## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1718411/publications.pdf Version: 2024-02-01



KUNULA

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Global Land Surface Satellite (GLASS) Product Suite. Bulletin of the American Meteorological Society, 2021, 102, E323-E337.                                                                                     | 3.3  | 203       |
| 2  | MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm. Agricultural and Forest Meteorology, 2013, 171-172, 187-202.                                       | 4.8  | 193       |
| 3  | Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan. PLoS ONE, 2015, 10, e0133262.                                               | 2.5  | 167       |
| 4  | Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote<br>Sensing of Environment, 2016, 177, 184-191.                                                                       | 11.0 | 167       |
| 5  | Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto<br>International, 2014, 29, 941-951.                                                                             | 3.5  | 161       |
| 6  | Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance,<br>meteorological, and satellite observations. Journal of Geophysical Research D: Atmospheres, 2014, 119,<br>4521-4545. | 3.3  | 146       |
| 7  | Global Land Surface Fractional Vegetation Cover Estimation Using General Regression Neural<br>Networks From MODIS Surface Reflectance. IEEE Transactions on Geoscience and Remote Sensing, 2015,<br>53, 4787-4796.  | 6.3  | 137       |
| 8  | Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series<br>MODIS NDVI Data. Remote Sensing, 2014, 6, 11518-11532.                                                           | 4.0  | 128       |
| 9  | Evaluation of Spatiotemporal Variations of Global Fractional Vegetation Cover Based on GIMMS NDVI<br>Data from 1982 to 2011. Remote Sensing, 2014, 6, 4217-4239.                                                    | 4.0  | 125       |
| 10 | Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecological<br>Indicators, 2021, 123, 107274.                                                                                | 6.3  | 112       |
| 11 | Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93, 49-55.      | 11.1 | 100       |
| 12 | Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms. Agricultural and Forest Meteorology, 2017, 242, 55-74.                       | 4.8  | 96        |
| 13 | A satellite-based hybrid algorithm to determine the Priestley–Taylor parameter for global terrestrial<br>latent heat flux estimation across multiple biomes. Remote Sensing of Environment, 2015, 165, 216-233.     | 11.0 | 92        |
| 14 | Detection and attribution of changes in hydrological cycle over the Three-North region of China:<br>Climate change versus afforestation effect. Agricultural and Forest Meteorology, 2015, 203, 74-87.              | 4.8  | 78        |
| 15 | Crop classification using multi-configuration SAR data in the North China Plain. International<br>Journal of Remote Sensing, 2012, 33, 170-183.                                                                     | 2.9  | 75        |
| 16 | Spatial distribution characteristics of the COVID-19 pandemic in Beijing and its relationship with environmental factors. Science of the Total Environment, 2021, 761, 144257.                                      | 8.0  | 71        |
| 17 | Forest cover classification using Landsat ETM+ data and time series MODIS NDVI data. International Journal of Applied Earth Observation and Geoinformation, 2014, 33, 32-38.                                        | 2.8  | 61        |
| 18 | Comparison of Four Machine Learning Methods for Generating the GLASS Fractional Vegetation Cover<br>Product from MODIS Data. Remote Sensing, 2016, 8, 682.                                                          | 4.0  | 54        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Estimating Surface Downward Shortwave Radiation over China Based on the Gradient Boosting<br>Decision Tree Method. Remote Sensing, 2018, 10, 185.                                                                                 | 4.0 | 52        |
| 20 | Crop classification using HJ satellite multispectral data in the North China Plain. Journal of Applied Remote Sensing, 2013, 7, 073576.                                                                                           | 1.3 | 48        |
| 21 | Assessment of Sentinel-2 MSI Spectral Band Reflectances for Estimating Fractional Vegetation Cover.<br>Remote Sensing, 2018, 10, 1927.                                                                                            | 4.0 | 48        |
| 22 | A simple temperature domain twoâ€source model for estimating agricultural field surface energy<br>fluxes from Landsat images. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5211-5236.                               | 3.3 | 43        |
| 23 | Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method. Journal of Hydrology, 2017, 553, 508-526.                                                               | 5.4 | 41        |
| 24 | Long-Term Global Land Surface Satellite (GLASS) Fractional Vegetation Cover Product Derived From<br>MODIS and AVHRR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote<br>Sensing, 2019, 12, 508-518. | 4.9 | 41        |
| 25 | An Operational Approach for Generating the Global Land Surface Downward Shortwave Radiation<br>Product From MODIS Data. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 4636-4650.                                  | 6.3 | 41        |
| 26 | Leaf Area Index Estimation Algorithm for GF-5 Hyperspectral Data Based on Different Feature Selection and Machine Learning Methods. Remote Sensing, 2020, 12, 2110.                                                               | 4.0 | 41        |
| 27 | Vegetation classification method with biochemical composition estimated from remote sensing data.<br>International Journal of Remote Sensing, 2011, 32, 9307-9325.                                                                | 2.9 | 40        |
| 28 | Estimation of surface downward shortwave radiation over China from AVHRR data based on four machine learning methods. Solar Energy, 2019, 177, 32-46.                                                                             | 6.1 | 39        |
| 29 | Empirical estimation of daytime net radiation from shortwave radiation and ancillary information.<br>Agricultural and Forest Meteorology, 2015, 211-212, 23-36.                                                                   | 4.8 | 38        |
| 30 | Estimating Fractional Vegetation Cover From Landsat-7 ETM+ Reflectance Data Based on a Coupled<br>Radiative Transfer and Crop Growth Model. IEEE Transactions on Geoscience and Remote Sensing, 2017,<br>55, 5539-5546.           | 6.3 | 37        |
| 31 | GLASS Daytime All-Wave Net Radiation Product: Algorithm Development and Preliminary Validation.<br>Remote Sensing, 2016, 8, 222.                                                                                                  | 4.0 | 36        |
| 32 | Spatial and Decadal Variations in Potential Evapotranspiration of China Based on Reanalysis Datasets<br>during 1982–2010. Atmosphere, 2014, 5, 737-754.                                                                           | 2.3 | 33        |
| 33 | A Robust Algorithm for Estimating Surface Fractional Vegetation Cover from Landsat Data. Remote Sensing, 2017, 9, 857.                                                                                                            | 4.0 | 32        |
| 34 | Validation of Global LAnd Surface Satellite (GLASS) fractional vegetation cover product from MODIS data in an agricultural region. Remote Sensing Letters, 2018, 9, 847-856.                                                      | 1.4 | 32        |
| 35 | Multi-scale segmentation approach for object-based land-cover classification using high-resolution imagery. Remote Sensing Letters, 2014, 5, 73-82.                                                                               | 1.4 | 31        |
| 36 | Validation and Application of the Modified Satellite-Based Priestley-Taylor Algorithm for Mapping<br>Terrestrial Evapotranspiration. Remote Sensing, 2014, 6, 880-904.                                                            | 4.0 | 29        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Automatic land-cover update approach integrating iterative training sample selection and a Markov<br>Random Field model. Remote Sensing Letters, 2014, 5, 148-156.                                                                    | 1.4 | 29        |
| 38 | Height Extraction of Maize Using Airborne Full-Waveform LIDAR Data and a Deconvolution Algorithm.<br>IEEE Geoscience and Remote Sensing Letters, 2015, 12, 1978-1982.                                                                 | 3.1 | 28        |
| 39 | Reconstruction of Long-Term Temporally Continuous NDVI and Surface Reflectance From AVHRR Data.<br>IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 5551-5568.                             | 4.9 | 28        |
| 40 | Estimation of the terrestrial water budget over northern China by merging multiple datasets. Journal of Hydrology, 2014, 519, 50-68.                                                                                                  | 5.4 | 26        |
| 41 | Spatio-Temporal Analysis and Uncertainty of Fractional Vegetation Cover Change over Northern<br>China during 2001–2012 Based on Multiple Vegetation Data Sets. Remote Sensing, 2018, 10, 549.                                         | 4.0 | 26        |
| 42 | Estimation of Surface Downward Shortwave Radiation over China from Himawari-8 AHI Data Based on<br>Random Forest. Remote Sensing, 2020, 12, 181.                                                                                      | 4.0 | 26        |
| 43 | Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations. Agricultural and Forest Meteorology, 2016, 223, 151-167.                              | 4.8 | 25        |
| 44 | Generating High Spatio-Temporal Resolution Fractional Vegetation Cover by Fusing GF-1 WFV and MODIS Data. Remote Sensing, 2019, 11, 2324.                                                                                             | 4.0 | 25        |
| 45 | Fusion of Five Satellite-Derived Products Using Extremely Randomized Trees to Estimate Terrestrial<br>Latent Heat Flux over Europe. Remote Sensing, 2020, 12, 687.                                                                    | 4.0 | 24        |
| 46 | Fractional Vegetation Cover Estimation Method Through Dynamic Bayesian Network Combining<br>Radiative Transfer Model and Crop Growth Model. IEEE Transactions on Geoscience and Remote<br>Sensing, 2016, 54, 7442-7450.               | 6.3 | 23        |
| 47 | Combining Estimation of Green Vegetation Fraction in an Arid Region from Landsat 7 ETM+ Data.<br>Remote Sensing, 2017, 9, 1121.                                                                                                       | 4.0 | 23        |
| 48 | Crop type identification by integration of high-spatial resolution multispectral data with features extracted from coarse-resolution time-series vegetation index data. International Journal of Remote Sensing, 2014, 35, 6076-6088. | 2.9 | 22        |
| 49 | Differences in estimating terrestrial water flux from three satellite-based Priestley-Taylor algorithms. International Journal of Applied Earth Observation and Geoinformation, 2017, 56, 1-12.                                       | 2.8 | 21        |
| 50 | MODIS-Based Estimation of Terrestrial Latent Heat Flux over North America Using Three Machine<br>Learning Algorithms. Remote Sensing, 2017, 9, 1326.                                                                                  | 4.0 | 21        |
| 51 | Global Fractional Vegetation Cover Estimation Algorithm for VIIRS Reflectance Data Based on<br>Machine Learning Methods. Remote Sensing, 2018, 10, 1648.                                                                              | 4.0 | 20        |
| 52 | Spatiotemporal Comparison and Validation of Three Global-Scale Fractional Vegetation Cover<br>Products. Remote Sensing, 2019, 11, 2524.                                                                                               | 4.0 | 20        |
| 53 | Maize acreage estimation using ENVISAT MERIS and CBERS-02B CCD data in the North China Plain.<br>Computers and Electronics in Agriculture, 2011, 78, 208-214.                                                                         | 7.7 | 19        |
| 54 | Validation of the Surface Daytime Net Radiation Product From Version 4.0 GLASS Product Suite. IEEE<br>Geoscience and Remote Sensing Letters, 2019, 16, 509-513.                                                                       | 3.1 | 19        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Generating spatiotemporally consistent fractional vegetation cover at different scales using spatiotemporal fusion and multiresolution tree methods. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167, 214-229.               | 11.1 | 19        |
| 56 | Fractional Forest Cover Changes in Northeast China From 1982 to 2011 and Its Relationship With<br>Climatic Variations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,<br>2015, 8, 775-783.              | 4.9  | 18        |
| 57 | Evaluation of a satellite-derived model parameterized by three soil moisture constraints to estimate terrestrial latent heat flux in the Heihe River basin of Northwest China. Science of the Total Environment, 2019, 695, 133787.        | 8.0  | 17        |
| 58 | DNN-MET: A deep neural networks method to integrate satellite-derived evapotranspiration products, eddy covariance observations and ancillary information. Agricultural and Forest Meteorology, 2021, 308-309, 108582.                     | 4.8  | 17        |
| 59 | Spectral Discrimination of Opium Poppy Using Field Spectrometry. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 3414-3422.                                                                                                  | 6.3  | 16        |
| 60 | Opium poppy monitoring with remote sensing in North Myanmar. International Journal of Drug Policy, 2011, 22, 278-284.                                                                                                                      | 3.3  | 16        |
| 61 | An Empirical Orthogonal Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance, Meteorological and Satellite Observations. PLoS ONE, 2016, 11, e0160150.                                                | 2.5  | 16        |
| 62 | Satellite-Derived Spatiotemporal Variations in Evapotranspiration over Northeast China during<br>1982–2010. Remote Sensing, 2017, 9, 1140.                                                                                                 | 4.0  | 14        |
| 63 | A Time-Efficient Fractional Vegetation Cover Estimation Method Using the Dynamic Vegetation Growth<br>Information From Time Series GLASS FVC Product. IEEE Geoscience and Remote Sensing Letters, 2020, 17,<br>1672-1676.                  | 3.1  | 14        |
| 64 | Estimating Surface Downward Longwave Radiation Using Machine Learning Methods. Atmosphere, 2020, 11, 1147.                                                                                                                                 | 2.3  | 14        |
| 65 | Spatiotemporal Distribution of Zika Virus and Its Spatially Heterogeneous Relationship with the<br>Environment. International Journal of Environmental Research and Public Health, 2021, 18, 290.                                          | 2.6  | 12        |
| 66 | Assessment of surface downward longwave radiation in CMIP6 with comparison to observations and CMIP5. Atmospheric Research, 2022, 270, 106056.                                                                                             | 4.1  | 12        |
| 67 | The Global LAnd Surface Satellite (GLASS) evapotranspiration product Version 5.0: Algorithm development and preliminary validation. Journal of Hydrology, 2022, 610, 127990.                                                               | 5.4  | 12        |
| 68 | Winter wheat biomass estimation using high temporal and spatial resolution satellite data combined with a light use efficiency model. Geocarto International, 2015, 30, 258-269.                                                           | 3.5  | 11        |
| 69 | Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North<br>China Plain. Frontiers of Earth Science, 2019, 13, 327-335.                                                                       | 2.1  | 11        |
| 70 | Merging the MODIS and Landsat Terrestrial Latent Heat Flux Products Using the Multiresolution Tree<br>Method. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 2811-2823.                                                     | 6.3  | 11        |
| 71 | A New Long-Term Downward Surface Solar Radiation Dataset over China from 1958 to 2015. Sensors, 2020, 20, 6167.                                                                                                                            | 3.8  | 11        |
| 72 | Improving the spatiotemporal fusion accuracy of fractional vegetation cover in agricultural regions<br>by combining vegetation growth models. International Journal of Applied Earth Observation and<br>Geoinformation, 2021, 101, 102362. | 2.8  | 11        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Satellite Detection of Water Stress Effects on Terrestrial Latent Heat Flux With MODIS Shortwave<br>Infrared Reflectance Data. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,410.                                  | 3.3 | 10        |
| 74 | Estimation of Daily Terrestrial Latent Heat Flux with High Spatial Resolution from MODIS and Chinese<br>GF-1 Data. Sensors, 2020, 20, 2811.                                                                                        | 3.8 | 10        |
| 75 | Trends and Variability of Atmospheric Downward Longwave Radiation Over China From 1958 to 2015.<br>Earth and Space Science, 2021, 8, e2020EA001370.                                                                                | 2.6 | 10        |
| 76 | A Novel NIR–Red Spectral Domain Evapotranspiration Model From the Chinese GF-1 Satellite:<br>Application to the Huailai Agricultural Region of China. IEEE Transactions on Geoscience and Remote<br>Sensing, 2021, 59, 4105-4119.  | 6.3 | 10        |
| 77 | Extensive Evaluation of a Continental-Scale High-Resolution Hydrological Model Using Remote Sensing and Ground-Based Observations. Remote Sensing, 2021, 13, 1247.                                                                 | 4.0 | 10        |
| 78 | Fractional Vegetation Cover Estimation Algorithm for FY-3B Reflectance Data Based on Random Forest<br>Regression Method. Remote Sensing, 2021, 13, 2165.                                                                           | 4.0 | 10        |
| 79 | Improving leaf area index estimation accuracy of wheat by involving leaf chlorophyll content information. Computers and Electronics in Agriculture, 2022, 196, 106902.                                                             | 7.7 | 10        |
| 80 | An effective biophysical indicator for opium yield estimation. Computers and Electronics in Agriculture, 2011, 75, 272-277.                                                                                                        | 7.7 | 9         |
| 81 | Leaf Area Index Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region. Sensors, 2017, 17, 1593.                                                                                                              | 3.8 | 9         |
| 82 | Long-Term Spatiotemporal Dynamics of Terrestrial Biophysical Variables in the Three-River Headwaters<br>Region of China from Satellite and Meteorological Datasets. Remote Sensing, 2019, 11, 1633.                                | 4.0 | 9         |
| 83 | Direct Estimation of Forest Leaf Area Index based on Spectrally Corrected Airborne LiDAR Pulse<br>Penetration Ratio. Remote Sensing, 2020, 12, 217.                                                                                | 4.0 | 9         |
| 84 | Discrepancies in the Simulated Global Terrestrial Latent Heat Flux from GLASS and MERRA-2 Surface<br>Net Radiation Products. Remote Sensing, 2020, 12, 2763.                                                                       | 4.0 | 9         |
| 85 | A novel TIR-derived three-source energy balance model for estimating daily latent heat flux in<br>mainland China using an all-weather land surface temperature product. Agricultural and Forest<br>Meteorology, 2022, 323, 109066. | 4.8 | 9         |
| 86 | Impacts of Deforestation and Climate Variability on Terrestrial Evapotranspiration in Subarctic China.<br>Forests, 2014, 5, 2542-2560.                                                                                             | 2.1 | 8         |
| 87 | Multi-temporal remote sensing data applied in automatic land cover update using iterative training sample selection and Markov Random Field model. Geocarto International, 2015, 30, 882-893.                                      | 3.5 | 8         |
| 88 | Assessing the Remotely Sensed Evaporative Drought Index for Drought Monitoring over Northeast<br>China. Remote Sensing, 2019, 11, 1960.                                                                                            | 4.0 | 8         |
| 89 | Fractional vegetation cover estimation in heterogeneous areas by combining a radiative transfer model and a dynamic vegetation model. International Journal of Digital Earth, 2020, 13, 487-503.                                   | 3.9 | 8         |
| 90 | A Robust Method for Generating High-Spatiotemporal-Resolution Surface Reflectance by Fusing MODIS and Landsat Data. Remote Sensing, 2020, 12, 2312.                                                                                | 4.0 | 8         |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Identifying crown areas in an undulating area planted with eucalyptus using unmanned aerial vehicle<br>near-infrared imagery. Remote Sensing Letters, 2016, 7, 561-570.                                                                   | 1.4 | 7         |
| 92  | Fractional vegetation cover estimation based on soil and vegetation lines in a corn-dominated area.<br>Geocarto International, 2017, 32, 531-540.                                                                                         | 3.5 | 6         |
| 93  | Cross-Comparative Analysis of GF-1 Wide Field View and Landsat-7 Enhanced Thematic Mapper Plus Data.<br>Journal of Applied Spectroscopy, 2017, 84, 829-836.                                                                               | 0.7 | 6         |
| 94  | Evaluation of Bayesian Multimodel Estimation in Surface Incident Shortwave Radiation Simulation over High Latitude Areas. Remote Sensing, 2019, 11, 1776.                                                                                 | 4.0 | 6         |
| 95  | Fractional Vegetation Cover Estimation Algorithm Based on Recurrent Neural Network for MODIS 250 m Reflectance Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6532-6543.               | 4.9 | 6         |
| 96  | Estimation of the All-Wave All-Sky Land Surface Daily Net Radiation at Mid-Low Latitudes from MODIS<br>Data Based on ERA5 Constraints. Remote Sensing, 2022, 14, 33.                                                                      | 4.0 | 6         |
| 97  | Evaluation of three satellite-based latent heat flux algorithms over forest ecosystems using eddy covariance data. Environmental Monitoring and Assessment, 2015, 187, 382.                                                               | 2.7 | 5         |
| 98  | Reconstructing Missing Information of Remote Sensing Data Contaminated by Large and Thick Clouds<br>Based on an Improved Multitemporal Dictionary Learning Method. IEEE Transactions on Geoscience<br>and Remote Sensing, 2022, 60, 1-14. | 6.3 | 5         |
| 99  | Simplified Priestley–Taylor Model to Estimate Land-Surface Latent Heat of Evapotranspiration from<br>Incident Shortwave Radiation, Satellite Vegetation Index, and Air Relative Humidity. Remote Sensing,<br>2021, 13, 902.               | 4.0 | 5         |
| 100 | Smartphone Digital Photography for Fractional Vegetation Cover Estimation. Photogrammetric Engineering and Remote Sensing, 2022, 88, 303-310.                                                                                             | 0.6 | 5         |
| 101 | Spatial and decadal variations in satellite-based terrestrial evapotranspiration and drought over<br>Inner Mongolia Autonomous Region of China during 1982–2009. Journal of Earth System Science, 2017,<br>126, 1.                        | 1.3 | 4         |
| 102 | ANN-Based Estimation of Low-Latitude Monthly Ocean Latent Heat Flux by Ensemble Satellite and Reanalysis Products. Sensors, 2020, 20, 4773.                                                                                               | 3.8 | 4         |
| 103 | High-spatiotemporal resolution mapping of spatiotemporally continuous atmospheric CO2 concentrations over the global continent. International Journal of Applied Earth Observation and Geoinformation, 2022, 108, 102743.                 | 2.8 | 4         |
| 104 | A global long-term ocean surface daily/0.05° net radiation product from 1983–2020. Scientific Data,<br>2022, 9, .                                                                                                                         | 5.3 | 4         |
| 105 | Quantification of the urbanization impacts on solar dimming and brightening over China.<br>Environmental Research Letters, 2022, 17, 084001.                                                                                              | 5.2 | 4         |
| 106 | Land-cover classification using multi-temporal GF-1 wide field view data. International Journal of<br>Remote Sensing, 2018, 39, 6914-6930.                                                                                                | 2.9 | 3         |
| 107 | Estimation of High-Resolution Global Monthly Ocean Latent Heat Flux from MODIS SST Product and AMSR-E Data. Advances in Meteorology, 2020, 2020, 1-19.                                                                                    | 1.6 | 3         |
| 108 | A framework for regional ecosystem authenticity evaluation–a case study on the Qinghai-Tibet<br>Plateau of China. Global Ecology and Conservation, 2021, 31, e01849.                                                                      | 2.1 | 3         |

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A New Empirical Estimation Scheme for Daily Net Radiation at the Ocean Surface. Remote Sensing, 2021, 13, 4170.                                                                                            | 4.0 | 3         |
| 110 | Evaluation of Surface Upward Longwave Radiation in the CMIP6 Models with Ground and Satellite Observations. Remote Sensing, 2021, 13, 4464.                                                                | 4.0 | 3         |
| 111 | Multi-scale object-based measurement of arid plant community structure. International Journal of Remote Sensing, 2016, 37, 2168-2179.                                                                      | 2.9 | 2         |
| 112 | Integrating Latent Heat Flux Products from MODIS and Landsat Data Using Multi-Resolution Kalman<br>Filter Method in the Midstream of Heihe River Basin of Northwest China. Remote Sensing, 2019, 11, 1787. | 4.0 | 2         |
| 113 | Evaluation of Downward Shortwave Radiation Estimations Over Tropical Ocean Surface Based on<br>Bayesian Model Averaging Method. , 2020, , .                                                                |     | 2         |
| 114 | Quantification of Cannabinoid Content in Cannabis. Journal of Applied Spectroscopy, 2015, 82, 628-633.                                                                                                     | 0.7 | 1         |
| 115 | Satellite evidence for no change in terrestrial latent heat flux in the Three-River Headwaters region of China over the past three decades. Journal of Earth System Science, 2016, 125, 1245-1253.         | 1.3 | 1         |
| 116 | Contributors of the second edition. , 2020, , ix-xiii.                                                                                                                                                     |     | 0         |