Cecilia Gotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/171575/publications.pdf

Version: 2024-02-01

		87888	62596
115	6,886	38	80
papers	citations	h-index	g-index
119	119	119	5219
117	117		3219
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends in Pharmacological Sciences, 2006, 27, 482-491.	8.7	782
2	Subunit Composition of Functional Nicotinic Receptors in Dopaminergic Neurons Investigated with Knock-Out Mice. Journal of Neuroscience, 2003, 23, 7820-7829.	3.6	473
3	Structural and functional diversity of native brain neuronal nicotinic receptors. Biochemical Pharmacology, 2009, 78, 703-711.	4.4	422
4	Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology, 2009, 56, 237-246.	4.1	383
5	Identification of the Nicotinic Receptor Subtypes Expressed on Dopaminergic Terminals in the Rat Striatum. Journal of Neuroscience, 2002, 22, 8785-8789.	3.6	369
6	Heterogeneity and complexity of native brain nicotinic receptors. Biochemical Pharmacology, 2007, 74, 1102-1111.	4.4	260
7	Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology, 2015, 96, 302-311.	4.1	209
8	Nicotinic Acetylcholine Receptors in the Mesolimbic Pathway: Primary Role of Ventral Tegmental Area $\hat{1}\pm\hat{0}^{1}2^{*}$ Receptors in Mediating Systemic Nicotine Effects on Dopamine Release, Locomotion, and Reinforcement. Journal of Neuroscience, 2010, 30, 5311-5325.	3.6	208
9	Rodent Habenulo–Interpeduncular Pathway Expresses a Large Variety of Uncommon nAChR Subtypes, But Only the α3β4 and α3β3β4 Subtypes Mediate Acetylcholine Release. Journal of Neuroscience, 2009, 29, 2272-2282.	3.6	205
10	Reciprocal Regulation of Dopamine D1 and D3 Receptor Function and Trafficking by Heterodimerization. Molecular Pharmacology, 2008, 74, 59-69.	2.3	195
11	Neuronal and Extraneuronal Nicotinic Acetylcholine Receptors. Current Neuropharmacology, 2018, 16, 338-349.	2.9	172
12	Expression of Nigrostriatal $\hat{l}\pm 6$ -Containing Nicotinic Acetylcholine Receptors Is Selectively Reduced, but Not Eliminated, by \hat{l}^23 Subunit Gene Deletion. Molecular Pharmacology, 2005, 67, 2007-2015.	2.3	129
13	α7 and nonâ€Î±7 nicotinic acetylcholine receptors modulate dopamine release <i>in vitro</i> and <i>in vivo</i> in the rat prefrontal cortex. European Journal of Neuroscience, 2009, 29, 539-550.	2.6	121
14	Functional $\hat{l}\pm 6$ -Containing Nicotinic Receptors Are Present in Chick Retina. Molecular Pharmacology, 1999, 56, 11-19.	2.3	113
15	Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer's disease, Parkinson's disease and dementia with Lewy bodies by immunoprecipitation. Neurobiology of Disease, 2006, 23, 481-489.	4.4	105
16	Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochemical Pharmacology, 2013, 86, 1063-1073.	4.4	90
17	Nicotinic Acetylcholine Receptor Subtypes Expression during Rat Retina Development and Their Regulation by Visual Experience. Molecular Pharmacology, 2004, 66, 85-96.	2.3	84
18	Subunit Composition of Nicotinic Receptors in Monkey Striatum: Effect of Treatments with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine or l-DOPA. Molecular Pharmacology, 2005, 67, 32-41.	2.3	83

#	Article	IF	CITATIONS
19	Regulation of neuronal nicotinic receptor traffic and expression. Brain Research Reviews, 2007, 55, 134-143.	9.0	81
20	Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: Focus on nicotine effects. Progress in Neurobiology, 2015, 124, 1-27.	5.7	81
21	High Sensitivity Protein Assays on Microarray Silicon Slides. Analytical Chemistry, 2009, 81, 5197-5203.	6.5	75
22	Preoperative administration of the 5-HT4 receptor agonist prucalopride reduces intestinal inflammation and shortens postoperative ileus via cholinergic enteric neurons. Gut, 2019, 68, 1406-1416.	12.1	69
23	Heterogeneity and Selective Targeting of Neuronal Nicotinic Acetylcholine Receptor (nAChR) Subtypes Expressed on Retinal Afferents of the Superior Colliculus and Lateral Geniculate Nucleus: Identification of a New Native nAChR Subtype $\hat{1}\pm3\hat{1}^22(\hat{1}\pm5 \text{ or }\hat{1}^23)$ Enriched in Retinocollicular Afferents. Molecular Pharmacology, 2005, 68, 1162-1171.	2.3	68
24	The Novel $\langle i \rangle \hat{l} \pm \langle i \rangle \langle sub \rangle 7 \langle sub \rangle \langle i \rangle \hat{l}^2 \langle i \rangle \langle sub \rangle 2 \langle sub \rangle - Nicotinic Acetylcholine Receptor Subtype Is Expressed in Mouse and Human Basal Forebrain: Biochemical and Pharmacological Characterization. Molecular Pharmacology, 2014, 86, 306-317.$	2.3	68
25	Partial Deletion of the Nicotinic Cholinergic Receptor α4 or β2 Subunit Genes Changes the Acetylcholine Sensitivity of Receptor-Mediated ⁸⁶ Rb ⁺ Efflux in Cortex and Thalamus and Alters Relative Expression of α4 and β2 Subunits. Molecular Pharmacology, 2008, 73, 1796-1807.	2.3	64
26	Role of neuronal nicotinic acetylcholine receptors (nAChRs) on learning and memory in zebrafish. Psychopharmacology, 2014, 231, 1975-1985.	3.1	61
27	α9―and α7â€containing receptors mediate the proâ€proliferative effects of nicotine in the A549 adenocarcinoma cell line. British Journal of Pharmacology, 2018, 175, 1957-1972.	5.4	61
28	Competitive Potentiation of Acetylcholine Effects on Neuronal Nicotinic Receptors by Acetylcholinesterase-Inhibiting Drugs. Journal of Neurochemistry, 2008, 75, 2492-2500.	3.9	58
29	Cortico-Thalamic Connectivity is Vulnerable to Nicotine Exposure During Early Postnatal Development through $\hat{l}\pm4/\hat{l}^22/\hat{l}\pm5$ Nicotinic Acetylcholine Receptors. Neuropsychopharmacology, 2010, 35, 2324-2338.	5.4	57
30	Drugs selective for nicotinic receptor subtypes: a real possibility or a dream?. Behavioural Brain Research, 2000, 113, 183-192.	2.2	52
31	A Comparative Study of the Effects of the Intravenous Self-Administration or Subcutaneous Minipump Infusion of Nicotine on the Expression of Brain Neuronal Nicotinic Receptor Subtypes. Molecular Pharmacology, 2010, 78, 287-296.	2.3	51
32	Nitrogen substitution modifies the activity of cytisine on neuronal nicotinic receptor subtypes. European Journal of Pharmacology, 2003, 471, 85-96.	3.5	50
33	\hat{l} ±7 and \hat{l} ±8 Nicotinic Receptor Subtypes Immunopurified from Chick Retina have Different Immunological, Pharmacological and Functional Properties. European Journal of Neuroscience, 1997, 9, 1201-1211.	2.6	49
34	Nicotine-Modulated Subunit Stoichiometry Affects Stability and Trafficking of Â3Â4 Nicotinic Receptor. Journal of Neuroscience, 2013, 33, 12316-12328.	3.6	49
35	Expression of the $\hat{l}\pm7$ nAChR subunit duplicate form (CHRFAM7A) is down-regulated in the monocytic cell line THP-1 on treatment with LPS. Journal of Neuroimmunology, 2011, 230, 74-84.	2.3	48
36	Expression and Transcriptional Regulation of the Human $\hat{l}\pm 3$ Neuronal Nicotinic Receptor Subunit in T Lymphocyte Cell Lines. Journal of Neurochemistry, 1998, 71, 1261-1270.	3.9	45

#	Article	IF	CITATIONS
37	Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling andÂβ1â€integrin. EMBO Journal, 2019, 38, .	7.8	42
38	Antibodies against neuronal nicotinic receptor subtypes in neurological disorders. Journal of Neuroimmunology, 2000, 102, 89-97.	2.3	41
39	Synthesis, Binding, and Modeling Studies of New Cytisine Derivatives, as Ligands for Neuronal Nicotinic Acetylcholine Receptor Subtypes. Journal of Medicinal Chemistry, 2009, 52, 4345-4357.	6.4	40
40	Structure of Neuronal Nicotinic Receptors. Current Topics in Behavioral Neurosciences, 2015, 23, 1-17.	1.7	39
41	\hat{l}^2 3 subunit is present in different nicotinic receptor subtypes in chick retina. European Journal of Pharmacology, 2000, 393, 23-30.	3.5	38
42	Adolescent nicotine exposure transiently increases highâ€affinity nicotinic receptors and modulates inhibitory synaptic transmission in rat medial prefrontal cortex. FASEB Journal, 2012, 26, 1810-1820.	0.5	38
43	Expression of mutant \hat{l}^22 nicotinic receptors during development is crucial for epileptogenesis. Human Molecular Genetics, 2009, 18, 1075-1088.	2.9	37
44	Habenular expression of rare missense variants of the $\hat{1}^2$ 4 nicotinic receptor subunit alters nicotine consumption. Frontiers in Human Neuroscience, 2014, 8, 12.	2.0	35
45	Stable expression and functional characterization of a human nicotinic acetylcholine receptor with $\hat{1}\pm6\hat{1}^22$ properties: discovery of selective antagonists. British Journal of Pharmacology, 2011, 163, 313-329.	5.4	33
46	Design, Synthesis, and Pharmacological Characterization of Novel Spirocyclic Quinuclidinylâ€Î" ² â€Isoxazoline Derivatives as Potent and Selective Agonists of α7 Nicotinic Acetylcholine Receptors. ChemMedChem, 2011, 6, 889-903.	3.2	32
47	Engineering of αâ€conotoxin Mllâ€derived peptides with increased selectivity for native α6β2 â^— nicotinic acetylcholine receptors. FASEB Journal, 2011, 25, 3775-3789.	0.5	32
48	Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner. Pharmacological Research, 2016, 103, 167-176.	7.1	32
49	<scp>CC</scp> 4, a dimer of cytisine, is a selective partial agonist at α4β2/α6β2 <scp>nAChR</scp> with improved selectivity for tobacco smoking cessation. British Journal of Pharmacology, 2013, 168, 835-849.	5.4	31
50	Unlocking Nicotinic Selectivity via Direct C‒H Functionalization of (â^')-Cytisine. CheM, 2018, 4, 1710-1725.	11.7	31
51	Choline and nicotine increase glioblastoma cell proliferation by binding and activating $\hat{l}\pm 7$ - and $\hat{l}\pm 9$ -containing nicotinic receptors. Pharmacological Research, 2021, 163, 105336.	7.1	30
52	An $\hat{l}\pm4\hat{l}^24$ Nicotinic Receptor Subtype Is Present in Chick Retina: Identification, Characterization and Pharmacological Comparison with the Transfected $\hat{l}\pm4\hat{l}^24$ and $\hat{l}\pm6\hat{l}^24$ Subtypes. Molecular Pharmacology, 2001, 59, 1410-1417.	2.3	29
53	Design of novel $\hat{l}\pm 7$ -subtype-preferring nicotinic acetylcholine receptor agonists: Application of docking and MM-PBSA computational approaches, synthetic and pharmacological studies. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6353-6357.	2.2	29
54	Epiboxidine and novel-related analogues: A convenient synthetic approach and estimation of their affinity at neuronal nicotinic acetylcholine receptor subtypes. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4651-4654.	2.2	28

#	Article	IF	CITATIONS
55	Visual Acuity Is Reduced in Î'lpha 7 Nicotinic Receptor Knockout Mice. , 2012, 53, 1211.		28
56	The cytisine derivatives, CC4 and CC26, reduce nicotine-induced conditioned place preference in zebrafish by acting on heteromeric neuronal nicotinic acetylcholine receptors. Psychopharmacology, 2014, 231, 4681-4693.	3.1	28
57	Chick Optic Lobe Contains a Developmentally Regulated $\hat{l}\pm2\hat{l}\pm5\hat{l}^22$ Nicotinic Receptor Subtype. Molecular Pharmacology, 2000, 58, 300-311.	2.3	28
58	InÂvivo chronic nicotine exposure differentially and reversibly affects upregulation and stoichiometry of $\hat{l}\pm4\hat{l}^22$ nicotinic receptors in cortex and thalamus. Neuropharmacology, 2016, 108, 324-331.	4.1	27
59	Proteins and chemical chaperones involved in neuronal nicotinic receptor expression and function: an update. British Journal of Pharmacology, 2018, 175, 1869-1879.	5.4	27
60	Antagonism of the Prokineticin System Prevents and Reverses Allodynia and Inflammation in a Mouse Model of Diabetes. PLoS ONE, 2016, 11, e0146259.	2.5	27
61	Unichiral 2-(2′-Pyrrolidinyl)-1,4-benzodioxanes: the 2 <i>R</i> ,2′ <i>S</i> Diastereomer of the <i>N</i> -Methyl-7-hydroxy Analogue Is a Potent α4β²- and α6β²-Nicotinic Acetylcholine Receptor Partial Agonist. Journal of Medicinal Chemistry, 2011, 54, 7588-7601.	6.4	26
62	Cytisine and cytisine derivatives. More than smoking cessation aids. Pharmacological Research, 2021, 170, 105700.	7.1	26
63	Neuronal Acetylcholine Nicotinic Receptors as New Targets for Lung Cancer Treatment. Current Pharmaceutical Design, 2016, 22, 2160-2169.	1.9	26
64	Chemistry and Pharmacology of a Series of Unichiral Analogues of 2-(2-Pyrrolidinyl)-1,4-benzodioxane, Prolinol Phenyl Ether, and Prolinol 3-Pyridyl Ether Designed as $\hat{l}\pm4\hat{l}^2$ 2-Nicotinic Acetylcholine Receptor Agonists. Journal of Medicinal Chemistry, 2015, 58, 6665-6677.	6.4	24
65	Long-term exposure to the new nicotinic antagonist 1,2-bisN -cytisinylethane upregulates nicotinic receptor subtypes of SH-SY5Y human neuroblastoma cells. British Journal of Pharmacology, 2005, 146, 1096-1109.	5.4	23
66	Potent Antiglioblastoma Agents by Hybridizing the Onium-Alkyloxy-Stilbene Based Structures of an α7-nAChR, α9-nAChR Antagonist and of a Pro-Oxidant Mitocan. Journal of Medicinal Chemistry, 2018, 61, 10531-10544.	6.4	21
67	CHRNA2 and Nocturnal Frontal Lobe Epilepsy: Identification and Characterization of a Novel Loss of Function Mutation. Frontiers in Molecular Neuroscience, 2019, 12, 17.	2.9	20
68	Synthesis and $\hat{l}\pm4\hat{l}^22$ nicotinic affinity of unichiral 5-(2-pyrrolidinyl)oxazolidinones and 2-(2-pyrrolidinyl)benzodioxanes. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5610-5615.	2.2	19
69	Multitarget drug design strategy in Alzheimer's disease: focus on cholinergic transmission and amyloid-l ² aggregation. Future Medicinal Chemistry, 2017, 9, 953-963.	2.3	19
70	5-(2-Pyrrolidinyl)oxazolidinones and 2-(2-pyrrolidinyl)benzodioxanes: Synthesis of all the stereoisomers and $\hat{l}\pm4\hat{l}^2$ 2 nicotinic affinity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 854-859.	2.2	18
71	Antagonism of nicotinic receptors of rat chromaffin cells by N,N,N-trimethyl-1-(4-trans) Tj ETQq1 1 0.784314 rgBT Pharmacology, 2000, 129, 1771-1779.		10 Tf 50 1
72	Novel tricyclic Î"2-isoxazoline and 3-oxo-2-methyl-isoxazolidine derivatives: Synthesis and binding affinity at neuronal nicotinic acetylcholine receptor subtypes. Bioorganic and Medicinal Chemistry, 2010, 18, 4498-4508.	3.0	16

#	Article	IF	CITATIONS
73	From pyrrolidinyl-benzodioxane to pyrrolidinyl-pyridodioxanes, or from unselective antagonism to selective partial agonism at $\hat{1}\pm4\hat{1}^2$ 2 nicotinic acetylcholine receptor. European Journal of Medicinal Chemistry, 2017, 125, 1132-1144.	5.5	15
74	Molecular and cellular characterization of nicotinic acetylcholine receptor subtypes in the arcuate nucleus of the mouse hypothalamus. European Journal of Neuroscience, 2018, 48, 1600-1619.	2.6	15
75	(+)-Laburnamine, a Natural Selective Ligand and Partial Agonist for the $\hat{l}\pm4\hat{l}^22$ Nicotinic Receptor Subtype. Journal of Natural Products, 2013, 76, 727-731.	3.0	14
76	Modification of the anabaseine pyridine nucleus allows achieving binding and functional selectivity for the $\hat{1}\pm3\hat{1}^24$ nicotinic acetylcholine receptor subtype. European Journal of Medicinal Chemistry, 2016, 108, 392-405.	5.5	14
77	The novel hybrid agonist HyNDA-1 targets the D3R-nAChR heteromeric complex in dopaminergic neurons. Biochemical Pharmacology, 2019, 163, 154-168.	4.4	14
78	Increased sensitivity to \hat{l} 9-THC-induced rewarding effects after seven-week exposure to electronic and tobacco cigarettes in mice. European Neuropsychopharmacology, 2019, 29, 566-576.	0.7	14
79	New Analogues of Epiboxidine Incorporating the 4,5â€Dihydroisoxazole Nucleus: Synthesis, Binding Affinity at Neuronal Nicotinic Acetylcholine Receptors, and Molecular Modeling Investigations. Chemistry and Biodiversity, 2009, 6, 244-259.	2.1	13
80	Synthesis of novel chiral \hat{l} "2-isoxazoline derivatives related to ABT-418 and estimation of their affinity at neuronal nicotinic acetylcholine receptor subtypes. European Journal of Medicinal Chemistry, 2010, 45, 5594-5601.	5.5	13
81	A Promising PET Tracer for Imaging of $\hat{l}\pm7$ Nicotinic Acetylcholine Receptors in the Brain: Design, Synthesis, and in Vivo Evaluation of a Dibenzothiophene-Based Radioligand. Molecules, 2015, 20, 18387-18421.	3.8	13
82	New spirocyclic \hat{l} "2-isoxazoline derivatives related to selective agonists of \hat{l} ±7 neuronal nicotinic acetylcholine receptors. European Journal of Medicinal Chemistry, 2011, 46, 5790-5799.	5.5	12
83	Bifunctional compounds targeting both D2 and non- $\hat{l}\pm7$ nACh receptors: Design, synthesis and pharmacological characterization. European Journal of Medicinal Chemistry, 2015, 101, 367-383.	5.5	12
84	Modifications at C(5) of 2-(2-Pyrrolidinyl)-Substituted 1,4-Benzodioxane Elicit Potent $\hat{l}\pm4\hat{l}^2$ 2 Nicotinic Acetylcholine Receptor Partial Agonism with High Selectivity over the $\hat{l}\pm3\hat{l}^2$ 4 Subtype. Journal of Medicinal Chemistry, 2020, 63, 15668-15692.	6.4	12
85	Persistent cognitive and affective alterations at late withdrawal stages after long-term intermittent exposure to tobacco smoke or electronic cigarette vapour: Behavioural changes and their neurochemical correlates. Pharmacological Research, 2020, 158, 104941.	7.1	12
86	Synthesis and binding affinity at $\hat{l}\pm4\hat{l}^22$ and $\hat{l}\pm7$ nicotinic acetylcholine receptors of new analogs of epibatidine and epiboxidine containing the 7-azabicyclo[2.2.1]hept-2-ene ring system. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 829-832.	2.2	11
87	Behavioural and pharmacological profiles of zebrafish administrated pyrrolidinyl benzodioxanes and prolinol aryl ethers with high affinity for heteromeric nicotinic acetylcholine receptors. Psychopharmacology, 2020, 237, 2317-2326.	3.1	11
88	Synthesis of 3,6-diazabicyclo[3.1.1]heptanes as novel ligands for neuronal nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6147-6150.	2.2	10
89	Lack of dystrophin functionally affects $\hat{l}\pm3\hat{l}^22\hat{l}^24$ -nicotinic acethylcholine receptors in sympathetic neurons of dystrophic mdx mice. Neurobiology of Disease, 2011, 41, 528-537.	4.4	9
90	Altered mRNA Levels of Stress-Related Peptides in Mouse Hippocampus and Caudate-Putamen in Withdrawal after Long-Term Intermittent Exposure to Tobacco Smoke or Electronic Cigarette Vapour. International Journal of Molecular Sciences, 2021, 22, 599.	4.1	9

#	Article	IF	CITATIONS
91	Evidence of a dual mechanism of action underlying the anti-proliferative and cytotoxic effects of ammonium-alkyloxy-stilbene-based $\hat{l}\pm7$ - and $\hat{l}\pm9$ -nicotinic ligands on glioblastoma cells. Pharmacological Research, 2022, 175, 105959.	7.1	9
92	From 2-Triethylammonium Ethyl Ether of 4-Stilbenol (MG624) to Selective Small-Molecule Antagonists of Human $\hat{l}\pm9\hat{l}\pm10$ Nicotinic Receptor by Modifications at the Ammonium Ethyl Residue. Journal of Medicinal Chemistry, 2022, 65, 10079-10097.	6.4	9
93	Anti-Peptide Specific Antibodies for the Characterization of Different α Subunits of α-Bungarotoxin Binding Acetylcholine Receptors Present in Chick Optic Lobe. Journal of Receptors and Signal Transduction, 1993, 13, 453-465.	1.2	8
94	Pyridinyl- and pyridazinyl-3,6-diazabicyclo[3.1.1]heptane-anilines: Novel selective ligands with subnanomolar affinity for $\hat{i}\pm4\hat{i}^22$ nACh receptors. European Journal of Medicinal Chemistry, 2018, 152, 401-416.	5.5	8
95	The alpha-7 nicotinic acetylcholine receptor is involved in a direct inhibitory effect of nicotine on GnRH release: InÂvitro studies. Molecular and Cellular Endocrinology, 2018, 460, 209-218.	3.2	8
96	Reduced α4 subunit expression in α4 ^{+â^'} and α4 ^{+â^'} /β2 ^{+â^'} nicotinic acetylcholine receptors alters α4β2 subtype upâ€regulation following chronic nicotine treatment. British Journal of Pharmacology, 2018, 175, 1944-1956.	5.4	8
97	The fifth subunit in $\hat{l}\pm3\hat{l}^24$ nicotinic receptor is more than an accessory subunit. FASEB Journal, 2018, 32, 4190-4202.	0.5	8
98	Conservation of mechanisms regulating emotional-like responses on spontaneous nicotine withdrawal in zebrafish and mammals. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 111, 110334.	4.8	8
99	α9-Containing Nicotinic Receptors in Cancer. Frontiers in Cellular Neuroscience, 2021, 15, 805123.	3.7	8
100	Investigating the hydrogen-bond acceptor site of the nicotinic pharmacophore model: a computational and experimental study using epibatidine-related molecular probes. Journal of Computer-Aided Molecular Design, 2013, 27, 975-987.	2.9	7
101	Novel 5-substituted 3-hydroxyphenyl and 3-nitrophenyl ethers of S -prolinol as $\hat{1}\pm4\hat{1}^2$ 2-nicotinic acetylcholine receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5613-5617.	2.2	7
102	Iridium-Catalysed C–H Borylation of 2-Pyridones; Bisfunctionalisation of CC4. Synthesis, 2018, 50, 3420-3429.	2.3	6
103	A conserved arginine with nonâ€conserved function is a key determinant of agonist selectivity in α7 nicotinic ACh receptors. British Journal of Pharmacology, 2021, 178, 1651-1668.	5.4	6
104	The enantiomers of epiboxidine and of two related analogs: Synthesis and estimation of their binding affinity at $\hat{1}\pm4\hat{1}^22$ and $\hat{1}\pm7$ neuronal nicotinic acetylcholine receptors. Chirality, 2012, 24, 543-551.	2.6	5
105	Design of novel 3,6-diazabicyclo [3.1.1] heptane derivatives with potent and selective affinities for $\hat{l}\pm4\hat{l}^2$ 2 neuronal nicotinic acetylcholine receptors. European Journal of Medicinal Chemistry, 2015, 103, 429-437.	5.5	5
106	A Small Library of 1,2,3â€Triazole Analogs of <scp>CAP</scp> â€55: Synthesis and Binding Affinity at Nicotinic Acetylcholine Receptors. Chemistry and Biodiversity, 2018, 15, e1800210.	2.1	5
107	Peptide Microarrays on Coated Silicon Slides for Highly Sensitive Antibody Detection. Methods in Molecular Biology, 2010, 669, 147-160.	0.9	5
108	Design, synthesis and binding affinity of acetylcholine carbamoyl analogues. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6481-6485.	2.2	4

#	Article	IF	CITATION
109	Nicotinic acetylcholine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	4
110	Novel N-aryl nicotinamide derivatives: Taking stock on 3,6-diazabicyclo[3.1.1]heptanes as ligands for neuronal acetylcholine receptors. European Journal of Medicinal Chemistry, 2019, 180, 51-61.	5.5	3
111	Synthesis and Pharmacological Evaluation of α ₄ β ₂ Nicotinic Ligands with a 3â€Fluoropyrrolidine Nucleus. ChemMedChem, 2015, 10, 1071-1078.	3.2	2
112	In <i>vivo</i> study of the role of α6â€containing nicotinic acetylcholine receptor in retinal function using subtypeâ€specific RDPâ€MII(E11R) toxin. FASEB Journal, 2017, 31, 192-202.	0.5	2
113	Nicotine inside neurons. Oncotarget, 2016, 7, 81977-81978.	1.8	1
114	Nicotine-induced subunit stoichiometry affects the stability and intracellular trafficking of $\hat{l}\pm3\hat{l}^24$ nicotinic receptors. Biochemical Pharmacology, 2013, 86, 1225-1226.	4.4	O
115	A Conserved Arginine with Non-Conserved Function is a Key Determinant of Agonist Selectivity in Alpha7 Nicotinic Acetylcholine Receptors. Biophysical Journal, 2021, 120, 55a-56a.	0.5	O