Sang Soo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1717969/publications.pdf Version: 2024-02-01

SANC SOOLEE

#	Article	IF	CITATIONS
1	Trivalent ion overcharging on electrified graphene. Journal of Physics Condensed Matter, 2022, 34, 144001.	1.8	3
2	Impact of Ion–Ion Correlations on the Adsorption of M(III) (M = Am, Eu, Y) onto Muscovite (001) in the Presence of Sulfate. Journal of Physical Chemistry C, 2022, 126, 1400-1410.	3.1	3
3	Emergent Behavior at the Calcite–Water Interface during Reactive Transport in a Simple Microfluidic Channel. ACS Earth and Space Chemistry, 2022, 6, 861-870.	2.7	4
4	lon correlations drive charge overscreening and heterogeneous nucleation at solid–aqueous electrolyte interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
5	Replacement of Calcium Carbonate Polymorphs by Cerussite. ACS Earth and Space Chemistry, 2021, 5, 2433-2441.	2.7	9
6	Pb Sorption at the Barite (001)–Water Interface. Journal of Physical Chemistry C, 2020, 124, 22035-22045.	3.1	9
7	Molecular-scale origins of wettability at petroleum–brine–carbonate interfaces. Scientific Reports, 2020, 10, 20507.	3.3	5
8	Nonclassical Behavior in Competitive Ion Adsorption at a Charged Solid–Water Interface. Journal of Physical Chemistry Letters, 2020, 11, 4029-4035.	4.6	10
9	Epitaxial Growth of Gibbsite Sheets on the Basal Surface of Muscovite Mica. Journal of Physical Chemistry C, 2019, 123, 27615-27627.	3.1	10
10	Effect of Anions on the Changes in the Structure and Adsorption Mechanism of Zirconium Species at the Muscovite (001)–Water Interface. Journal of Physical Chemistry C, 2019, 123, 16699-16710.	3.1	7
11	Mapping Three-dimensional Dissolution Rates of Calcite Microcrystals: Effects of Surface Curvature and Dissolved Metal Ions. ACS Earth and Space Chemistry, 2019, 3, 833-843.	2.7	40
12	Effect of pH on the Formation of Gibbsite-Layer Films at the Muscovite (001)–Water Interface. Journal of Physical Chemistry C, 2019, 123, 6560-6571.	3.1	14
13	Oxidation induced strain and defects in magnetite crystals. Nature Communications, 2019, 10, 703.	12.8	40
14	Dissolution Kinetics of Epitaxial Cadmium Carbonate Overgrowths on Dolomite. ACS Earth and Space Chemistry, 2019, 3, 212-220.	2.7	3
15	Simultaneous Adsorption and Incorporation of Sr ²⁺ at the Barite (001)–Water Interface. Journal of Physical Chemistry C, 2019, 123, 1194-1207.	3.1	21
16	Cathodic Corrosion at the Bismuth–lonic Liquid Electrolyte Interface under Conditions for CO ₂ Reduction. Chemistry of Materials, 2018, 30, 2362-2373.	6.7	38
17	Evolution of Strain in Heteroepitaxial Cadmium Carbonate Overgrowths on Dolomite. Crystal Growth and Design, 2018, 18, 2871-2882.	3.0	6
18	Templating Growth of a Pseudomorphic Lepidocrocite Microshell at the Calcite–Water Interface. Chemistry of Materials, 2018, 30, 700-707.	6.7	4

SANG SOO LEE

#	Article	IF	CITATIONS
19	Pb ²⁺ –Calcite Interactions under Far-from-Equilibrium Conditions: Formation of Micropyramids and Pseudomorphic Growth of Cerussite. Journal of Physical Chemistry C, 2018, 122, 2238-2247.	3.1	23
20	Arsenic uptake in bacterial calcite. Geochimica Et Cosmochimica Acta, 2018, 222, 642-654.	3.9	20
21	Effect of nitrogen passivation on interface composition and physical stress in SiO2/SiC(4H) structures. Applied Physics Letters, 2018, 113, .	3.3	12
22	Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates. Geochimica Et Cosmochimica Acta, 2017, 205, 360-380.	3.9	28
23	Stern Layer Structure and Energetics at Mica–Water Interfaces. Journal of Physical Chemistry C, 2017, 121, 9402-9412.	3.1	119
24	Hydration Structure of the Barite (001)–Water Interface: Comparison of X-ray Reflectivity with Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2017, 121, 12236-12248.	3.1	38
25	Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface. Nature Communications, 2017, 8, 15826.	12.8	61
26	Heterogeneous Nucleation and Growth of Barium Sulfate at Organic–Water Interfaces: Interplay between Surface Hydrophobicity and Ba ²⁺ Adsorption. Langmuir, 2016, 32, 5277-5284.	3.5	53
27	Surface Charge of the Calcite (104) Terrace Measured by Rb ⁺ Adsorption in Aqueous Solutions Using Resonant Anomalous X-ray Reflectivity. Journal of Physical Chemistry C, 2016, 120, 15216-15223.	3.1	24
28	X-ray Analyses of Lead Adsorption on the (001), (110), and (012) Hematite Surfaces. Environmental Science & Technology, 2016, 50, 12283-12291.	10.0	55
29	A Comparison of Adsorption, Reduction, and Polymerization of the Plutonyl(VI) and Uranyl(VI) Ions from Solution onto the Muscovite Basal Plane. Langmuir, 2016, 32, 10473-10482.	3.5	8
30	Structural Characterization of Aluminum (Oxy)hydroxide Films at the Muscovite (001)–Water Interface. Langmuir, 2016, 32, 477-486.	3.5	14
31	Replacement of Calcite (CaCO ₃) by Cerussite (PbCO ₃). Environmental Science & Technology, 2016, 50, 12984-12991.	10.0	51
32	Rb ⁺ Adsorption at the Quartz(101)–Aqueous Interface: Comparison of Resonant Anomalous X-ray Reflectivity with ab Initio Calculations. Journal of Physical Chemistry C, 2015, 119, 4778-4788.	3.1	34
33	Effects of the background electrolyte on Th(IV) sorption to muscovite mica. Geochimica Et Cosmochimica Acta, 2015, 165, 280-293.	3.9	11
34	X-ray–driven reaction front dynamics at calcite-water interfaces. Science, 2015, 349, 1330-1334.	12.6	69
35	Hydration layer structure at solid–water interfaces. MRS Bulletin, 2014, 39, 1056-1061.	3.5	65
36	Surface-Mediated Formation of Pu(IV) Nanoparticles at the Muscovite-Electrolyte Interface. Environmental Science & Technology, 2013, 47, 14178-14184.	10.0	27

SANG SOO LEE

#	Article	IF	CITATIONS
37	Changes in adsorption free energy and speciation during competitive adsorption between monovalent cations at the muscovite (001)-water interface. Geochimica Et Cosmochimica Acta, 2013, 123, 416-426.	3.9	57
38	Optimizing a flow-through X-ray transmission cell for studies of temporal and spatial variations of ion distributions at mineral–water interfaces. Journal of Synchrotron Radiation, 2013, 20, 125-136.	2.4	17
39	Investigation of Structure, Adsorption Free Energy, and Overcharging Behavior of Trivalent Yttrium Adsorbed at the MuscoviteÂ(001)–Water Interface. Journal of Physical Chemistry C, 2013, 117, 23738-23749.	3.1	36
40	Adsorption of Plutonium Oxide Nanoparticles. Langmuir, 2012, 28, 2620-2627.	3.5	27
41	Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged Interfaces. ACS Nano, 2012, 6, 9818-9827.	14.6	151
42	Monovalent Ion Adsorption at the Muscovite (001)–Solution Interface: Relationships among Ion Coverage and Speciation, Interfacial Water Structure, and Substrate Relaxation. Langmuir, 2012, 28, 8637-8650.	3.5	128
43	Heavy Metal Sorption at the Muscovite (001)–Fulvic Acid Interface. Environmental Science & Technology, 2011, 45, 9574-9581.	10.0	35
44	Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environmental Geochemistry and Health, 2011, 33, 31-39.	3.4	119
45	Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environmental Earth Sciences, 2010, 61, 1301-1308.	2.7	178
46	Hydrated Cation Speciation at the Muscovite (001)â^'Water Interface. Langmuir, 2010, 26, 16647-16651.	3.5	126
47	Competitive adsorption of strontium and fulvic acid at the muscovite–solution interface observed with resonant anomalous X-ray reflectivity. Geochimica Et Cosmochimica Acta, 2010, 74, 1762-1776.	3.9	47
48	Enhanced Uptake and Modified Distribution of Mercury(II) by Fulvic Acid on the Muscovite (001) Surface. Environmental Science & Technology, 2009, 43, 5295-5300.	10.0	43
49	Distribution of barium and fulvic acid at the mica–solution interface using in-situ X-ray reflectivity. Geochimica Et Cosmochimica Acta, 2007, 71, 5763-5781.	3.9	53