## Eggehard Josef Holler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1716375/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Novel nanopolymer RNA therapeutics normalize human diabetic corneal wound healing and epithelial stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102332.          | 3.3  | 16        |
| 2  | Multifunctional Nanopolymers for Blood–Brain Barrier Delivery and Inhibition of Glioblastoma<br>Growth through EGFR/EGFRvIII, c-Myc, and PD-1. Nanomaterials, 2021, 11, 2892.                | 4.1  | 9         |
| 3  | Small-Sized Co-Polymers for Targeted Delivery of Multiple Imaging and Therapeutic Agents.<br>Nanomaterials, 2021, 11, 2996.                                                                  | 4.1  | 5         |
| 4  | Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. Journal of Controlled Release, 2020, 320, 45-62.                       | 9.9  | 180       |
| 5  | <p>Single- and Multi-Arm Gadolinium MRI Contrast Agents for Targeted Imaging of<br/>Glioblastoma</p> . International Journal of Nanomedicine, 2020, Volume 15, 3057-3070.                    | 6.7  | 15        |
| 6  | NIMG-01. MRI VIRTUAL BIOPSY AND TREATMENT OF PRIMARY OR BRAIN METASTATIC TUMORS WITH TARGETED NANOBIOCONJUGATES. Neuro-Oncology, 2020, 22, ii146-ii146.                                      | 1.2  | 0         |
| 7  | IMMU-50. BBB CROSSING NANO-IMMUNOMEDICINE COMBINATION THERAPY TO TREAT BRAIN PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA. Neuro-Oncology, 2020, 22, ii115-ii115.                                 | 1.2  | 0         |
| 8  | Blood–brain barrier permeable nano immunoconjugates induce local immune responses for glioma<br>therapy. Nature Communications, 2019, 10, 3850.                                              | 12.8 | 199       |
| 9  | Polymalic acid chlorotoxin nanoconjugate for near-infrared fluorescence guided resection of glioblastoma multiforme. Biomaterials, 2019, 206, 146-159.                                       | 11.4 | 35        |
| 10 | TMIC-47. INHIBITION OF GLIOBLASTOMA GROWTH THROUGH TUMOR-MICROENVIRONMENT CROSSTALK<br>USING CLINICALLY SUITABLE NANOBIOCONJUGATE. Neuro-Oncology, 2019, 21, vi258-vi258.                    | 1.2  | 0         |
| 11 | Blockade of a Laminin-411–Notch Axis with CRISPR/Cas9 or a Nanobioconjugate Inhibits Glioblastoma<br>Growth through Tumor-Microenvironment Cross-talk. Cancer Research, 2019, 79, 1239-1251. | 0.9  | 61        |
| 12 | A Combination of Tri-Leucine and Angiopep-2 Drives a Polyanionic Polymalic Acid Nanodrug Platform<br>Across the Blood–Brain Barrier. ACS Nano, 2019, 13, 1253-1271.                          | 14.6 | 51        |
| 13 | Abstract 977: Nano immunotherapeutics crossing blood-brain barrier to activate local brain tumor immune system. , 2019, , .                                                                  |      | 0         |
| 14 | Abstract 1896: Blockade of laminin-411-notch crosstalk as an effective therapy for glioblastoma treatment. , 2019, , .                                                                       |      | 0         |
| 15 | Coarse particulate matter (PM2.5–10) in Los Angeles Basin air induces expression of inflammation and cancer biomarkers in rat brains. Scientific Reports, 2018, 8, 5708.                     | 3.3  | 49        |
| 16 | Covalent nano delivery systems for selective imaging and treatment of brain tumors. Advanced Drug<br>Delivery Reviews, 2017, 113, 177-200.                                                   | 13.7 | 67        |
| 17 | HER2-positive breast cancer targeting and treatment by a peptide-conjugated mini nanodrug.<br>Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 631-639.                        | 3.3  | 36        |
| 18 | Polymalic Acid Tritryptophan Copolymer Interacts with Lipid Membrane Resulting in Membrane<br>Solubilization. Journal of Nanomaterials. 2017. 2017. 1-11.                                    | 2.7  | 5         |

Eggehard Josef Holler

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Simultaneous blockade of interacting CK2 and EGFR pathways by tumor-targeting nanobioconjugates increases therapeutic efficacy against glioblastoma multiforme. Journal of Controlled Release, 2016, 244, 14-23. | 9.9  | 40        |
| 20 | Curcumin Targeted, Polymalic Acid-Based MRI Contrast Agent for the Detection of AÎ <sup>2</sup> Plaques in Alzheimer's Disease. Macromolecular Bioscience, 2015, 15, 1212-1217.                                  | 4.1  | 38        |
| 21 | Quantitative Analysis of PMLA Nanoconjugate Components after Backbone Cleavage. International<br>Journal of Molecular Sciences, 2015, 16, 8607-8620.                                                             | 4.1  | 6         |
| 22 | Multifunctional Self-Assembled Films for Rapid Hemostat and Sustained Anti-infective Delivery. ACS<br>Biomaterials Science and Engineering, 2015, 1, 148-156.                                                    | 5.2  | 39        |
| 23 | MRI Virtual Biopsy and Treatment of Brain Metastatic Tumors with Targeted Nanobioconjugates:<br>Nanoclinic in the Brain. ACS Nano, 2015, 9, 5594-5608.                                                           | 14.6 | 78        |
| 24 | Abstract 3686: Engineering nanoparticles of polymalic acid for controlled delivery of anticancer drugs. , 2015, , .                                                                                              |      | 0         |
| 25 | Advances in Imaging: Brain Tumors to Alzheimer's Disease. The Bangkok Medical Journal, 2015, 10, 83-97.                                                                                                          | 0.0  | 1         |
| 26 | Ordered and Kinetically Discrete Sequential Protein Release from Biodegradable Thin Films.<br>Angewandte Chemie - International Edition, 2014, 53, 8093-8098.                                                    | 13.8 | 27        |
| 27 | Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for<br>Personalized Medicine?. Journal of Visualized Experiments, 2014, , .                                        | 0.3  | 19        |
| 28 | Multilayer Films Assembled from Naturally-Derived Materials for Controlled Protein Release.<br>Biomacromolecules, 2014, 15, 2049-2057.                                                                           | 5.4  | 47        |
| 29 | Nanoparticles of Esterified Polymalic Acid for Controlled Anticancer Drug Release. Macromolecular<br>Bioscience, 2014, 14, 1325-1336.                                                                            | 4.1  | 8         |
| 30 | Polymalic acid nanobioconjugate for simultaneous immunostimulation and inhibition of tumor growth in HER2/neu-positive breast cancer. Journal of Controlled Release, 2013, 171, 322-329.                         | 9.9  | 42        |
| 31 | Nanomedicine therapeutic approaches to overcome cancer drug resistance. Advanced Drug Delivery<br>Reviews, 2013, 65, 1866-1879.                                                                                  | 13.7 | 598       |
| 32 | Toxicity and efficacy evaluation of multiple targeted polymalic acid conjugates for triple-negative breast cancer treatment. Journal of Drug Targeting, 2013, 21, 956-967.                                       | 4.4  | 48        |
| 33 | Distinct mechanisms of membrane permeation induced by two polymalic acid copolymers. Biomaterials, 2013, 34, 217-225.                                                                                            | 11.4 | 24        |
| 34 | Abstract 3911: Imaging and treatment of brain metastatic tumors using nanopolymers , 2013, , .                                                                                                                   |      | 0         |
| 35 | Biocompatible nanopolymers: the next generation of breast cancer treatment?. Nanomedicine, 2012, 7, 1467-1470.                                                                                                   | 3.3  | 37        |
| 36 | The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochimica Et<br>Biophysica Acta - General Subjects, 2012, 1820, 291-317.                                               | 2.4  | 610       |

| #  | Article                                                                                                                                                                                                                                           | IF                 | CITATIONS           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| 37 | Cellular Delivery of Doxorubicin via pH-Controlled Hydrazone Linkage Using Multifunctional Nano<br>Vehicle Based on Poly(β-L-Malic Acid). International Journal of Molecular Sciences, 2012, 13, 11681-11693.                                     | 4.1                | 71                  |
| 38 | Nanobiopolymer for Direct Targeting and Inhibition of EGFR Expression in Triple Negative Breast<br>Cancer. PLoS ONE, 2012, 7, e31070.                                                                                                             | 2.5                | 51                  |
| 39 | Modification of Microbial Polymalic Acid With Hydrophobic Amino Acids for Drugâ€Releasing<br>Nanoparticles. Macromolecular Chemistry and Physics, 2012, 213, 1623-1631.                                                                           | 2.2                | 18                  |
| 40 | New functional degradable and bio-compatible nanoparticles based on poly(malic acid) derivatives for site-specific anti-cancer drug delivery. International Journal of Pharmaceutics, 2012, 423, 84-92.                                           | 5.2                | 62                  |
| 41 | Poly(methyl malate) Nanoparticles: Formation, Degradation, and Encapsulation of Anticancer Drugs.<br>Macromolecular Bioscience, 2011, 11, 1370-1377.                                                                                              | 4.1                | 19                  |
| 42 | The optimization of polymalic acid peptide copolymers for endosomolytic drug delivery. Biomaterials, 2011, 32, 5269-5278.                                                                                                                         | 11.4               | 54                  |
| 43 | Polymalic Acid–Based Nanobiopolymer Provides Efficient Systemic Breast Cancer Treatment by<br>Inhibiting both HER2/neu Receptor Synthesis and Activity. Cancer Research, 2011, 71, 1454-1464.                                                     | 0.9                | 61                  |
| 44 | Abstract 4428: Inhibition of tumor vascular protein laminin-411 by nanobioconjugate for glioma treatment. , 2011, , .                                                                                                                             |                    | 2                   |
| 45 | Abstract 4433: Nanoconjugate mediated inhibition of EGFR expression of triple negative breast cancer. , 2011, , .                                                                                                                                 |                    | Ο                   |
| 46 | Abstract 3221: Multifunctional nano-bioconjugate based on poly( $\hat{l}^2$ -L-malic acid) for temozolomide delivery for brain tumor treatment. , 2011, , .                                                                                       |                    | 0                   |
| 47 | Temozolomide Delivery to Tumor Cells by a Multifunctional Nano Vehicle Based on Poly(β-L-malic acid).<br>Pharmaceutical Research, 2010, 27, 2317-2329.                                                                                            | 3.5                | 75                  |
| 48 | Nanoconjugate Platforms Development Based in Poly( <mml:math) 0="" 10="" 307="" 50="" etqq0="" overlock="" rgbt="" tc<br="" tf="" tj="">Methyl Esters for Tumor Drug Delivery. Journal of Nanomaterials, 2010, 2010, 1-8.</mml:math)>             | l (xmlns:mi<br>2.7 | ml="http://ww<br>19 |
| 49 | Inhibition of brain tumor growth by intravenous poly(β- <scp>l</scp> -malic acid) nanobioconjugate<br>with pH-dependent drug release. Proceedings of the National Academy of Sciences of the United States<br>of America, 2010, 107, 18143-18148. | 7.1                | 156                 |
| 50 | Nanoconjugate based on polymalic acid for tumor targeting. Chemico-Biological Interactions, 2008,<br>171, 195-203.                                                                                                                                | 4.0                | 80                  |
| 51 | Physarum polymalic acid hydrolase: Recombinant expression and enzyme activation. Biochemical and Biophysical Research Communications, 2008, 377, 735-740.                                                                                         | 2.1                | 3                   |
| 52 | Poly(malic acid) nanoconjugates containing various antibodies and oligonucleotides for multitargeting drug delivery. Nanomedicine, 2008, 3, 247-265.                                                                                              | 3.3                | 73                  |
| 53 | Biodegradable Multitargeting Nanoconjugates for Drug Delivery. Fundamental Biomedical<br>Technologies, 2008, , 233-262.                                                                                                                           | 0.2                | 0                   |
| 54 | Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly(β-l-malic acid). Journal of Controlled Release, 2007, 122, 356-363.                                                                                 | 9.9                | 69                  |

Eggehard Josef Holler

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Polycefin, a New Prototype of a Multifunctional Nanoconjugate Based on Poly(β-l-malic acid) for Drug<br>Delivery. Bioconjugate Chemistry, 2006, 17, 317-326.                                       | 3.6 | 96        |
| 56 | Screening for Î <sup>2</sup> -poly(l-malate) binding proteins by affinity chromatography. Biochemical and Biophysical Research Communications, 2006, 341, 1119-1127.                               | 2.1 | 8         |
| 57 | Stage specific expression of poly(malic acid)-affiliated genes in the life cycle of Physarum polycephalum. Spherulin 3b and polymalatase. FEBS Journal, 2006, 273, 1046-1055.                      | 4.7 | 8         |
| 58 | High molecular weight methyl ester of microbial poly(β,l-malic acid): Synthesis and crystallization.<br>Polymer, 2006, 47, 6501-6508.                                                              | 3.8 | 16        |
| 59 | Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma<br>angiogenesis. Angiogenesis, 2006, 9, 183-191.                                                       | 7.2 | 53        |
| 60 | Use of the giant multinucleate plasmodium of Physarum polycephalum to study RNA interference in the myxomycete. Analytical Biochemistry, 2005, 342, 194-199.                                       | 2.4 | 10        |
| 61 | Low-Molecular-Weight Poly(α-methylβ,L-malate) of Microbial Origin: Synthesis and Crystallization.<br>Macromolecular Bioscience, 2005, 5, 172-176.                                                  | 4.1 | 8         |
| 62 | Laminin isoform expression in breast tumors. Breast Cancer Research, 2005, 7, 166-7.                                                                                                               | 5.0 | 12        |
| 63 | Injection of poly(β-l-malate) into the plasmodium of Physarum polycephalum shortens the cell cycle and increases the growth rate. FEBS Journal, 2004, 271, 3805-3811.                              | 0.2 | 12        |
| 64 | Localization of fluorescence-labeled poly(malic acid) to the nuclei of the plasmodium of Physarum polycephalum. FEBS Journal, 2003, 270, 1536-1542.                                                | 0.2 | 8         |
| 65 | The DNA-polymerase inhibiting activity of poly(β-l-malic acid) in nuclear extract during the cell cycle ofPhysarum polycephalum. FEBS Journal, 2002, 269, 1253-1258.                               | 0.2 | 7         |
| 66 | Synthetic substrates and inhibitors of β-poly(L-malate)-hydrolase (polymalatase). FEBS Journal, 2000,<br>267, 5101-5105.                                                                           | 0.2 | 30        |
| 67 | β-Poly(L-malate) production by non-growing microplasmodia ofPhysarum polycephalum. FEMS<br>Microbiology Letters, 2000, 193, 69-74.                                                                 | 1.8 | 21        |
| 68 | ls β-poly(L-malate) synthesis catalysed by a combination of β-L-malyl-AMP-ligase and β-poly(L-malate)<br>polymerase?. FEBS Journal, 1999, 265, 1085-1090.                                          | 0.2 | 23        |
| 69 | Comparative synthesis and hydrolytic degradation of poly (L-malate) by myxomycetes and fungi.<br>Mycological Research, 1999, 103, 513-520.                                                         | 2.5 | 31        |
| 70 | Multiple polypeptides immunologically related to beta-poly( L-malate) hydrolase (polymalatase) in the plasmodium of the slime mold Physarum polycephalum. FEBS Journal, 1998, 251, 405-412.        | 0.2 | 16        |
| 71 | Helix-Coil Transitions in DNA by Novel Pt(II) Complexes: A pH Melting Study. Journal of Biomolecular<br>Structure and Dynamics, 1998, 15, 1173-1180.                                               | 3.5 | 6         |
| 72 | Molecular constituents of the replication apparatus in the plasmodium of Physarum polycephalum:<br>identification by photoaffinity labelling. Microbiology (United Kingdom), 1998, 144, 3181-3193. | 1.8 | 23        |

| #  | Article                                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Specificity and Direction of Depolymerization of beta-Poly(L-malate) Catalysed by Polymalatase from<br>Physarum polycephalum. Fluorescence Labeling at the Carboxy-Terminus of beta-Poly(l-malate). FEBS<br>Journal, 1997, 250, 308-314.                                                              | 0.2  | 23        |
| 74 | Helix–Coil Transitions in DNA Using a pH Variation Method: Case of a Melting Paradox as a Function of<br>Ionic Strength. Analytical Biochemistry, 1996, 237, 152-155.                                                                                                                                 | 2.4  | 8         |
| 75 | DNA polymerase ? of Physarum polycephalum. Current Genetics, 1995, 28, 534-545.                                                                                                                                                                                                                       | 1.7  | 10        |
| 76 | Large complexes of .betapoly(L-malate) with DNA polymerase .alpha., histones, and other proteins in nuclei of growing plasmodia of Physarum polycephalum. Biochemistry, 1995, 34, 14741-14751.                                                                                                        | 2.5  | 25        |
| 77 | Poly(β- <scp>L</scp> -malate) hydrolase from Plasmodia of <i>Physarum polycephalum</i> . Canadian<br>Journal of Microbiology, 1995, 41, 192-199.                                                                                                                                                      | 1.7  | 31        |
| 78 | Monofunctional DNA-platinum(II) adducts block frequently DNA polymerases. Nucleic Acids Research, 1992, 20, 2307-2312.                                                                                                                                                                                | 14.5 | 10        |
| 79 | Biological and biosynthetic properties of poly-l-malate. FEMS Microbiology Letters, 1992, 103, 109-118.                                                                                                                                                                                               | 1.8  | 4         |
| 80 | Specific inhibition of Physarum polycephalum DNA-polymerase-alpha-primase by poly(l-malate) and related polyanions. FEBS Journal, 1992, 206, 1-6.                                                                                                                                                     | 0.2  | 25        |
| 81 | Enhanced levels of cyclic AMP, adenosine(5′)tetraphospo(5′)adenosine and nucleoside 5′-triphosphates in mouse leukemia P388/D1 after treatment with cis-diamminedichloroplatinum(II). Biochemical Pharmacology, 1991, 42, 285-294.                                                                    | 4.4  | 5         |
| 82 | Escherichia coli DNA polymerase I: inherent exonuclease activities differentiate between<br>monofunctional and bifunctional adducts of DNA and cis- or trans-diamminedichloroplatinum(II). An<br>exonuclease investigation of the kinetics of the adduct formation. FEBS Journal, 1990, 191, 743-753. | 0.2  | 20        |
| 83 | The effect of cis-platinum on nucleotide metabolism. Inorganica Chimica Acta, 1989, 159, 121-124.                                                                                                                                                                                                     | 2.4  | 4         |
| 84 | An unusual polyanion from Physarum polycephalum that inhibits homologous DNA-polymerase .alpha.<br>in vitro. Biochemistry, 1989, 28, 5219-5226.                                                                                                                                                       | 2.5  | 96        |
| 85 | Purification and caracterization of DNA polymerase alpha from plasmodia of Physarum polycephalum.<br>FEBS Journal, 1988, 176, 199-206.                                                                                                                                                                | 0.2  | 14        |
| 86 | A DNA polymerase with unusual properties from the slime mold Physarum polycephalum. FEBS Journal, 1987, 163, 397-405.                                                                                                                                                                                 | 0.2  | 14        |
| 87 | Mode of inhibition of the DNA polymerase of Methanococcus vannielii by aphidicolin. FEBS Journal, 1987, 165, 171-175.                                                                                                                                                                                 | 0.2  | 15        |
| 88 | In vitro competition between adenosine(5')tetraphospho(5')adenosine and deoxyribonucleic acid in the reaction with diamminedichloroplatinum(II). FEBS Journal, 1986, 161, 621-627.                                                                                                                    | 0.2  | 10        |
| 89 | Non-disruptive detection of DNA polymerases in nondenaturing polyacrylamide gels. FEBS Journal, 1985, 151, 311-317.                                                                                                                                                                                   | 0.2  | 20        |
| 90 | Interaction of DNA polymerase I of Escherichia coli with nucleotides. Antagonistic effects of single-stranded polynucleotide homopolymers. Biochemistry, 1985, 24, 3618-3622.                                                                                                                         | 2.5  | 15        |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | 51. Konferenz der Gesellschaft für Biologische Chemie. Metabolism of Diadenosine Tetraphosphate<br>(Ap4A). Held in Regensburg, March 20th and 21st, 1984. Hoppe-Seyler's Zeitschrift Für Physiologische<br>Chemie, 1984, 365, 597-612. | 1.6 | 1         |
| 92  | Noncovalent complexes of diadenosine 5′,5‴P1,P4-tetraphosphate with divalent metal ions, biogenic<br>amines, proteins and poly(dT). Biochemical and Biophysical Research Communications, 1984, 120,<br>1037-1043.                      | 2.1 | 14        |
| 93  | Circular dichroism and ordered structure of bisnucleoside oligophosphates and their zinc(2+) and magnesium(2+) complexes. Biochemistry, 1983, 22, 4924-4933.                                                                           | 2.5 | 41        |
| 94  | Mechanism of Synthesis of Adenosine(5')tetraphospho(5')adenosine (AppppA) by Aminoacyl-tRNA<br>Synthetases. FEBS Journal, 1982, 126, 135-142.                                                                                          | 0.2 | 159       |
| 95  | Kinetics of anticooperative binding of phenylalanyl-tRNAPhe and tRNAPhe to phenylalanyl-tRNA synthetase of Escherichia coli K10. Biochemistry, 1980, 19, 1397-1402.                                                                    | 2.5 | 7         |
| 96  | Labelling of l-Isoleucine tRNA Ligase from Escherichia coli with l-Isoleucyl-bromomethyl Ketone. FEBS<br>Journal, 1976, 63, 419-426.                                                                                                   | 0.2 | 24        |
| 97  | l-Phenylalanine: tRNA Ligase of Escherichia coli K10. The Effect of O S Substitution on Substrate and<br>Ligand Binding Properties of ATP. FEBS Journal, 1976, 67, 171-176.                                                            | 0.2 | 8         |
| 98  | Rapid determination of an amino acid: tRNA ligase · aminoacyl adenylate complex on DEAE-cellulose<br>filter disks. Analytical Biochemistry, 1976, 70, 174-180.                                                                         | 2.4 | 7         |
| 99  | Quaternary Structure and Catalytic Functioning of l-Phenylalanine: tRNA Ligase of Escherichia coli<br>K10. FEBS Journal, 1975, 56, 605-615.                                                                                            | 0.2 | 13        |
| 100 | Fluorescence and stopped-flow studies on the N â^¡ F transition of serumalbumin. Biophysical Chemistry, 1975, 3, 226-233.                                                                                                              | 2.8 | 17        |
| 101 | Productive and unproductive lysozyme-chitosaccharide complexes. Equilibrium measurements.<br>Biochemistry, 1975, 14, 1088-1094.                                                                                                        | 2.5 | 38        |
| 102 | Catalytic mechanism of amino acid:tRNA ligases. Synergism and formation of the ternary enzyme-amino acid-ATP complex. Biochemistry, 1975, 14, 2496-2503.                                                                               | 2.5 | 35        |
| 103 | Productive and unproductive lysozyme-chitosaccharide complexes. Kinetic investigations.<br>Biochemistry, 1975, 14, 2377-2385.                                                                                                          | 2.5 | 39        |
| 104 | l-Phenylalanyl-tRNA Synthetase of Escherichia coli K-10. A Reinvestigation of Molecular Weight and<br>Subunit Structure. FEBS Journal, 1974, 43, 601-607.                                                                              | 0.2 | 71        |
| 105 | The determination of the dissociation constants of productive and unproductive lysozyme substrate complexes. FEBS Letters, 1974, 40, 25-28.                                                                                            | 2.8 | 5         |
| 106 | Equilibrium analysis of L-Phe-tRNAPhe complexes with L-phenylalanyl transfer ribonucleic acid synthetase of Escherichia coli K 10. Biochemistry, 1974, 13, 4171-4175.                                                                  | 2.5 | 23        |
| 107 | Kinetics of lysozyme-substrate interactions. Biochemical and Biophysical Research Communications, 1970, 40, 166-170.                                                                                                                   | 2.1 | 21        |
| 108 | Kinetics of lysozyme-substrate interactions. Biochemical and Biophysical Research Communications, 1969, 37, 423-429.                                                                                                                   | 2.1 | 29        |

| #   | Article                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Labelling of the catalytic site of lysozyme. Biochemical and Biophysical Research Communications, 1969, 37, 757-766. | 2.1 | 36        |