Bushra Mirza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1716168/publications.pdf

Version: 2024-02-01

201674 276875 2,242 94 27 41 h-index citations g-index papers 99 99 99 2680 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel copper complexes of metronidazole and metronidazole benzoate: synthesis, characterization, biological and computational studies. Journal of Biomolecular Structure and Dynamics, 2022, 40, 5446-5461.	3.5	8
2	Inducible expression of human papillomavirusâ€16 L1 capsomeres in the plastomes of <i>Nicotiana tabacum</i> : Transplastomic plants develop normal flowers and pollen. Biotechnology and Applied Biochemistry, 2022, 69, 596-611.	3.1	6
3	Design and Evaluation of pH-Sensitive Nanoformulation of Bergenin Isolated from Bergenia ciliata. Polymers, 2022, 14, 1639.	4.5	2
4	Correlations among oligonucleotide repeats, nucleotide substitutions, and insertion–deletion mutations in chloroplast genomes of plant family Malvaceae. Journal of Systematics and Evolution, 2021, 59, 388-402.	3.1	43
5	Assessing the biological potential of new symmetrical ferrocene based bisthiourea analogues. Bioorganic Chemistry, 2021, 106, 104180.	4.1	14
6	Polyphenol Rich Ajuga bracteosa Transgenic Regenerants Display Better Pharmacological Potential. Molecules, 2021, 26, 4874.	3.8	3
7	Antibacterial, Antihemolytic, Cytotoxic, Anticancer, and Antileishmanial Effects of Ajuga bracteosa Transgenic Plants. Plants, 2021, 10, 1894.	3.5	8
8	A unique amphiphilic triblock copolymer, nontoxic to human blood and potential supramolecular drug delivery system for dexamethasone. Scientific Reports, 2021, 11, 21507.	3.3	2
9	Profiling of Antifungal Activities and In Silico Studies of Natural Polyphenols from Some Plants. Molecules, 2021, 26, 7164.	3.8	17
10	Green Synthesis of Gold and Iron Nanoparticles for Targeted Delivery: An In Vitro and In Vivo Study. Journal of Chemistry, 2021, 2021, 1-16.	1.9	8
11	Synthesis, characterization and biological evaluation of novel benzimidazole derivatives. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1-13.	3.5	5
12	Chloroplast genome of Hibiscus rosa-sinensis (Malvaceae): Comparative analyses and identification of mutational hotspots. Genomics, 2020, 112, 581-591.	2.9	107
13	Characterization of Withania somnifera chloroplast genome and its comparison with other selected species of Solanaceae. Genomics, 2020, 112, 1522-1530.	2.9	79
14	Chloroplast genome sequences of Artemisia maritima and Artemisia absinthium: Comparative analyses, mutational hotspots in genus Artemisia and phylogeny in family Asteraceae. Genomics, 2020, 112, 1454-1463.	2.9	71
15	Expression of ESATâ€6 antigen from <i>Mycobacterium tuberculosis</i> in broccoli: An edible plant. Biotechnology and Applied Biochemistry, 2020, 67, 148-157.	3.1	13
16	Comparative analyses of chloroplast genomes of Theobroma cacao and Theobroma grandiflorum. Biologia (Poland), 2020, 75, 761-771.	1.5	24
17	Engineering electroactive and biocompatible tetra(aniline)-based terpolymers with tunable intrinsic antioxidant properties in vivo. Materials Science and Engineering C, 2020, 108, 110456.	7.3	9
18	Assessment of antidiabetic potential and phytochemical profiling of Rhazya stricta root extracts. BMC Complementary Medicine and Therapies, 2020, 20, 293.	2.7	11

#	Article	IF	CITATIONS
19	Artemisinin and its derivatives: a promising cancer therapy. Molecular Biology Reports, 2020, 47, 6321-6336.	2.3	58
20	Quinovic acid purified from medicinal plant Fagonia indica mediates anticancer effects via death receptor 5. Molecular and Cellular Biochemistry, 2020, 474, 159-169.	3.1	5
21	Synthesis of Novel Bi-Heterocycles as Valuable Anti-Diabetic Agents: 2-({5-((2-Amino-1,3-Thiazol-4-yl)methyl)-1,3,4-Oxadiazol-2-yl}sulfanyl)-N-(Substituted)acetamides. Russian Journal of Bioorganic Chemistry, 2020, 46, 590-598.	1.0	3
22	Potential Nutraceutical Benefits of In Vivo Grown Saffron (Crocus sativus L.) As Analgesic, Anti-inflammatory, Anticoagulant, and Antidepressant in Mice. Plants, 2020, 9, 1414.	3.5	22
23	Comparative Plastomics of Ashwagandha (Withania, Solanaceae) and Identification of Mutational Hotspots for Barcoding Medicinal Plants. Plants, 2020, 9, 752.	3.5	37
24	Synthesis, Characterization and Biological Studies of Ether–Based Ferrocenyl Amides and their Organic Analogues. Crystals, 2020, 10, 480.	2.2	0
25	Facile one-pot synthesis, butyrylcholinesterase and α-glucosidase inhibitory activities, structure–activity relationship, molecular docking and DNA–drug binding analysis of Meldrum's acid derivatives. Research on Chemical Intermediates, 2020, 46, 2437-2456.	2.7	5
26	Assessment of the Antitumor Potential of Umbelliprenin, a Naturally Occurring Sesquiterpene Coumarin. Biomedicines, 2020, 8, 126.	3.2	14
27	Plastid genomics of <i>Nicotiana</i> (Solanaceae): insights into molecular evolution, positive selection and the origin of the maternal genome of Aztec tobacco (<i>Nicotiana rustica</i>). PeerJ, 2020, 8, e9552.	2.0	43
28	Polyphenolic profiling of <i>Ipomoea carnea</i> Jacq. by HPLC-DAD and its implications in oxidative stress and cancer. Natural Product Research, 2019, 33, 2099-2104.	1.8	7
29	Optimization of cell suspension culture of transformed and untransformed lettuce for the enhanced production of secondary metabolites and their pharmaceutical evaluation. 3 Biotech, 2019, 9, 339.	2.2	2
30	Disease Status of Afghan Refugees and Migrants in Pakistan. Frontiers in Public Health, 2019, 7, 185.	2.7	15
31	Chloroplast-based inducible expression of ESAT-6 antigen for development of a plant-based vaccine against tuberculosis. Journal of Biotechnology, 2019, 305, 1-10.	3.8	18
32	The Health Promoting Bioactivities of Lactuca sativa can be Enhanced by Genetic Modulation of Plant Secondary Metabolites. Metabolites, 2019, 9, 97.	2.9	16
33	<i>MTHFR</i> polymorphisms as risk for male infertility in Pakistan and its comparison with socioeconomic status in the world. Personalized Medicine, 2019, 16, 35-49.	1.5	8
34	Drier Climatic Conditions Increase Withanolide Content of Withania coagulans Enhancing Its Inhibitory Potential Against Human Prostate Cancer Cells. Applied Biochemistry and Biotechnology, 2019, 188, 460-480.	2.9	5
35	Structure-activity relationship and in silico study of unique bi-heterocycles: 5-[(2-amino-1,3-thiazol-4-yl)methyl]-1,3,4-oxadiazole-2-thiol derivatives. Journal of the Serbian Chemical Society, 2019, 84, 649-661.	0.8	4
36	Inhibition of mouse embryonic stem cell proliferation and induction of differentiation by natural products isolated from Rhazya stricta Decne. Pakistan Journal of Pharmaceutical Sciences, 2019, 32, 1885-1891.	0.2	0

#	Article	IF	CITATIONS
37	Targeting epithelial to mesenchymal transition in prostate cancer by a novel compound, plectranthoic acid, isolated from <i>Ficus microcarpa</i> i>Nolecular Carcinogenesis, 2018, 57, 653-663.	2.7	8
38	Biotechnological approaches for artemisinin production in Artemisia. World Journal of Microbiology and Biotechnology, 2018, 34, 54.	3.6	25
39	NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming. Nature Cell Biology, 2018, 20, 400-412.	10.3	64
40	Lupeol supplementation improves the developmental competence of bovine embryos inÂvitro. Theriogenology, 2018, 107, 203-210.	2.1	13
41	High-Throughput DNA Extraction and Optimization of PCR Efficiency for Barley SSRs Genotyping. Arabian Journal for Science and Engineering, 2018, 43, 143-154.	3.0	0
42	A Multi-Mode Bioactive Agent Isolated From Ficus microcarpa L. Fill. With Therapeutic Potential for Type 2 Diabetes Mellitus. Frontiers in Pharmacology, 2018, 9, 1376.	3.5	8
43	Synthesis, molecular docking and comparative efficacy of various alkyl/aryl thioureas as antibacterial, antifungal and l±-amylase inhibitors. Computational Biology and Chemistry, 2018, 77, 193-198.	2.3	18
44	Neuroprotective, antidiabetic and antioxidant effect of Hedera nepalensis and lupeol against STZ + AlCl3 induced rats model. DARU, Journal of Pharmaceutical Sciences, 2018, 26, 179-190.	2.0	26
45	Advances in Genetic Engineering of Ajuga Species. , 2018, , 599-629.		1
46	Ipomoea batatas L. Lam. ameliorates acute and chronic inflammations by suppressing inflammatory mediators, a comprehensive exploration using in vitro and in vivo models. BMC Complementary and Alternative Medicine, 2018, 18, 216.	3.7	33
47	Medicinal Plants: A Complementary and Alternative Antidepressant Therapy. Current Pharmaceutical Design, 2018, 24, 2609-2624.	1.9	14
48	2-{[5-(Substituted-phenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}-N-(1,3-thiazol-2-yl)acetamides: New bi-heterocycles as possible therapeutic agents. Pakistan Journal of Pharmaceutical Sciences, 2018, 31, 1051-1059.	0.2	0
49	Appraisal of phytochemical and in vitro biological attributes of an unexplored folklore: Rhus Punjabensis Stewart. BMC Complementary and Alternative Medicine, 2017, 17, 146.	3.7	30
50	Metabolic signatures altered by in vitro temperature stress in Ajuga bracteosa Wall. ex. Benth Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	23
51	Effect of pRi T-DNA genes and elicitation on morphology and phytoecdysteroid biosynthesis in Ajuga bracteosa hairy roots. RSC Advances, 2017, 7, 47945-47953.	3.6	8
52	Antioxidant, Antimicrobial, Cytotoxic and Protein Kinase Inhibition Activities of Fifteen Traditional Medicinal Plants From Pakistan. Pharmaceutical Chemistry Journal, 2017, 51, 391-398.	0.8	19
53	Synthesis, characterization and biological properties of novel ON donor bidentate Schiff bases and their copper(II) complexes. Journal of Coordination Chemistry, 2017, 70, 2463-2478.	2.2	7
54	Transformation of Lettuce with rol ABC Genes: Extracts Show Enhanced Antioxidant, Analgesic, Anti-Inflammatory, Antidepressant, and Anticoagulant Activities in Rats. Applied Biochemistry and Biotechnology, 2017, 181, 1179-1198.	2.9	25

#	Article	IF	CITATIONS
55	Polarity based characterization of biologically active extracts of Ajuga bracteosa Wall. ex Benth. and RP-HPLC analysis. BMC Complementary and Alternative Medicine, 2017, 17, 443.	3.7	61
56	Five Indigenous Plants of Pakistan with Antinociceptive, Anti-Inflammatory, Antidepressant, and Anticoagulant Properties in Sprague Dawley Rats. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-10.	1.2	13
57	Synthesis of 2-[(5-benzyl-1,3,4-oxadiazole-2yl)sulfanyl]-N-(arylated/arenylated) acetamides as antibacterial and acetyl cholinesterase inhibitors. Pakistan Journal of Pharmaceutical Sciences, 2017, 30, 1743-1751.	0.2	0
58	Effect of Rol Genes on Polyphenols Biosynthesis in Artemisia annua and Their Effect on Antioxidant and Cytotoxic Potential of the Plant. Applied Biochemistry and Biotechnology, 2016, 179, 1456-1468.	2.9	34
59	Coagulansin-A has beneficial effects on the development of bovine embryos <i>inÂvitro</i> via HSP70 induction. Bioscience Reports, 2016, 36, .	2.4	13
60	Evaluation of Ajuga bracteosa for antioxidant, anti-inflammatory, analgesic, antidepressant and anticoagulant activities. BMC Complementary and Alternative Medicine, 2016, 16, 375.	3.7	50
61	Transformation of Lactuca sativa L. with rol C gene results in increased antioxidant potential and enhanced analgesic, anti-inflammatory and antidepressant activities in vivo. 3 Biotech, 2016, 6, 215.	2.2	29
62	Rol genes enhance the biosynthesis of antioxidants in Artemisia carvifolia Buch. BMC Plant Biology, 2016, 16, 125.	3.6	24
63	Cellular engineering of Artemisia annua and Artemisia dubia with the rol ABC genes for enhanced production of potent anti-malarial drug artemisinin. Malaria Journal, 2016, 15, 252.	2.3	19
64	Naturally-occurring TGR5 agonists modulating glucagon-like peptide-1 biosynthesis and secretion. Peptides, 2016, 78, 51-58.	2.4	14
65	The effect of rol genes on phytoecdysteroid biosynthesis in Ajuga bracteosa differs between transgenic plants and hairy roots. RSC Advances, 2016, 6, 22700-22708.	3.6	11
66	The pentacyclic triterpenoid, plectranthoic acid, a novel activator of AMPK induces apoptotic death in prostate cancer cells. Oncotarget, 2016, 7, 3819-3831.	1.8	43
67	Antioxidant, anticancer and antibacterial potential of Zakhm-e-hayat rhizomes crude extract and fractions. Pakistan Journal of Pharmaceutical Sciences, 2016, 29, 895-902.	0.2	6
68	Extraction optimization of medicinally important metabolites from Datura innoxia Mill.: an in vitro biological and phytochemical investigation. BMC Complementary and Alternative Medicine, 2015, 15, 376.	3.7	124
69	Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria. International Journal of Nanomedicine, 2015, 10, 4521.	6.7	28
70	Genetic Transformation of Artemisia carvifolia Buch with rol Genes Enhances Artemisinin Accumulation. PLoS ONE, 2015, 10, e0140266.	2.5	47
71	Plastids: The Green Frontiers for Vaccine Production. Frontiers in Plant Science, 2015, 6, 1005.	3.6	36
72	Synthesis, Characterization, and Pharmacological Evaluation of Selected Aromatic Amines. Journal of Chemistry, 2015, 2015, 1-9.	1.9	19

#	Article	IF	CITATIONS
73	Enhanced artemisinin yield by expression of rol genes in Artemisia annua. Malaria Journal, 2015, 14, 424.	2.3	39
74	Anthelmintic activity of Artemisia vestita Wall ex DC. and Artemisia maritima L. against Haemonchus contortus from sheep. Veterinary Parasitology, 2015, 212, 451-455.	1.8	22
75	Synthesis, biological and electrochemical evaluation of novel nitroaromatics as potential anticancerous drugs. Bioelectrochemistry, 2015, 104, 85-92.	4.6	26
76	Antipyretic, anti-inflammatory and analgesic activity of Acacia hydaspica R. Parker and its phytochemical analysis. BMC Complementary and Alternative Medicine, 2015, 15, 136.	3.7	78
77	Evaluation of analgesic, anti-inflammatory, anti-depressant and anti-coagulant properties of Lactuca sativa (CV. Grand Rapids) plant tissues and cell suspension in rats. BMC Complementary and Alternative Medicine, 2015, 15, 199.	3.7	31
78	Physiological and biochemical mechanisms of allelopathy mediated by the allelochemical extracts of <i>Phytolacca latbenia</i> (Moq.) H. Walter. Toxicology and Industrial Health, 2015, 31, 931-937.	1.4	37
79	Evaluation of antioxidant potential and HPLC based identification of phenolics in Polygonum amplexicaule extract and its fractions. Pakistan Journal of Pharmaceutical Sciences, 2015, 28, 431-5.	0.2	4
80	Agrobacterium-Mediated Transformation of Tomato with rolB Gene Results in Enhancement of Fruit Quality and Foliar Resistance against Fungal Pathogens. PLoS ONE, 2014, 9, e96979.	2.5	49
81	Seasonal and geographical impact on the morphology and 20-hydroxyecdysone content in different tissue types of wild Ajuga bracteosa Wall. ex Benth Steroids, 2014, 87, 12-20.	1.8	24
82	Development of efficient miniprep transformation methods for Artemisia annua using Agrobacterium tumefaciens and Agrobacterium rhizogenes. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 590-600.	2.1	4
83	Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity. Journal of Ethnopharmacology, 2014, 156, 26-32.	4.1	72
84	Comparative physiological responses of the yeast halotolerance genes expressed in transgenic lines of tomato cv Rio Grande under saline conditions. Acta Physiologiae Plantarum, 2013, 35, 919-929.	2.1	1
85	UV-absorption studies of interaction of karanjin and karanjachromene with ds. DNA: Evaluation of binding and antioxidant activity. Open Chemistry, $2013, 11, 2040-2047$.	1.9	5
86	Ferrocene-Based Aliphatic and Aromatic Poly(azomethine)esters: Synthesis, Physicochemical Studies, and Biological Evaluation. Macromolecules, 2013, 46, 2800-2807.	4.8	19
87	Bioprospecting traditional Pakistani medicinal plants for potent antioxidants. Food Chemistry, 2012, 132, 222-229.	8.2	27
88	Synthesis, characterization, electrochemistry and evaluation of biological activities of some ferrocenyl Schiff bases. Applied Organometallic Chemistry, 2011, 25, 61-69.	3.5	45
89	Expression of rol genes in transgenic soybean (Glycine max L.) leads to changes in plant phenotype, leaf morphology, and flowering time. Plant Cell, Tissue and Organ Culture, 2010, 103, 227-236.	2.3	22
90	Interaction of Naproxen with transition metals: synthesis, characterization, anti-inflammatory activity and kinetic studies. Journal of Coordination Chemistry, 2009, 62, 3463-3470.	2.2	11

#	Article	IF	CITATION
91	Synthesis and coordination chemistry of organotin(IV) complexes of 2,3-methylenedioxyphenylpropenoic acid. Journal of Coordination Chemistry, 2009, 62, 2229-2238.	2.2	11
92	In Planta Transformation of Tomato. Plant Molecular Biology Reporter, 2009, 27, 20-28.	1.8	65
93	Biological evaluation of wild thyme (<i>Thymus serpyllum</i>). Pharmaceutical Biology, 2009, 47, 628-633.	2.9	30
94	Biological Evaluation of Some Selected Plant Species of Pakistan. Pharmaceutical Biology, 2007, 45, 397-403.	2.9	24