ASI Loskog

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1717074/publications.pdf Version: 2024-02-01

ASILOSKOC

#	Article	IF	CITATIONS
1	Immune priming using DC- and TÂcell-targeting gene therapy sensitizes both treated and distant B16 tumors to checkpoint inhibition. Molecular Therapy - Oncolytics, 2022, 24, 429-442.	4.4	9
2	Boosting CAR T-cell responses in lymphoma by simultaneous targeting of CD40/4-1BB using oncolytic viral gene therapy. Cancer Immunology, Immunotherapy, 2021, 70, 2851-2865.	4.2	28
3	Systemic immunity upon local oncolytic virotherapy armed with immunostimulatory genes may be supported by tumor-derived exosomes. Molecular Therapy - Oncolytics, 2021, 20, 508-518.	4.4	21
4	A phase 2a clinical study on the safety and efficacy of individualized dosed mebendazole in patients with advanced gastrointestinal cancer. Scientific Reports, 2021, 11, 8981.	3.3	18
5	Adenoviral CD40 Ligand Immunotherapy in 32 Canine Malignant Melanomas–Long-Term Follow Up. Frontiers in Veterinary Science, 2021, 8, 695222.	2.2	5
6	Mebendazole is unique among tubulin-active drugs in activating the MEK–ERK pathway. Scientific Reports, 2020, 10, 13124.	3.3	9
7	Intratumoral immunostimulatory AdCD40L gene therapy in patients with advanced solid tumors. Cancer Gene Therapy, 2020, 28, 1188-1197.	4.6	3
8	The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Frontiers in Immunology, 2020, 11, 940.	4.8	423
9	Phase 1 study of the protein deubiquitinase inhibitor VLX1570 in patients with relapsed and/or refractory multiple myeloma. Investigational New Drugs, 2020, 38, 1448-1453.	2.6	58
10	Immunostimulatory oncolytic virotherapy for multiple myeloma targeting 4-1BB and/or CD40. Cancer Gene Therapy, 2020, 27, 948-959.	4.6	28
11	Mebendazole-induced M1 polarisation of THP-1 macrophages may involve DYRK1B inhibition. BMC Research Notes, 2019, 12, 234.	1.4	12
12	Altered profile of immune regulatory cells in the peripheral blood of lymphoma patients. BMC Cancer, 2019, 19, 316.	2.6	16
13	Evaluation of Diffusion-Weighted MRI and FDG-PET/CT to Assess Response to AdCD40L treatment in Metastatic Melanoma Patients. Scientific Reports, 2019, 9, 18069.	3.3	7
14	IL-6 Signaling Blockade during CD40-Mediated Immune Activation Favors Antitumor Factors by Reducing TGF-β, Collagen Type I, and PD-L1/PD-1. Journal of Immunology, 2019, 202, 787-798.	0.8	30
15	An anergic immune signature in the tumor microenvironment of classical Hodgkin lymphoma is associated with inferior outcome. European Journal of Haematology, 2018, 100, 88-97.	2.2	22
16	A Phase I/IIa Trial Using CD19-Targeted Third-Generation CAR T Cells for Lymphoma and Leukemia. Clinical Cancer Research, 2018, 24, 6185-6194.	7.0	177
17	Mebendazole stimulates CD14+ myeloid cells to enhance T-cell activation and tumour cell killing. Oncotarget, 2018, 9, 30805-30813.	1.8	16
18	Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion. Cytotherapy, 2017, 19, 689-702.	0.7	80

A S I Loskog

#	Article	IF	CITATIONS
19	The anticancer effect of mebendazole may be due to M1 monocyte/macrophage activation via ERK1/2 and TLR8-dependent inflammasome activation. Immunopharmacology and Immunotoxicology, 2017, 39, 199-210.	2.4	23
20	Activation of myeloid and endothelial cells by CD40L gene therapy supports T-cell expansion and migration into the tumor microenvironment. Gene Therapy, 2017, 24, 92-103.	4.5	56
21	Shaping the Tumor Stroma and Sparking Immune Activation by CD40 and 4-1BB Signaling Induced by an Armed Oncolytic Virus. Clinical Cancer Research, 2017, 23, 5846-5857.	7.0	108
22	Adenovirus-mediated CD40L gene transfer increases Teffector/Tregulatory cell ratio and upregulates death receptors in metastatic melanoma patients. Journal of Translational Medicine, 2017, 15, 79.	4.4	37
23	Preclinical Evaluation of AdVince, an Oncolytic Adenovirus Adapted for Treatment of Liver Metastases from Neuroendocrine Cancer. Neuroendocrinology, 2017, 105, 54-66.	2.5	24
24	Differences in Expansion Potential of Naive Chimeric Antigen Receptor T Cells from Healthy Donors and Untreated Chronic Lymphocytic Leukemia Patients. Frontiers in Immunology, 2017, 8, 1956.	4.8	79
25	Local irradiation does not enhance the effect of immunostimulatory AdCD40L gene therapy combined with low dose cyclophosphamide in melanoma patients. Oncotarget, 2017, 8, 78573-78587.	1.8	5
26	Immunostimulatory AdCD40L gene therapy combined with low-dose cyclophosphamide in metastatic melanoma patients. British Journal of Cancer, 2016, 114, 872-880.	6.4	41
27	Plasma proteomics in CML patients before and after initiation of tyrosine kinase inhibitor therapy reveals induced Th1 immunity and loss of angiogenic stimuli. Leukemia Research, 2016, 50, 95-103.	0.8	20
28	Gemcitabine reduces MDSCs, tregs and TGFβ-1 while restoring the teff/treg ratio in patients with pancreatic cancer. Journal of Translational Medicine, 2016, 14, 282.	4.4	152
29	Marked Impact of Different Cytokines on Phenotype and Cytotoxic Activity of CD19-Specific CAR T Cells. Blood, 2016, 128, 3509-3509.	1.4	0
30	Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles. Viruses, 2015, 7, 5780-5791.	3.3	24
31	Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors. PLoS ONE, 2015, 10, e0144787.	2.5	92
32	Insertion of exogenous epitopes in the E3-19K of oncolytic adenoviruses to enhance TAP-independent presentation and immunogenicity. Gene Therapy, 2015, 22, 596-601.	4.5	17
33	The Tyrosine Kinase Inhibitors Imatinib and Dasatinib Reduce Myeloid Suppressor Cells and Release Effector Lymphocyte Responses. Molecular Cancer Therapeutics, 2015, 14, 1181-1191.	4.1	71
34	CAR T-Cell Therapy: The Role of Physical Barriers and Immunosuppression in Lymphoma. Human Gene Therapy, 2015, 26, 498-505.	2.7	56
35	VEGF suppresses T″ymphocyte infiltration in the tumor microenvironment through inhibition of NFâ€₽Bâ€induced endothelial activation. FASEB Journal, 2015, 29, 227-238.	0.5	147
36	Third Generation CD19-CAR T Cells for Relapsed and Refractory Lymphoma and Leukemia Report from the Swedish Phase I/IIa Trial. Blood, 2015, 126, 1534-1534.	1.4	9

A S I Loskog

#	Article	IF	CITATIONS
37	Increased TACE (Tumor necrosis factor-alpha±-converting enzyme; ADAM17) Activity Associates with Decreased CD62L Expression, Increased Soluble CD62L Plasma Levels and Predicts Molecular Response to Nilotinib Therapy in Patients with Early Chronic Phase Chronic Myelogenous Leukemia (CML-CP): Results from an ENEST1st Substudy. Blood, 2015, 126, 4033-4033.	1.4	1
38	Local CTLA4 blockade effectively restrains experimental pancreatic adenocarcinoma growth in vivo. Oncolmmunology, 2014, 3, e27614.	4.6	70
39	CD40L gene therapy tilts the myeloid cell profile and promotes infiltration of activated T lymphocytes. Cancer Gene Therapy, 2014, 21, 95-102.	4.6	20
40	Enhanced therapeutic anti-tumor immunity induced by co-administration of 5-fluorouracil and adenovirus expressing CD40 ligand. Cancer Immunology, Immunotherapy, 2014, 63, 273-282.	4.2	14
41	Genetically engineered T cells for the treatment of cancer. Journal of Internal Medicine, 2013, 273, 166-181.	6.0	45
42	Tâ€cell responses after haematopoietic stem cell transplantation for aggressive relapsing–remitting multiple sclerosis. Immunology, 2013, 140, 211-219.	4.4	32
43	αBâ€Crystallin regulates expansion of CD11b ⁺ Grâ€1 ⁺ immature myeloid cells during tumor progression. FASEB Journal, 2013, 27, 151-162.	0.5	5
44	Treatment Efficacy and Immune Stimulation by AdCD40L Gene Therapy of Spontaneous Canine Malignant Melanoma. Journal of Immunotherapy, 2013, 36, 350-358.	2.4	56
45	Increased Level of Myeloid-Derived Suppressor Cells, Programmed Death Receptor Ligand 1/Programmed Death Receptor 1, and Soluble CD25 in Sokal High Risk Chronic Myeloid Leukemia. PLoS ONE, 2013, 8, e55818.	2.5	102
46	lmmune Monitoring In Patients With Early Chronic Phase Chronic Myelogenous Leukemia (CML-CP) Treated With Frontline Nilotinib. Blood, 2013, 122, 2731-2731.	1.4	0
47	Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Therapy, 2012, 19, 988-998.	4.5	132
48	Immune Response Is an Important Aspect of the Antitumor Effect Produced by a CD40L-Encoding Oncolytic Adenovirus. Cancer Research, 2012, 72, 2327-2338.	0.9	144
49	CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. Journal of Neuroinflammation, 2012, 9, 112.	7.2	243
50	AdCD40L—Crossing the Valley of Death?. International Reviews of Immunology, 2012, 31, 289-298.	3.3	17
51	T regulatory cells in B ell malignancy – tumour support or kiss of death?. Immunology, 2012, 135, 255-260.	4.4	24
52	Both CD4 ⁺ â€fFoxP3 ⁺ and CD4 ⁺ â€fFoxP3 ^{â^'} T cells from patients with B ell malignancy express cytolytic markers and kill autologous leukaemic B cells <i>in vitro</i> . Immunology, 2011, 133, 296-306.	4.4	40
53	ABT-737 Sensitizes B Cell Tumors for Killing by CD19-Retargeted T Cells,. Blood, 2011, 118, 4032-4032.	1.4	0
54	Increased Levels of Myeloid-Derived Suppressor Cells (MDSCs) in Chronic Myeloid Leukemia and the Effect of Tyrosine Kinase Inhibitors on MDSCs in Vitro. Blood, 2011, 118, 2744-2744.	1.4	0

A S I LOSKOG

#	Article	IF	CITATIONS
55	Enhanced Tumor Eradication by Combining CTLA-4 or PD-1 Blockade With CpG Therapy. Journal of Immunotherapy, 2010, 33, 225-235.	2.4	171
56	T regulatory cells control Tâ€cell proliferation partly by the release of soluble CD25 in patients with Bâ€cell malignancies. Immunology, 2010, 131, 371-376.	4.4	60
57	<i>AdCD40L</i> Immunogene Therapy for Bladder Carcinoma—The First Phase I/IIa Trial. Clinical Cancer Research, 2010, 16, 3279-3287.	7.0	89
58	T regulatory cells lacking CD25 are increased in MS during relapse. Autoimmunity, 2010, 43, 590-597.	2.6	30
59	Midgut carcinoid patients display increased numbers of regulatory T cells in peripheral blood with infiltration into tumor tissue. Acta Oncológica, 2009, 48, 391-400.	1.8	36
60	The Tâ€cell pool is anergized in patients with multiple sclerosis in remission. Immunology, 2009, 126, 92-101.	4.4	34
61	Adenovirus delivery of human CD40 ligand gene confers direct therapeutic effects on carcinomas. Cancer Gene Therapy, 2009, 16, 848-860.	4.6	32
62	The Janus faces of CD40 in cancer. Seminars in Immunology, 2009, 21, 301-307.	5.6	53
63	Complement Activation by CpG in a Human Whole Blood Loop System: Mechanisms and Immunomodulatory Effects. Journal of Immunology, 2009, 183, 6724-6732.	0.8	37
64	Local AdCD40L Gene Therapy is Effective for Disseminated Murine Experimental Cancer by Breaking T-cell Tolerance and Inducing Tumor Cell Growth Inhibition. Journal of Immunotherapy, 2009, 32, 785-792.	2.4	19
65	Soluble IL2R (CD25), IL10 and PDL1 May Control T Cell Activation in Chronic Myeloid Leukemia Blood, 2009, 114, 4252-4252.	1.4	0
66	Efficient Adenovector CD40 Ligand Immunotherapy of Canine Malignant Melanoma. Journal of Immunotherapy, 2008, 31, 377-384.	2.4	46
67	CpG Therapy is Superior to BCG in an Orthotopic Bladder Cancer Model and Generates CD4+ T-cell Immunity. Journal of Immunotherapy, 2008, 31, 34-42.	2.4	45
68	Genetic Engineering - A New Era for Cancer Immunotherapy?. Current Cancer Therapy Reviews, 2007, 3, 194-198.	0.3	0
69	Human Bladder Carcinoma is Dominated by T-Regulatory Cells and Th1 Inhibitory Cytokines. Journal of Urology, 2007, 177, 353-358.	0.4	97
70	CD40L - A Multipotent Molecule for Tumor Therapy. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2007, 7, 23-28.	1.2	50
71	Reply to â€ [~] Enhanced CD28 signaling may be a common mechanism underlying resistance to regulation' by E Wohlfert and Clark RB. Leukemia, 2007, 21, 175-175.	7.2	1
72	Adenovirus-mediated CD40 ligand therapy induces tumor cell apoptosis and systemic immunity in the TRAMP-C2 mouse prostate cancer model. Prostate, 2006, 66, 831-838.	2.3	36

A S I Loskog

#	Article	IF	CITATIONS
73	Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia, 2006, 20, 1819-1828.	7.2	179
74	Dendritic cells engineered to express CD40L continuously produce IL12 and resist negative signals from Tr1/Th3 dominated tumors. Cancer Immunology, Immunotherapy, 2006, 55, 588-597.	4.2	20
75	CpG Oligonucleotide Therapy Cures Subcutaneous and Orthotopic Tumors and Evokes Protective Immunity in Murine Bladder Cancer. Journal of Immunotherapy, 2005, 28, 20-27.	2.4	30
76	The immunotherapy of prostate and bladder cancer. BJU International, 2005, 96, 728-735.	2.5	15
77	Optimization of the MB49 mouse bladder cancer model for adenoviral gene therapy. Laboratory Animals, 2005, 39, 384-393.	1.0	38
78	AdCD40L Gene Therapy Counteracts T Regulatory Cells and Cures Aggressive Tumors in an Orthotopic Bladder Cancer Model. Clinical Cancer Research, 2005, 11, 8816-8821.	7.0	52
79	Adenovirus CD40 Ligand Gene Therapy Counteracts Immune Escape Mechanisms in the Tumor Microenvironment. Journal of Immunology, 2004, 172, 7200-7205.	0.8	72
80	In vitro activation of cancer patient–derived dendritic cells by tumor cells genetically modified to express CD154. Cancer Gene Therapy, 2002, 9, 846-853.	4.6	19
81	Human urinary bladder carcinomas express adenovirus attachment and internalization receptors. Gene Therapy, 2002, 9, 547-553.	4.5	19
82	Adenovector gene transfer in bladder cancer: expression of receptors for viral attachment and internalization. European Journal of Cancer, 2001, 37, S87.	2.8	0
83	POTENT ANTITUMOR EFFECTS OF CD154 TRANSDUCED TUMOR CELLS IN EXPERIMENTAL BLADDER CANCER. Journal of Urology, 2001, 166, 1093-1097.	0.4	41
84	POTENT ANTITUMOR EFFECTS OF CD154 TRANSDUCED TUMOR CELLS IN EXPERIMENTAL BLADDER CANCER. Journal of Urology, 2001, , 1093-1097.	0.4	4
85	Potent antitumor effects of CD154 transduced tumor cells in experimental bladder cancer. Journal of Urology, 2001, 166, 1093-7.	0.4	10