
Carsten Berndt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1717160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative Stress. Annual Review of Biochemistry, 2017, 86, 715-748.	11.1	2,180
2	Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 2018, 172, 409-422.e21.	28.9	920
3	Thioredoxins, Glutaredoxins, and Peroxiredoxins—Molecular Mechanisms and Health Significance: from Cofactors to Antioxidants to Redox Signaling. Antioxidants and Redox Signaling, 2013, 19, 1539-1605.	5.4	557
4	Glutaredoxin systems. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 1304-1317.	2.4	523
5	Thiol redox control via thioredoxin and glutaredoxin systems. Biochemical Society Transactions, 2005, 33, 1375.	3.4	341
6	Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1227-H1236.	3.2	307
7	Identification and Successful Negotiation of a Metabolic Checkpoint in Direct Neuronal Reprogramming. Cell Stem Cell, 2016, 18, 396-409.	11.1	307
8	Characterization of human glutaredoxin 2 as iron-sulfur protein: A possible role as redox sensor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8168-8173.	7.1	260
9	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	9.0	242
10	Thioredoxins and glutaredoxins as facilitators of protein folding. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 641-650.	4.1	223
11	Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub?. Biological Chemistry, 2015, 396, 523-537.	2.5	137
12	A Novel Monothiol Glutaredoxin (Grx4) from Escherichia coli Can Serve as a Substrate for Thioredoxin Reductase. Journal of Biological Chemistry, 2005, 280, 24544-24552.	3.4	129
13	Glutaredoxins in Thiol/Disulfide Exchange. Antioxidants and Redox Signaling, 2013, 18, 1654-1665.	5.4	117
14	Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death and Disease, 2021, 12, 1028.	6.3	107
15	How Does Iron–Sulfur Cluster Coordination Regulate the Activity of Human Glutaredoxin 2?. Antioxidants and Redox Signaling, 2007, 9, 151-157.	5.4	101
16	Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation. Molecular Biology of the Cell, 2013, 24, 1895-1903.	2.1	101
17	Glutathione, Glutaredoxins, and Iron. Antioxidants and Redox Signaling, 2017, 27, 1235-1251.	5.4	95
18	Oxidation and S-Nitrosylation of Cysteines in Human Cytosolic and Mitochondrial Glutaredoxins. Journal of Biological Chemistry, 2007, 282, 14428-14436.	3.4	94

CARSTEN BERNDT

#	Article	IF	CITATIONS
19	Metabolism of selenium compounds catalyzed by the mammalian selenoprotein thioredoxin reductase. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 1513-1519.	2.4	92
20	Characterization of the human monothiol glutaredoxin 3 (PICOT) as iron–sulfur protein. Biochemical and Biophysical Research Communications, 2010, 394, 372-376.	2.1	89
21	Expression Pattern of Human Glutaredoxin 2 Isoforms: Identification and Characterization of Two Testis/Cancer Cell-Specific Isoforms. Antioxidants and Redox Signaling, 2008, 10, 547-558.	5.4	85
22	The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13735-13740.	7.1	84
23	A dimer of the FeS cluster biosynthesis protein IscA from cyanobacteria binds a [2Fe2S] cluster between two protomers and transfers it to [2Fe2S] and [4Fe4S] apo proteins. FEBS Journal, 2003, 270, 1662-1671.	0.2	81
24	The Dithiol Glutaredoxins of African Trypanosomes Have Distinct Roles and Are Closely Linked to the Unique Trypanothione Metabolism. Journal of Biological Chemistry, 2010, 285, 35224-35237.	3.4	78
25	Arabidopsis Glutaredoxin S17 and Its Partner, the Nuclear Factor Y Subunit C11/Negative Cofactor 2α, Contribute to Maintenance of the Shoot Apical Meristem under Long-Day Photoperiod. Plant Physiology, 2015, 167, 1643-1658.	4.8	78
26	Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20057-20062.	7.1	77
27	Vertebrate-specific glutaredoxin is essential for brain development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20532-20537.	7.1	71
28	Redox regulation by glutathione needs enzymes. Frontiers in Pharmacology, 2014, 5, 168.	3.5	71
29	Characterization and Reconstitution of a 4Fe-4S Adenylyl Sulfate/Phosphoadenylyl Sulfate Reductase from Bacillus subtilis. Journal of Biological Chemistry, 2004, 279, 7850-7855.	3.4	63
30	Monothiol Glutaredoxin-1 Is an Essential Iron-Sulfur Protein in the Mitochondrion of African Trypanosomes. Journal of Biological Chemistry, 2008, 283, 27785-27798.	3.4	60
31	A Conservedcis-Proline Precludes Metal Binding by the Active Site Thiolates in Members of the Thioredoxin Family of Proteinsâ€. Biochemistry, 2007, 46, 6903-6910.	2.5	57
32	The Multidomain Thioredoxin-Monothiol Glutaredoxins Represent a Distinct Functional Group. Antioxidants and Redox Signaling, 2011, 15, 19-30.	5.4	54
33	The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity. Chemical Science, 2015, 6, 7049-7058.	7.4	52
34	Molecular and Catalytic Properties of Arabidopsis thaliana Adenylyl Sulfate (APS)-Kinase. Archives of Biochemistry and Biophysics, 2001, 392, 303-310.	3.0	51
35	Molecular basis for the distinct functions of redox-active and FeS-transfering glutaredoxins. Nature Communications, 2020, 11, 3445.	12.8	47
36	The metalloprotease ADAMTS4 generates N-truncated Aβ4–x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer's disease. Acta Neuropathologica, 2019, 137, 239-257.	7.7	44

CARSTEN BERNDT

#	Article	IF	CITATIONS
37	Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells. Redox Biology, 2014, 2, 673-678.	9.0	43
38	Chelation of lysosomal iron protects against ionizing radiation. Biochemical Journal, 2010, 432, 295-301.	3.7	41
39	Hypoxic Signaling and the Cellular Redox Tumor Environment Determine Sensitivity to MTH1 Inhibition. Cancer Research, 2016, 76, 2366-2375.	0.9	40
40	Iron–Sulfur Cluster Binding by Mitochondrial Monothiol Glutaredoxin-1 of <i>Trypanosoma brucei</i> : Molecular Basis of Iron–Sulfur Cluster Coordination and Relevance for Parasite Infectivity. Antioxidants and Redox Signaling, 2013, 19, 665-682.	5.4	37
41	Redox-regulated fate of neural stem progenitor cells. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1543-1554.	2.4	37
42	Early alpha-lipoic acid therapy protects from degeneration of the inner retinal layers and vision loss in an experimental autoimmune encephalomyelitis-optic neuritis model. Journal of Neuroinflammation, 2018, 15, 71.	7.2	37
43	Characterization of the Redox Properties of Poplar Glutaredoxin. Antioxidants and Redox Signaling, 2003, 5, 15-22.	5.4	33
44	Ironâ€sulfur glutaredoxin 2 protects oligodendrocytes against damage induced by nitric oxide release from activated microglia. Glia, 2017, 65, 1521-1534.	4.9	33
45	Redox regulation of cytoskeletal dynamics during differentiation and de-differentiation. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1575-1587.	2.4	30
46	Protective effects of 4-aminopyridine in experimental optic neuritis and multiple sclerosis. Brain, 2020, 143, 1127-1142.	7.6	29
47	Mechanism of inhibition of ribonucleotide reductase with motexafin gadolinium (MGd). Biochemical and Biophysical Research Communications, 2009, 379, 775-779.	2.1	22
48	Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery. Cells, 2020, 9, 815.	4.1	22
49	Regulation of sirtuin expression in autoimmune neuroinflammation: Induction of SIRT1 in oligodendrocyte progenitor cells. Neuroscience Letters, 2019, 704, 116-125.	2.1	21
50	Glutaredoxins with iron-sulphur clusters in eukaryotes - Structure, function and impact on disease. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148317.	1.0	16
51	Cellular functions of glutathione. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3137-3138.	2.4	15
52	An unusual mode of iron–sulfur-cluster coordination in a teleost glutaredoxin. Biochemical and Biophysical Research Communications, 2013, 436, 491-496.	2.1	15
53	Activation of Wnt signaling promotes hippocampal neurogenesis in experimental autoimmune encephalomyelitis. Molecular Neurodegeneration, 2016, 11, 53.	10.8	13
54	Glutaredoxin 2 Reduces Asthma-Like Acute Airway Inflammation in Mice. Frontiers in Immunology, 2020, 11, 561724.	4.8	12

CARSTEN BERNDT

#	Article	IF	CITATIONS
55	Ascorbate and endocytosed Motexafin gadolinium induce lysosomal rupture. Cancer Letters, 2011, 307, 119-123.	7.2	7
56	Redox Events As Modulators of Pathology and Therapy of Neuroinflammatory Diseases. Frontiers in Cell and Developmental Biology, 2016, 4, 63.	3.7	6
57	Glutaredoxin 2 promotes SP-1-dependent CSPG4 transcription and migration of wound healing NG2 glia and glioma cells: Enzymatic Taoism. Redox Biology, 2022, 49, 102221.	9.0	6
58	Thioredoxins and Glutaredoxins. Functions and Metal Ion Interactions. Metal Ions in Life Sciences, 2009, , 413-439.	1.0	4
59	Preface to the special issue on redox control of cell function. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 1169.	2.4	3
60	Protein oxidative damage in the hippocampus in a mouse model of acute hyperammonemia. European Journal of Medical Research, 2014, 19, .	2.2	3
61	Redox regulation of differentiation and de-differentiation. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1467-1468.	2.4	2
62	Redox-regulated brain development. , 2020, , 565-582.		2
63	Oxidative Folding of Proteins <i>in vivo</i> . RSC Biomolecular Sciences, 2008, , 1-18.	0.4	Ο
64	14 Thioredoxins and Glutaredoxins. Functions and Metal Ion Interactions. , 2015, , 413-440.		0
65	Thioredoxin (TXN). , 2016, , 1-9.		0
66	Thioredoxin (TXN). , 2018, , 5377-5385.		0
67	Functional plasticity in the thioredoxin family: FeS-thio- and glutaredoxins. , 2022, , 219-239.		О