Phytologist, 1984, 96, 275-281.	3.5	56
115	THE EFFECT OF PHOSPHORUS ON THE FORMATION OF HYPHAE IN SOIL BY THEVESICULAR-ARBUSCULAR MYCORRHIZAL FUNGUS, GLOMUS FASCICULATUM. New Phytologist, 1984, 97, 437-446.	3.5	264
116	THE EFFECT OF ROOT DENSITY, INOCULUM PLACEMENT AND INFECTIVITY OF INOCULUM ON THE DEVELOPMENT OF VESICULAR-ARBUSCULAR MYCORRHIZAS. New Phytologist, 1984, 97, 285-299.	3.5	43
117	Phosphorus, soluble carbohydrates and endomycorrhizal infection. Soil Biology and Biochemistry, 1983, 15, 593-597.	4.2	93
118	Seasonal variation in infectivity of vesicular-arbuscular mycorrhizal fungi in relation to plant response to applied phosphorus. Soil Research, 1983, 21, 207.	0.6	12
119	Introduction of vesicular arbuscular mycorrhizal fungi into agricultural soils. Australian Journal of Agricultural Research, 1983, 34, 741.	1.5	35
120	Infectivity of vesicular arbuscular mycorrhizal fungi in agricultural soils. Australian Journal of Agricultural Research, 1982, 33, 1049.	1.5	71
121	Comparative Anatomy of Vesicular-Arbuscular Mycorrhizas Formed on Subterranean Clover. Australian Journal of Botany, 1982, 30, 485.	0.3	204
122	The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Australian Journal of Agricultural Research, 1982, 33, 389.	1.5	187
123	Infectivity and effectiveness of vesicular arbuscular mycorrhizal fungi: effect of inoculum type. Australian Journal of Agricultural Research, 1981, 32, 631.	1.5	106
124	Prolonged survival and viability of VA mycorrhizal hyphae after root death. Soil Biology and Biochemistry, 1981, 13, 431-433.	4.2	120
125	Infectivity and effectiveness of five endomycorrhizal fungi: competition with indigenous fungi in field soils. Australian Journal of Agricultural Research, 1981, 32, 621.	1.5	117
126	THE EFFECTIVENESS OF VESICULAR-ARBUSCULAR MYCORRHIZAS IN INCREASING GROWTH AND PHOSPHORUS UPTAKE OF SUBTERRANEAN CLOVER FROM PHOSPHORUS SOURCES OF DIFFERENT SOLUBILITIES. New Phytologist, 1980, 84, 327-338.	3.5	84

#	Article	IF	CITATION
127	A Quantitative Study of the Spores and Anatomy of Mycorrhizas Formed by a Species of Glomus, With Reference to Its Taxonomy. Australian Journal of Botany, 1979, 27, 363.	0.3	85
128	Phosphorus and the formation of vesicular-arbuscular mycorrhizas. Soil Biology and Biochemistry, 1979, 11, 501-505.	4.2	177
129	GROWTH OF SUBTERRANEAN CLOVER IN RELATION TO THE FORMATION OF ENDOMYCORRHIZAS BY INTRODUCED AND INDIGENOUS FUNGI IN A FIELD SOIL. New Phytologist, 1978, 81, 575-585.	3.5	133
130	Effect of rate of application of superphosphate on populations of vesicular arbuscular endophytes. Australian Journal of Experimental Agriculture, 1978, 18, 573.	1.0	38
131	The Distribution and Abundance of Vesicular Arbuscular Endophytes in Some Western Australian Soils. Australian Journal of Botany, 1977, 25, 515.	0.3	73
132	Growth stimulation of subterranean clover with vesicular arbuscular mycorrhizas. Australian Journal of Agricultural Research, 1977, 28, 639.	1.5	144
133	Comparative Ecology of Galapagos Ground Finches (Geospiza Gould): Evaluation of the Importance of Floristic Diversity and Interspecific Competition. Ecological Monographs, 1977, 47, 151-184.	2.4	227
134	Darwin's finches: population variation and natural selection Proceedings of the National Academy of Sciences of the United States of America, 1976, 73, 257-261.	3.3	199
135	Finch numbers, owl predation and plant dispersal on Isla Daphne Major, Gal�pagos. Oecologia, 1975, 19, 239-257.	0.9	50
136	Electrophoretic Patterns of Soluble Proteins and Isoenzymes of Gaeumannomyces graminis. Australian Journal of Botany, 1975, 23, 1.	0.3	17