Sébastien Redon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1713913/publications.pdf

Version: 2024-02-01

21 392 13 19
papers citations h-index g-index

27 27 27 616
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Tuning the solid-state emission of small push-pull dipolar dyes to the far-red through variation of the electron-acceptor group. Dyes and Pigments, 2018, 156, 116-132.	3.7	57
2	Easy and efficient selenocyanation of imidazoheterocycles using triselenodicyanide. Tetrahedron Letters, 2017, 58, 2771-2773.	1.4	38
3	Design of Near-Infrared-Absorbing Unsymmetrical Polymethine Dyes with Large Quadratic Hyperpolarizabilities. Chemistry of Materials, 2018, 30, 3410-3418.	6.7	35
4	New synthesis and cyclopropanation of \hat{l} ±-phenylselanyl \hat{l} ±, \hat{l} 2-unsaturated ketones with non-stabilized phosphorus ylides. Tetrahedron, 2008, 64, 9293-9304.	1.9	27
5	Red Emitting Neutral Fluorescent Glycoconjugates for Membrane Optical Imaging. Bioconjugate Chemistry, 2014, 25, 773-787.	3.6	22
6	One-pot preparation of 2-(alkyl)arylbenzoselenazoles from the corresponding N-(acetyl)benzoyl-2-iodoanilines via a microwave-assisted methodology. Tetrahedron Letters, 2014, 55, 5052-5054.	1.4	21
7	Baseâ€Free Generation of Organic Electron Donors from Airâ€Stable Precursors. Angewandte Chemie - International Edition, 2018, 57, 3148-3153.	13.8	20
8	Photoâ€SRM: laserâ€induced dissociation improves detection selectivity of selected reaction monitoring mode. Rapid Communications in Mass Spectrometry, 2011, 25, 3375-3381.	1.5	19
9	Metal-Free ipso-Selenocyanation of Arylboronic Acids Using Malononitrile and Selenium Dioxide. Synthesis, 2019, 51, 3758-3764.	2.3	19
10	4,5,5-Trimethyl-2,5-dihydrofuran-Based Electron-Withdrawing Groups for NIR-Emitting Push–Pull Dipolar Fluorophores. Journal of Organic Chemistry, 2019, 84, 9965-9974.	3.2	19
11	Selenylated dienes: synthesis, stereochemical studies by 77Se NMR, and transformation into functionalized allenes. Tetrahedron, 2007, 63, 3707-3717.	1.9	16
12	Sequential Regioselective Diorganochalcogenations of Imidazo[1,2- <i>a</i>)[1,2- <i>a</i>)[1,2- <i>a</i>)[1,2- <i>a</i>)[2,2- <i>a</i>)[3,3- <i>a</i>)[4,3- <i>a</i>)[5,3- <i>a</i>)[6,3- <i a="">a</i>)[7,3- <i>a</i>)[8,3- <i a="">a</i>)[9,3- <i a="">a</i> [9,3-	3.2	16
13	A new oxa-Michael reaction and a gold-catalysed cyclisation en route to C-glycosides. Tetrahedron Letters, 2013, 54, 2089-2092.	1.4	14
14	Diastereoselective transannular [2+2] photocycloaddition of ascorbic acid derivatives. Tetrahedron Letters, 2006, 47, 733-736.	1.4	13
15	Synthesis and oxidative rearrangement of selenenylated dihydropyrans. Organic and Biomolecular Chemistry, 2008, 6, 1260.	2.8	13
16	Convenient and Rapid Synthesis of 3-Selenocyanato-4H-chromen-4-ones. Synlett, 2018, 29, 1215-1218.	1.8	12
17	Baseâ€Free Generation of Organic Electron Donors from Airâ€6table Precursors. Angewandte Chemie, 2018, 130, 3202-3207.	2.0	9
18	One-Pot Chemoselective Synthesis of 2,4,6,8-Tetrasubstituted Quinazolines via Microwave-Assisted Consecutive Bis-SNAr/Bis-Suzuki–Miyaura Cross-Coupling Reactions. Synthesis, 2014, 46, 1613-1620.	2.3	8

SéBASTIEN REDON

#	Article	IF	CITATIONS
19	Generation of powerful organic electron donors by water-assisted decarboxylation of benzimidazolium carboxylates. Organic Chemistry Frontiers, 2021, 8, 1197-1205.	4.5	6
20	Optical Properties of a Visible Push–Pull Chromophore Covalently Bound to Carbohydrates: Solution and Gas-Phase Spectroscopy Combined to Theoretical Investigations. Journal of Physical Chemistry B, 2012, 116, 841-851.	2.6	5
21	Green synthesis of diaryl selenides from arylboronic acids and arylseleninic acids Synlett, 0, 0, .	1.8	2