List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1718566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and ecoâ€evolutionary implications. New Phytologist, 2018, 220, 739-749.	7.3	101
2	Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 571-583.	1.6	87
3	The chemical ecology of seed dispersal in monoecious and dioecious figs. Functional Ecology, 2008, 22, 484-493.	3.6	73
4	Influence of exploitation on population structure, spatial distribution and reproductive success of dioecious species in a fragmented cloud forest in India. Biological Conservation, 2000, 94, 243-256.	4.1	67
5	Visual ecology of Indian carpenter bees I: Light intensities and flight activity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 97-107.	1.6	66
6	Chemical mediation and niche partitioning in non-pollinating fig-wasp communities. Journal of Animal Ecology, 2007, 76, 296-303.	2.8	63
7	Comparative lifeâ€history traits in a fig wasp community: implications for community structure. Ecological Entomology, 2010, 35, 139-148.	2.2	61
8	Patterns and Processes in Nocturnal and Crepuscular Pollination Services. Quarterly Review of Biology, 2016, 91, 389-418.	0.1	56
9	How to be a fig wasp parasite on the fig–fig wasp mutualism. Current Opinion in Insect Science, 2015, 8, 34-40.	4.4	55
10	Butterfly pollination and high-contrast visual signals in a low-density distylous plant. Oecologia, 2003, 136, 571-573.	2.0	54
11	A hitchhiker's guide to a crowded syconium: how do fig nematodes find the right ride?. Functional Ecology, 2010, 24, 741-749.	3.6	48
12	Nocturnal Pollination by the Carpenter Bee Xylocopa tenuiscapa (Apidae) and the Effect of Floral Display on Fruit Set of Heterophragma quadriloculare (Bignoniaceae) in India1. Biotropica, 2001, 33, 78-89.	1.6	47
13	Resolution and sensitivity of the eyes of the Asian honeybees <i>Apis florea, Apis cerana</i> and <i>Apis dorsata</i> . Journal of Experimental Biology, 2009, 212, 2448-2453.	1.7	46
14	The fitness consequences of bearing domatia and having the right ant partner: experiments with protective and non-protective ants in a semi-myrmecophyte. Oecologia, 2005, 145, 76-86.	2.0	44
15	Effect of biocementation on the strength and stability of termite mounds. Environmental Geotechnics, 2016, 3, 99-113.	2.3	41
16	Nature's Swiss Army Knives: Ovipositor Structure Mirrors Ecology in a Multitrophic Fig Wasp Community. PLoS ONE, 2011, 6, e23642.	2.5	40
17	Plasticity comparisons between plants and animals. Plant Signaling and Behavior, 2008, 3, 367-375.	2.4	39
18	Phenolics, fibre, alkaloids, saponins, and cyanogenic glycosides in a seasonal cloud forest in India. Biochemical Systematics and Ecology, 2003, 31, 1221-1246.	1.3	38

#	Article	IF	CITATIONS
19	Diel Variation in Fig Volatiles Across Syconium Development: Making Sense of Scents. Journal of Chemical Ecology, 2013, 39, 630-642.	1.8	38
20	Building mud castles: a perspective from brick-laying termites. Scientific Reports, 2017, 7, 4692.	3.3	38
21	To transform or not to transform. Plant Signaling and Behavior, 2011, 6, 113-116.	2.4	37
22	Figs, Malabar Giant Squirrels, and Fruit Shortages Within Two Tropical Indian Forests. Biotropica, 1993, 25, 183.	1.6	35
23	Complex interactions on fig trees: ants capturing parasitic wasps as possible indirect mutualists of the fig-fig wasp interaction. Oikos, 2006, 113, 344-352.	2.7	33
24	Predatory and trophobiont-tending ants respond differently to fig and fig wasp volatiles. Animal Behaviour, 2009, 77, 1539-1545.	1.9	32
25	Do plants and animals differ in phenotypic plasticity?. Journal of Biosciences, 2005, 30, 41-50.	1.1	30
26	Phenotypic plasticity and longevity in plants and animals: cause and effect?. Journal of Biosciences, 2009, 34, 605-611.	1.1	30
27	Composition of Extrafloral Nectar Influences Interactions between the Myrmecophyte Humboldtia brunonis and its Ant Associates. Journal of Chemical Ecology, 2012, 38, 88-99.	1.8	30
28	Temporal associations in fig–wasp–ant interactions: diel and phenological patterns. Entomologia Experimentalis Et Applicata, 2010, 137, 50-61.	1.4	29
29	Co-niche construction between hosts and symbionts: ideas and evidence. Journal of Genetics, 2017, 96, 483-489.	0.7	26
30	When should fig fruit produce volatiles? Pattern in a ripening process. Acta Oecologica, 2011, 37, 611-618.	1.1	25
31	Fine-scale Population Genetic Structure of Two Dioecious Indian Keystone Species, Ficus hispida and Ficus exasperata (Moraceae). Biotropica, 2011, 43, 309-316.	1.6	25
32	Divvying up an incubator: How parasitic and mutualistic fig wasps use space within their nursery microcosm. Arthropod-Plant Interactions, 2014, 8, 191-203.	1.1	23
33	Fungus-Farming Termites Selectively Bury Weedy Fungi that Smell Different from Crop Fungi. Journal of Chemical Ecology, 2017, 43, 986-995.	1.8	23
34	Does Neighborhood Floral Display Matter? Fruit Set in Carpenter Bee-pollinated Heterophragma quadriloculare and Beetle-pollinated Lasiosiphon eriocephalus. Biotropica, 2004, 36, 139-147.	1.6	22
35	Perception of ultraviolet light by crab spiders and its role in selection of hunting sites. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 409-417.	1.6	20
36	Nutritional benefits from domatia inhabitants in an ant–plant interaction: interlopers do pay the rent. Functional Ecology, 2014, 28, 1107-1116.	3.6	18

#	Article	IF	CITATIONS
37	Co-existence of ants and an arboreal earthworm in a myrmecophyte of the Indian Western Ghats: anti-predation effect of the earthworm mucus. Journal of Tropical Ecology, 2006, 22, 341-344.	1.1	17
38	Parasites exert conflicting selection pressures to affect reproductive asynchrony of their host plant in an obligate pollination mutualism. Journal of Ecology, 2014, 102, 1329-1340.	4.0	17
39	The Galling Truth: Limited Knowledge of Gall-Associated Volatiles in Multitrophic Interactions. Frontiers in Plant Science, 2018, 9, 1139.	3.6	16
40	The insect ovipositor as a volatile sensor within a closed microcosm. Journal of Experimental Biology, 2017, 220, 1554-1557.	1.7	15
41	Dynamic environments of fungusâ€ f arming termite mounds exert growthâ€modulating effects on fungal crop parasites. Environmental Microbiology, 2018, 20, 971-979.	3.8	15
42	Geographical variation in an ant-plant interaction correlates with domatia occupancy, local ant diversity, and interlopers. Biological Journal of the Linnean Society, 0, 100, 538-551.	1.6	14
43	Host–parasitoid development and survival strategies in a non-pollinating fig wasp community. Acta Oecologica, 2018, 90, 60-68.	1.1	13
44	Densityâ€dependent fitness effects stabilize parasitic hitchhiking within a mutualism. Functional Ecology, 2019, 33, 2304-2315.	3.6	13
45	Bi-layered architecture facilitates high strength and ventilation in nest mounds of fungus-farming termites. Scientific Reports, 2020, 10, 13157.	3.3	13
46	Foliar Extrafloral Nectar of <i>Humboldtia brunonis</i> (Fabaceae), a Paleotropic Antâ€plant, is Richer than Phloem Sap and More Attractive than Honeydew. Biotropica, 2015, 47, 1-5.	1.6	12
47	A novel mutualism between an ant-plant and its resident pollinator. Die Naturwissenschaften, 2007, 95, 61-65.	1.6	11
48	High Temperatures Result in Smaller Nurseries which Lower Reproduction of Pollinators and Parasites in a Brood Site Pollination Mutualism. PLoS ONE, 2014, 9, e115118.	2.5	11
49	Nocturnal Bees Feed on Diurnal Leftovers and Pay the Price of Day – Night Lifestyle Transition. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	11
50	Interactions Between Figs and Gall-Inducing Fig Wasps: Adaptations, Constraints, and Unanswered Questions. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	11
51	Plant reproductive traits mediate tritrophic feedback effects within an obligate brood-site pollination mutualism. Oecologia, 2015, 179, 797-809.	2.0	10
52	Life-history strategy, resource dispersion and phylogenetic associations shape dispersal of a fig wasp community. Movement Ecology, 2017, 5, 25.	2.8	10
53	Male Ant-mimicking Salticid Spiders Discriminate Between Retreat Silks of Sympatric Females: Implications for Pre-mating Reproductive Isolation. Journal of Insect Behavior, 2007, 20, 389-402.	0.7	9
54	On the Air: Broadcasting and Reception of Volatile Messages in Brood-Site Pollination Mutualisms. Signaling and Communication in Plants, 2016, , 227-255.	0.7	9

#	Article	IF	CITATIONS
55	Moisture alone is sufficient to impart strength but not weathering resistance to termite mound soil. Royal Society Open Science, 2020, 7, 200485.	2.4	9
56	Genetic and clonal diversity of the endemic ant-plant Humboldtia brunonis (Fabaceae) in the Western Ghats of India. Journal of Biosciences, 2010, 35, 267-279.	1.1	8
57	Local hypoxia generated by live burial is effective in weed control within termite fungus farms. Insectes Sociaux, 2018, 65, 561-569.	1.2	8
58	Why are chillies pungent?. Journal of Biosciences, 2001, 26, 289-291.	1.1	7
59	A coat of many scents: Cuticular hydrocarbons in multitrophic interactions of fig wasps with ants. Acta Oecologica, 2015, 67, 24-33.	1.1	7
60	History Matters: Oviposition Resource Acceptance in an Exploiter of a Nursery Pollination Mutualism. Journal of Chemical Ecology, 2018, 44, 18-28.	1.8	7
61	Resource dispersion influences dispersal evolution of highly insulated insect communities. Biology Letters, 2018, 14, 20180111.	2.3	7
62	Hopping on: Conspecific traveller density within a vehicle regulates parasitic hitchhiking between ephemeral microcosms. Journal of Animal Ecology, 2021, 90, 899-908.	2.8	7
63	Context dependency of rewards and services in an Indian ant–plant interaction: southern sites favour the mutualism between plants and ants. Journal of Tropical Ecology, 2014, 30, 219-229.	1.1	6
64	Sex and diversity: The mutualistic and parasitic fungi of a fungus-growing termite differ in genetic diversity and reproductive strategy. Fungal Ecology, 2017, 26, 20-27.	1.6	6
65	Warring ants: Lessons from Lanchester's laws of combat?. Journal of Biosciences, 2002, 27, 75-78.	1.1	5
66	Finding hidden females in a crowd: Mate recognition in fig wasps. Acta Oecologica, 2014, 57, 80-87.	1.1	5
67	Why resource history matters: age and oviposition history affect oviposition behaviour in exploiters of a mutualism. Ecological Entomology, 2018, 43, 473-482.	2.2	5
68	Phoresy Involving Insects as Riders or Rides: Life History, Embarkation, and Disembarkation. Annals of the Entomological Society of America, 2022, 115, 219-231.	2.5	5
69	Commentary: The objection is sustained: a defence of the defense of beanbag genetics. International Journal of Epidemiology, 2008, 37, 451-454.	1.9	4
70	A fig tree in a concrete jungle: fine-scale population genetic structure of the cluster fig Ficus racemosa in an urban environment. Urban Ecosystems, 2018, 21, 171-181.	2.4	4
71	Does Neighborhood Floral Display Matter? Fruit Set in Carpenter Bee-pollinated Heterophragma quadriloculare and Beetle-pollinated Lasiosiphon eriocephalus1. Biotropica, 2004, 36, 139.	1.6	3
72	The Scent of Life: Phoretic Nematodes Use Wasp Volatiles and Carbon Dioxide to Choose Functional Vehicles for Dispersal. Journal of Chemical Ecology, 2021, 47, 139-152.	1.8	3

#	Article	IF	CITATIONS
73	Clipboard. Journal of Biosciences, 2000, 25, 121-124.	1.1	2
74	Cauline domatia of the ant-plant Humboldtia brunonis (Fabaceae). Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 236-237, 58-66.	1.2	2
75	Fifty years later, figs and their associated communities. Acta Oecologica, 2018, 90, 1-3.	1.1	2
76	CpG-containing oligodeoxynucleotides as new generation adjuvants in DNA and protein vaccines. Journal of Biosciences, 1998, 23, 164-167.	1.1	1
77	Feverish honeybees. Journal of Biosciences, 2000, 25, 215-216.	1.1	1
78	Polemics and synthesis: Ernst Mayr and evolutionary biology. Resonance, 2005, 10, 21-33.	0.3	1
79	Of pungency, pain, and naked mole rats: chili peppers revisited. Journal of Biosciences, 2009, 34, 349-351.	1.1	1
80	Staying in the club: Exploring criteria governing metacommunity membership for obligate symbionts under host–symbiont feedback. Journal of Theoretical Biology, 2021, 510, 110512.	1.7	1
81	Reproducibility and replicability in science: A Sisyphean task. Journal of Biosciences, 2022, 47, 1.	1.1	1
82	Ant and human farmers face similar problems. Journal of Biosciences, 2001, 26, 121-122.	1.1	0
83	Stephen Jay Gould: A view of life 1941–2002. Resonance, 2002, 7, 2-5.	0.3	0
84	Pictures at an exhibition: Bees view Van Gogh'sSunflowers. Journal of Biosciences, 2006, 31, 503-505.	1.1	0
85	Revolutions in evolutionary thought: Darwin and after. Resonance, 2009, 14, 102-123.	0.3	0
86	Keystones to sustain life's diversity. Journal of Biosciences, 2022, 47, .	1.1	0