
Andriy A Sibirny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1714895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Comparative genomics of biotechnologically important yeasts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9882-9887.	7.1	302
4	Genetic Control of Biosynthesis and Transport of Riboflavin and Flavin Nucleotides and Construction of Robust Biotechnological Producers. Microbiology and Molecular Biology Reviews, 2011, 75, 321-360.	6.6	291
5	Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Research, 2016, 16, fow038.	2.3	75
6	Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metabolic Engineering, 2009, 11, 234-242.	7.0	74
7	Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Metabolic Engineering, 2011, 13, 82-88.	7.0	65
8	Role of γ-glutamyltranspeptidase in detoxification of xenobiotics in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae. Cell Biology International, 2006, 30, 665-671.	3.0	61
9	Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Current Genetics, 2013, 59, 73-90.	1.7	61
10	Overexpression of pyruvate decarboxylase in the yeastHansenula polymorpharesults in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Research, 2008, 8, 1164-1174.	2.3	58
11	Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments. Current Genetics, 2006, 50, 183-191.	1.7	54
12	Construction of advanced producers of first- and second-generation ethanol in <i>Saccharomyces cerevisiae</i> and selected species of non-conventional yeasts (<i>Scheffersomyces stipitis, Ogataea) Tj ETQq0 (</i>) Osr g BT /C)v ອ ຜ່ock 10 T
13	Construction of <i>Hansenula polymorpha</i> strains with improved thermotolerance. Biotechnology and Bioengineering, 2009, 104, 911-919.	3.3	52
14	Atg28, a Novel Coiled-Coil Protein Involved in Autophagic Degradation of Peroxisomes in the Methylotrophic Yeast Pichia pastoris. Autophagy, 2006, 2, 30-38.	9.1	49
15	Genetic control of methanol utilization in yeasts. Journal of Basic Microbiology, 1988, 28, 293-319.	3.3	47
16	Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. Microbial Cell Factories, 2008, 7, 21.	4.0	46
17	Metabolic engineering and classical selection of the methylotrophic thermotolerant yeast Hansenula polymorpha for improvement of high-temperature xylose alcoholic fermentation. Microbial Cell Factories, 2014, 13, 122.	4.0	46
18	Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production. Journal of Biotechnology, 2014, 172, 11-17.	3.8	46

#	Article	IF	CITATIONS
19	Reactions of direct formaldehyde oxidation to CO2 are non-essential for energy supply of yeast methylotrophic growth. Archives of Microbiology, 1990, 154, 566.	2.2	43
20	The Requirement of Sterol Glucoside for Pexophagy in Yeast Is Dependent on the Species and Nature of Peroxisome Inducers. Molecular Biology of the Cell, 2007, 18, 106-118.	2.1	43
21	Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in <i>Pichia pastoris</i> . Autophagy, 2011, 7, 375-385.	9.1	43
22	Permeabilized cells of flavocytochrome b2 over-producing recombinant yeast Hansenula polymorpha as biological recognition element in amperometric lactate biosensors. Biosensors and Bioelectronics, 2007, 23, 599-605.	10.1	40
23	Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorphaDL-1. BMC Biotechnology, 2011, 11, 8.	3.3	40
24	Overexpression of bacterial xylose isomerase and yeast host xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeastHansenula polymorpha. FEMS Yeast Research, 2008, 8, 165-173.	2.3	39
25	ldentification of Hexose Transporter-Like Sensor <i>HXS1</i> and Functional Hexose Transporter <i>HXT1</i> in the Methylotrophic Yeast <i>Hansenula polymorpha</i> . Eukaryotic Cell, 2008, 7, 735-746.	3.4	39
26	Development of a transformation system for the flavinogenic yeastCandida famata. FEMS Yeast Research, 2002, 2, 381-388.	2.3	38
27	Recombinant arginineâ€degrading enzymes in metabolic anticancer therapy and bioanalytics. Cell Biology International, 2015, 39, 246-252.	3.0	36
28	Production of flavin mononucleotide by metabolically engineered yeast Candida famata. Metabolic Engineering, 2009, 11, 163-167.	7.0	35
29	Expression of genes encoding xylose isomerases from and in the methylotrophic yeast. FEMS Yeast Research, 2005, 5, 1055-1062.	2.3	33
30	Chapter 16 Methods of Plate Pexophagy Monitoring and Positive Selection for ATG Gene Cloning in Yeasts. Methods in Enzymology, 2008, 451, 229-239.	1.0	33
31	Cancer cell sensitivity to arginine deprivation <i>in vitro</i> is not determined by endogenous levels of arginine metabolic enzymes. Cell Biology International, 2010, 34, 1085-1089.	3.0	32
32	Drug-resistant cassettes for the efficient transformation of Candida guilliermondii wild-type strains. FEMS Yeast Research, 2011, 11, 457-463.	2.3	30
33	Candida famata (Debaryomyces hansenii) DNA sequences containing genes involved in riboflavin synthesis. Yeast, 2004, 21, 1307-1316.	1.7	28
34	Mutations and environmental factors affecting regulation of riboflavin synthesis and iron assimilation also cause oxidative stress in the yeast <i>Pichia guilliermondii</i> . Journal of Basic Microbiology, 2007, 47, 371-377.	3.3	28
35	A New Yeast Peroxin, Pex36, a Functional Homolog of Mammalian PEX16, Functions in the ER-to-Peroxisome Traffic of Peroxisomal Membrane Proteins. Journal of Molecular Biology, 2017, 429, 3743-3762.	4.2	28
36	100 Years Later, What Is New in Glycerol Bioproduction?. Trends in Biotechnology, 2020, 38, 907-916.	9.3	28

3

#	Article	IF	CITATIONS
37	Overexpression of the genes <i>PDC1</i> and <i>ADH1</i> activates glycerol conversion to ethanol in the thermotolerant yeast <i>Ogataea</i> (<i>Hansenula</i>) <i>polymorpha</i> . Yeast, 2016, 33, 471-478.	1.7	27
38	Development of a transformation system for gene knock-out in the flavinogenic yeast Pichia guilliermondii. Journal of Microbiological Methods, 2007, 70, 13-19.	1.6	26
39	Gâ€proteinâ€coupled receptor Gpr1 and Gâ€protein Gpa2 of cAMPâ€dependent signaling pathway are involved in glucoseâ€induced pexophagy in the yeast <i>Saccharomyces cerevisiae</i> . Cell Biology International, 2008, 32, 502-504.	3.0	26
40	Improved method for expression and isolation of the Mycoplasma hominis arginine deiminase from the recombinant strain of Escherichia coli. Journal of Biotechnology, 2013, 167, 420-426.	3.8	26
41	Candida famata (Candida flareri). Yeast, 2012, 29, 453-458.	1.7	25
42	Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiaeoverexpressing alkaline phosphatase. BMC Biotechnology, 2014, 14, 42.	3.3	25
43	Isolation and characterization of mutated alcohol oxidases from the yeast Hansenula polymorpha with decreased affinity toward substrates and their use as selective elements of an amperometric biosensor. BMC Biotechnology, 2007, 7, 33.	3.3	24
44	Medium optimization for production of flavin mononucleotide by the recombinant strain of the yeast Candida famata using statistical designs. Biochemical Engineering Journal, 2010, 49, 52-60.	3.6	24
45	Development of a URA5 integrative cassette for gene disruption in the Candida guilliermondii ATCC 6260 strain. Journal of Microbiological Methods, 2011, 84, 355-358.	1.6	24
46	Glucose-induced production of recombinant proteins in Hansenulapolymorpha mutants deficient in catabolite repression. Biotechnology and Bioengineering, 2007, 97, 858-870.	3.3	23
47	The role of <i>Hansenula polymorpha MIG1</i> homologues in catabolite repression and pexophagy. FEMS Yeast Research, 2007, 7, 1103-1113.	2.3	23
48	Heterologous expression of Saccharomyces cerevisiae MPR1 gene confers tolerance to ethanol and l-azetidine-2-carboxylic acid in Hansenula polymorpha. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 213-218.	3.0	23
49	Zinc cluster protein Znf1, a novel transcription factor of non-fermentative metabolism in Saccharomyces cerevisiae. FEMS Yeast Research, 2015, 15, .	2.3	23
50	Transcriptional activator Cat8 is involved in regulation of xylose alcoholic fermentation in the thermotolerant yeast Ogataea (Hansenula) polymorpha. Microbial Cell Factories, 2017, 16, 36.	4.0	23
51	Development of a transformation system for the flavinogenic yeast. FEMS Yeast Research, 2002, 2, 381-388.	2.3	22
52	Positive selection of mutants defective in transcriptional repression of riboflavin synthesis by iron in the flavinogenic yeast. FEMS Yeast Research, 2005, 5, 829-837.	2.3	22
53	Gss1 protein of the methylotrophic yeast Pichia pastoris is involved in glucose sensing, pexophagy and catabolite repression. International Journal of Biochemistry and Cell Biology, 2012, 44, 1906-1918.	2.8	22
54	Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiology Reviews, 2021, 45, .	8.6	22

#	Article	IF	CITATIONS
55	Bioelectrochemical detection of L-lactate respiration using genetically modified Hansenula polymorpha yeast cells overexpressing flavocytochrome b2. Bioelectrochemistry, 2009, 76, 175-179.	4.6	21
56	Development of a promoter assay system for the flavinogenic yeast Candida famata based on the Kluyveromyces lactis β-galactosidase LAC4 reporter gene. Enzyme and Microbial Technology, 2008, 42, 208-215.	3.2	20
57	Activation of futile cycles as an approach to increase ethanol yield during glucose fermentation in <i>Saccharomyces cerevisiae</i> . Bioengineered, 2016, 7, 106-111.	3.2	20
58	Peroxisomes and peroxisomal transketolase and transaldolase enzymes are essential for xylose alcoholic fermentation by the methylotrophic thermotolerant yeast, Ogataea (Hansenula) polymorpha. Biotechnology for Biofuels, 2018, 11, 197.	6.2	20
59	New selectable host–marker systems for multiple genetic manipulations based on <i>TRP1, MET2</i> and <i>ADE2</i> in the methylotrophic yeast <i>Hansenula polymorpha</i> . Yeast, 2009, 26, 507-521.	1.7	19
60	d-lactate-selective amperometric biosensor based on the cell debris of the recombinant yeast Hansenula polymorpha. Talanta, 2014, 125, 227-232.	5.5	19
61	Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2017, 101, 4403-4416.	3.6	19
62	Engineering of sugar transporters for improvement of xylose utilization during high-temperature alcoholic fermentation in Ogataea polymorpha yeast. Microbial Cell Factories, 2020, 19, 96.	4.0	19
63	Novel Cysteine-Centered Sulfur Metabolic Pathway in the Thermotolerant Methylotrophic Yeast Hansenula polymorpha. PLoS ONE, 2014, 9, e100725.	2.5	19
64	Accumulation of cadmium ions in the methylotrophic yeast Hansenula polymorpha. BioMetals, 2006, 19, 593-599.	4.1	18
65	Differences in glucose sensing and signaling for pexophagy between the baker's yeast <i>Saccharomyces cerevisiae</i> and the methylotrophic yeast <i>Pichia pastoris</i> . Autophagy, 2008, 4, 381-384.	9.1	18
66	Overexpression of Transcription Factor <i>ZNF1</i> of Glycolysis Improves Bioethanol Productivity under High Glucose Concentration and Enhances Acetic Acid Tolerance of <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2020, 15, e1900492.	3.5	18
67	The microbial synthesis of flavin nucleotides: A review. Applied Biochemistry and Microbiology, 2009, 45, 115-124.	0.9	17
68	<i>CCZ1</i> , <i>MON1</i> and <i>YPT7</i> genes are involved in pexophagy, the Cvt pathway and non-specific macroautophagy in the methylotrophic yeast <i>Pichia pastoris</i> . Cell Biology International, 2011, 35, 311-319.	3.0	17
69	Identification of the genes affecting the regulation of riboflavin synthesis in the flavinogenic yeast Pichia guilliermondii using insertion mutagenesis. FEMS Yeast Research, 2011, 11, 307-314.	2.3	17
70	Metabolic and bioprocess engineering of the yeast <i>Candida famata</i> for FAD production. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 823-835.	3.0	17
71	Amperometric L-arginine biosensor based on a novel recombinant arginine deiminase. Mikrochimica Acta, 2017, 184, 2679-2686.	5.0	17
72	Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast. Applied Microbiology and Biotechnology, 2016, 100, 3219-3231.	3.6	16

#	Article	IF	CITATIONS
73	Autophagy-Related Pathways and Specific Role of Sterol Glucoside in Yeasts. Autophagy, 2007, 3, 263-265.	9.1	15
74	Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation. BioMetals, 2009, 22, 1051-1061.	4.1	15
75	Mechanisms of autophagy and pexophagy in yeasts. Biochemistry (Moscow), 2011, 76, 1279-1290.	1.5	15
76	Alcoholic fermentation by wild-type Hansenula polymorpha and Saccharomyces cerevisiae versus recombinant strains with an elevated level of intracellular glutathione. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1853-1859.	3.0	15
77	Overexpression of the truncated version of <i>ILV2</i> enhances glycerol production in <i>Saccharomyces cerevisiae</i> . Yeast, 2016, 33, 463-469.	1.7	15
78	The zinc cluster transcriptional regulator Asg1 transcriptionally coordinates oleate utilization and lipid accumulation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2016, 100, 4549-4560.	3.6	15
79	Gene of the transcriptional activator MET4 is involved in regulation of glutathione biosynthesis in the methylotrophic yeast Ogataea (Hansenula) polymorpha. FEMS Yeast Research, 2018, 18, .	2.3	14
80	Transformation ofCandida guilliermondiiwild-type strains using theStaphylococcus aureusMRSA 252blegene as a phleomycin-resistant marker. FEMS Yeast Research, 2013, 13, 354-358.	2.3	13
81	Overexpression of the genes of glycerol catabolism and glycerol facilitator improves glycerol conversion to ethanol in the methylotrophic thermotolerant yeast <i>Ogataea polymorpha</i> . Yeast, 2019, 36, 329-339.	1.7	13
82	Modulation of the Purine Pathway for Riboflavin Production in Flavinogenic Recombinant Strain of the YeastCandida famata. Biotechnology Journal, 2020, 15, 1900468.	3.5	13
83	Novel highly sensitive conductometric biosensor based on arginine deiminase from Mycoplasma hominis for determination of arginine. Sensors and Actuators B: Chemical, 2022, 367, 132023.	7.8	13
84	Multinuclear Yeast <i>Magnusiomyces (Dipodascus, Endomyces) magnusii</i> is a Promising Isobutanol Producer. Biotechnology Journal, 2020, 15, e1900490.	3.5	12
85	Pichia guilliermondii. , 2009, , 113-134.		11
86	New methods for positive selection of yeast ethanol overproducing mutants. Bioethanol, 2016, 2, .	1.2	11
87	Construction of methylotrophic yeast Hansenula polymorpha strains over-producing formaldehyde dehydrogenase. Biopolymers and Cell, 2005, 21, 525-530.	0.4	10
88	Plate ethanol-screening assay for selection of the Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability for xylose alcoholic fermentation. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 934-940.	3.0	9
89	Photometric assay of methanol and formaldehyde in industrial waste-waters using alcohol oxidase and 3-methyl-2-benzothiazolinone hydrazone. International Journal of Environmental Analytical Chemistry, 2008, 88, 289-301.	3.3	9
90	Stable overproducer of hepatitis B surface antigen in the methylotrophic yeast Hansenula polymorpha due to multiple integration of heterologous auxotrophic selective markers and defect in peroxisome biogenesis. Applied Microbiology and Biotechnology, 2013, 97, 9969-9979.	3.6	9

#	Article	IF	CITATIONS
91	Cytoplasmic extension peptide of Pichia pastoris glucose sensor Gss1 is not compulsory for glucose signalling. Cell Biology International, 2014, 38, 172-178.	3.0	9
92	Improving the efficiency of plasmid transformation in Shewanella oneidensis MR-1 by removing Clal restriction site. Journal of Microbiological Methods, 2014, 99, 35-37.	1.6	9
93	Anhydrobiosis in yeast: Glutathione overproduction improves resistance to dehydration of a recombinant Ogataea (Hansenula) polymorpha strain. Process Biochemistry, 2018, 71, 41-44.	3.7	9
94	Virulence and antifungal susceptibility of microsatellite genotypes of <scp><i>Candida albicans</i></scp> from superficial and deep locations. Yeast, 2019, 36, 363-373.	1.7	9
95	Expression of yeast homolog of the mammal <i>BCRP</i> gene coding for riboflavin efflux protein activates vitamin B ₂ production in the flavinogenic yeast <scp><i>Candida famata</i></scp> . Yeast, 2020, 37, 467-473.	1.7	9
96	Role of the regulatory genes SEF1, VMA1 and SFU1 in riboflavin synthesis in the flavinogenic yeast Candida famata (Candida flareri). Yeast, 2020, 37, 497-504.	1.7	9
97	New approaches for improving the production of the 1st and 2nd generation ethanol by yeast Acta Biochimica Polonica, 2016, 63, 31-38.	0.5	9
98	Identification of regulatory genes of riboflavin permease and α-glucosidase in the yeast Pichia guilliermondii. Current Genetics, 1984, 8, 107-114.	1.7	8
99	A novel <i>Hansenula polymorpha</i> transcriptional factor <i>HpHAP4â€B</i> , able to functionally replace the <i>S. cerevisiae HAP4</i> gene, contains an additional bZip motif. Yeast, 2010, 27, 941-954.	1.7	8
100	Construction of uricase-overproducing strains of Hansenula polymorpha and its application as biological recognition element in microbial urate biosensor. BMC Biotechnology, 2011, 11, 58.	3.3	8
101	Metabolic engineering of the yeast Hansenula polymorpha for the construction of efficient ethanol producers. Cytology and Genetics, 2013, 47, 329-342.	0.5	8
102	Development of a system for multicopy gene integration in Saccharomyces cerevisiae. Journal of Microbiological Methods, 2016, 120, 44-49.	1.6	8
103	Functional Study of the Hap4-Like Genes Suggests That the Key Regulators of Carbon Metabolism HAP4 and Oxidative Stress Response YAP1 in Yeast Diverged from a Common Ancestor. PLoS ONE, 2014, 9, e112263.	2.5	8
104	Oversynthesis of Riboflavin in the Yeast Pichia guilliermondii is Accompanied by Reduced Catalase and Superoxide Dismutases Activities. Current Microbiology, 2013, 66, 79-87.	2.2	7
105	The role of peroxisomes in xylose alcoholic fermentation in the engineered Saccharomyces cerevisiae. Cell Biology International, 2020, 44, 1606-1615.	3.0	7
106	Regulation of uric acid uptake in the yeastPichia guilliermondii. FEBS Letters, 1973, 31, 313-316.	2.8	6
107	Genetic engineering of nonconventional yeasts for the production of valuable compounds. , 2014, , 63-112.		6
108	Development of new dominant selectable markers for the nonconventional yeasts <i>Ogataea polymorpha</i> and <scp><i>Candida famata</i></scp> . Yeast, 2020, 37, 505-513.	1.7	6

#	Article	IF	CITATIONS
109	The role of Mig1, Mig2, Tup1 and Hap4 transcription factors in regulation of xylose and glucose fermentation in the thermotolerant yeast <i>Ogataea polymorpha</i> . FEMS Yeast Research, 2021, 21, .	2.3	6
110	Genetic Improvement of Conventional and Nonconventional Yeasts for the Production of First- and Second-Generation Ethanol. , 2017, , 1-38.		6
111	Candida famata (Debaryomyces hansenii). , 2009, , 85-111.		5
112	Autophagy-related gene ATG13 is involved in control of xylose alcoholic fermentation in the thermotolerant methylotrophic yeast Ogataea polymorpha. FEMS Yeast Research, 2018, 18, .	2.3	5
113	Evaluation of the enhanced resistance of Ogataea (Hansenula) polymorpha to benzalkonium chloride as a resource for bioremediation technologies. Process Biochemistry, 2019, 87, 157-163.	3.7	5
114	The impact of transcription factors Znf1, Sip4, Adr1, Tup1, and Hap4 on xylose alcoholic fermentation in the engineered yeast Saccharomyces cerevisiae. Antonie Van Leeuwenhoek, 2021, 114, 1373-1385.	1.7	5
115	Molecular mechanisms of peroxisome biogenesis in yeasts. Molecular Biology, 2012, 46, 11-26.	1.3	4
116	Biotechnology of Glycerol Production and Conversion in Yeasts. , 2017, , 117-148.		4
117	Glutathione Metabolism in Yeasts and Construction of the Advanced Producers of This Tripeptide. , 2019, , 153-196.		4
118	Adaptive Evolution for the Improvement of Ethanol Production During Alcoholic Fermentation with the Industrial Strains of Yeast Saccharomyces Cerevisiae. Cytology and Genetics, 2020, 54, 398-407.	0.5	4
119	Co-Overexpression of RIB1 and RIB6 Increases Riboflavin Production in the Yeast Candida famata. Fermentation, 2022, 8, 141.	3.0	4
120	Yeasts for Bioconversion of Crude Glycerol to High-Value Chemicals. , 2019, , 389-451.		3
121	Anhydrobiosis in yeasts: Glutathione synthesis by yeast Ogataea (Hansenula) polymorpha cells after their dehydration-rehydration. Journal of Biotechnology, 2019, 304, 28-30.	3.8	3
122	Obtaining Wheat (Triticum aestivum L.) Lines with Yeast Genes for Trehalose Biosynthesis. Cytology and Genetics, 2020, 54, 283-292.	0.5	3
123	Recent Advances in Construction of the Efficient Producers of Riboflavin and Flavin Nucleotides (FMN, FAD) in the Yeast Candida famata. Methods in Molecular Biology, 2021, 2280, 15-30.	0.9	3
124	Systems Biology in Yeasts – from Models to Applications: the 25th International Specialized Symposium on Yeasts (ISSY25), Hanasaari, Espoo (Finland), 18–21 June 2006. FEMS Yeast Research, 2006, 6, 1101-110	02 ^{.3}	2
125	Ukrainian science before, during and after the fall of the Soviet Union. FEMS Yeast Research, 2016, 16, fow074.	2.3	2
126	Development of the Thermotolerant Methylotrophic Yeast Hansenula polymorpha as Efficient Ethanol Producer. , 2017, , 257-282.		2

#	Article	IF	CITATIONS
127	SEF1 and VMA1 Genes Regulate Riboflavin Biosynthesis in the Flavinogenic Yeast Candida Famata. Cytology and Genetics, 2020, 54, 379-385.	0.5	2
128	Effect of Gene SFU1 on Riboflavin Synthesis in Flavinogenic Yeast Candida famata. Cytology and Genetics, 2020, 54, 408-412.	0.5	2
129	Overexpression of Riboflavin Excretase Enhances Riboflavin Production in the Yeast Candida famata. Methods in Molecular Biology, 2021, 2280, 31-42.	0.9	2
130	Pexophagy Sensing and Signaling in the Methylotrophic Yeasts. , 2014, , 507-527.		2
131	Molecular mechanisms of insertional mutagenesis in yeasts and mycelium fungi. Russian Journal of Genetics, 2007, 43, 835-845.	0.6	1
132	Fructoseâ€1,6â€bisphosphatase degradation in the methylotrophic yeast Komagataella phaffii occurs in autophagy pathway. Cell Biology International, 2021, 45, 528-535.	3.0	1
133	Molecular Studies of the Flavinogenic Fungus Ashbya gossypii and the Flavinogenic Yeast Candida famata. , 2017, , 281-296.		1
134	Insertional tagging of the Scheffersomyces stipitis gene HEM25 involved in regulation of glucose and xylose alcoholic fermentation. Cell Biology International, 2021, 45, 507-517.	3.0	0
135	Flavocytochrome b2 of the Methylotrophic Yeast Ogataea polymorpha: Construction of Overproducers, Purification, and Bioanalytical Application. Methods in Molecular Biology, 2021, 2280, 249-260.	0.9	0
136	Introduction. Cell Biology International, 2021, 45, 480-480.	3.0	0
137	Yeast-Based Systems for Environmental Control. , 2017, , 373-390.		0