Jing-Ye Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1713702/publications.pdf

Version: 2024-02-01

151	8,597	46	88
papers	citations	h-index	g-index
153	153	153	10516
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Engineering robust RGO/PVA composite membrane for acid recovery via electron beam irradiation. Carbon, 2022, 191, 243-254.	10.3	11
2	Poly (vinyl alcohol) modification of poly(vinylidene fluoride) microfiltration membranes for oil/water emulsion separation via an unconventional radiation method. Journal of Membrane Science, 2021, 619, 118792.	8.2	69
3	One-step synthesis of well-dispersed polypyrrole copolymers under gamma-ray irradiation. Polymer Chemistry, 2021, 12, 645-649.	3.9	9
4	Constructing CNTs-based composite membranes for oil/water emulsion separation via radiation-induced "grafting to―strategy. Carbon, 2021, 178, 678-687.	10.3	28
5	Radiation-induced cross-linking: a novel avenue to permanent 3D modification of polymeric membranes. Nuclear Science and Techniques/Hewuli, 2021, 32, 1.	3.4	9
6	Pseudo-zwitterions self-assembled from polycation and anion clusters showing exceptional water-cleanable anti-crude-oil-adhesion property. IScience, 2021, 24, 102964.	4.1	4
7	Crosslinking imidazolium-intercalated GO membrane for acid recovery from low concentration solution. Carbon, 2021, 183, 830-839.	10.3	16
8	Fabrication of stable MWCNT bucky paper for solar-driven interfacial evaporation by coupling \hat{I}^3 -ray irradiation with borate crosslinking. Nuclear Science and Techniques/Hewuli, 2021, 32, 1.	3.4	7
9	Fabrication of ultralight 3D graphene/Pt aerogel via in situ gamma-ray irradiation and its application for the catalytic degradation of methyl orange. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 425-434.	2.1	9
10	Radiation Induced Surface Modification of Nanoparticles and Their Dispersion in the Polymer Matrix. Nanomaterials, 2020, 10, 2237.	4.1	8
11	Reusable fibrous adsorbent prepared via Co-radiation induced graft polymerization for iodine adsorption. Ecotoxicology and Environmental Safety, 2020, 203, 111021.	6.0	18
12	Engineering stable laminated graphene oxide hybrid membranes via imidazolium cations complexation. Journal of Membrane Science, 2020, 613, 118519.	8.2	13
13	Ultrahigh and economical uranium extraction from seawater <i>via</i> interconnected open-pore architecture poly(amidoxime) fiber. Journal of Materials Chemistry A, 2020, 8, 22032-22044.	10.3	77
14	Cupric phosphate mineralized polymer membrane with superior cycle stability for oil/water emulsion separation. Journal of Membrane Science, 2020, 612, 118427.	8.2	56
15	The synthesis of 3D graphene/Au composites via $\langle i \rangle \hat{j}^3 \langle i \rangle$ -ray irradiation and their use for catalytic reduction of 4-nitrophenol. Nanotechnology, 2020, 31, 235604.	2.6	5
16	Stability study of Disperse Blue 79 under ionizing radiation. Nuclear Science and Techniques/Hewuli, 2020, 31, 1.	3.4	3
17	Ultrathin microporous membrane with high oil intrusion pressure for effective oil/water separation. Journal of Membrane Science, 2020, 608, 118201.	8.2	59
18	Multiple-Step Melting/Irradiation: A Strategy to Fabricate Thermoplastic Polymers with Improved Mechanical Performance. Polymers, 2019, $11,1812$.	4.5	3

#	Article	IF	CITATIONS
19	Tailored Graphene Oxide Membranes for the Separation of Ions and Molecules. ACS Applied Nano Materials, 2019, 2, 6611-6621.	5.0	23
20	Interfacial Behavior and Stability Analysis of <i>p</i> à€Type Crystalline Silicon Solar Cells Based on Holeâ€Selective MoO _{<i>X</i>} /Metal Contacts. Solar Rrl, 2019, 3, 1900274.	5.8	34
21	3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater. Energy and Environmental Science, 2019, 12, 1979-1988.	30.8	208
22	Thermoplastic shape memory composites with enhanced recovery stress and recovery ratio based on double roles of PVAc-g-GO. Composites Communications, 2019, 13, 52-56.	6.3	6
23	Ionic liquid grafted polyamide 6 as porous membrane materials: Enhanced water flux and heavy metal adsorption. Applied Surface Science, 2019, 481, 1435-1441.	6.1	21
24	Interfacial Behavior and Stability Analysis of <i>p</i> â€Type Crystalline Silicon Solar Cells Based on Holeâ€Selective MoO _{<i>X</i>} /Metal Contacts. Solar Rrl, 2019, 3, 1970105.	5.8	11
25	Physical and Rheological Properties of Maleic Anhydride-Incorporated PVDF: Does MAH Act as a Physical Crosslinking Point for PVDF Molecular Chains?. ACS Omega, 2019, 4, 21540-21547.	3 . 5	14
26	A promising clean way to textile colouration: cotton fabric covalently-bonded with carbon black, cobalt blue, cobalt green, and iron oxide red nanoparticles. Green Chemistry, 2019, 21, 6611-6621.	9.0	26
27	Crystal Forms and Microphase Structures of Poly(vinylidene fluoride- <i>co</i> hexafluoropropylene) Physically and Chemically Incorporated with Ionic Liquids. Macromolecules, 2019, 52, 385-394.	4.8	13
28	Zwitterionic Nanofibrous Membranes with a Superior Antifouling Property for Gravity-Driven Crude Oil-in-Water Emulsion Separation. Langmuir, 2019, 35, 1682-1689.	3. 5	56
29	Ionic Liquid-Grafted Polyamide 6 by Radiation-Induced Grafting: New Strategy To Prepare Covalently Bonded Ion-Containing Polymers and their Application as Functional Fibers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5462-5475.	8.0	24
30	Radiation Technology Application in High-Performance Fibers and Functional Textiles., 2019, , 13-73.		7
31	Investigation on Molecular Structures of Electron-Beam-Irradiated Low-Density Polyethylene by Rheology Measurements. Industrial & Engineering Chemistry Research, 2018, 57, 4298-4310.	3.7	12
32	Tris-amidoximate uranyl complexes (i>via l)·(sup>2 l) binding mode coordinated in aqueous solution shown by X-ray absorption spectroscopy and density functional theory methods. Journal of Synchrotron Radiation, 2018, 25, 514-522.	2.4	12
33	A facile approach to fabricate few-layer chemically modified and reduced graphene oxide sheets: Combination of stitching, reduction and functionaliztion. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 30-37.	2.1	10
34	Fabrication of polyacrylamide–carbon nanotubes by One-Step Radiation-Induced Graft Polymerization. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 12-15.	2.1	3
35	Electron-beam radiation effects on the structure and properties of polypropylene at low dose rates. Nuclear Science and Techniques/Hewuli, 2018, 29, 1.	3.4	12
36	Functionalization of multi-walled carbon nanotubes and its application in preparing the 3D graphene/carbon nanotubes hybrid architectures. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 226-231.	2.1	4

#	Article	IF	CITATIONS
37	Layerâ€byâ€Layer Construction of Cu ²⁺ /Alginate Multilayer Modified Ultrafiltration Membrane with Bioinspired Superwetting Property for Highâ€Efficient Crudeâ€Oilâ€inâ€Water Emulsion Separation. Advanced Functional Materials, 2018, 28, 1801944.	14.9	256
38	Ionic Liquids Incorporating Polyamide 6: Miscibility and Physical Properties. Polymers, 2018, 10, 562.	4.5	23
39	Preparation of freestanding graphene-based laminar membrane for clean-water intake via forward osmosis process. RSC Advances, 2017, 7, 1326-1335.	3.6	21
40	Uranium Adsorption Tests of Amidoxime-Based Ultrahigh Molecular Weight Polyethylene Fibers in Simulated Seawater and Natural Coastal Marine Seawater from Different Locations. Industrial & Engineering Chemistry Research, 2017, 56, 1103-1111.	3.7	43
41	The extraction of uranium using graphene aerogel loading organic solution. Talanta, 2017, 166, 284-291.	5.5	32
42	Green and efficient synthesis of an adsorbent fiber by preirradiationâ€induced grafting of PDMAEMA and its Au(III) adsorption and reduction performance. Journal of Applied Polymer Science, 2017, 134, .	2.6	11
43	Poly (vinylidene fluoride) dielectric composites with both ionic nanoclusters and well dispersed graphene oxide. Composites Science and Technology, 2017, 138, 98-105.	7.8	70
44	Amidoxime-based adsorbents prepared by cografting acrylic acid with acrylonitrile onto HDPE fiber for the recovery of uranium from seawater. Nuclear Science and Techniques/Hewuli, 2017, 28, 1.	3.4	17
45	Reactive Nanoparticles Compatibilized Immiscible Polymer Blends: Synthesis of Reactive SiO ₂ with Long Poly(methyl methacrylate) Chains and the in Situ Formation of Janus SiO ₂ Nanoparticles Anchored Exclusively at the Interface. ACS Applied Materials & SiO _{ACS Applied Materials & SiO_{ACS Applied Materials & SiO<}}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	8.0	112
46	lon sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550, 380-383.	27.8	1,171
47	Stretchable Ionic-Liquid-Based Gel Polymer Electrolytes for Lithium-Ion Batteries. Industrial & Description of Engineering Chemistry Research, 2017, 56, 12456-12463.	3.7	42
48	The Fabrication of Multifunctional SLIPS Films by Electrospinning. ChemNanoMat, 2017, 3, 869-873.	2.8	5
49	Semicrystalline Polymer Binary-Phase Structure Templated Quasi-Block Graft Copolymers. Journal of Physical Chemistry B, 2017, 121, 7508-7518.	2.6	9
50	Rheology of Nanosilica-Compatibilized Immiscible Polymer Blends: Formation of a "Heterogeneous Network―Facilitated by Interfacially Anchored Hybrid Nanosilica. Macromolecules, 2017, 50, 9494-9506.	4.8	97
51	Durable Anti-Superbug Polymers: Covalent Bonding of Ionic Liquid onto the Polymer Chains. Biomacromolecules, 2017, 18, 4364-4372.	5.4	36
52	Radiation graft of acrylamide onto polyethylene separators for lithium-ion batteries. Nuclear Science and Techniques/Hewuli, $2017, 28, 1$.	3.4	3
53	A Robust Polyionized Hydrogel with an Unprecedented Underwater Antiâ€Crudeâ€Oilâ€Adhesion Property. Advanced Materials, 2016, 28, 5307-5314.	21.0	346
54	Electrospun nanofibrous polyethylenimine mat: a potential adsorbent for the removal of chromate and arsenate from drinking water. RSC Advances, 2016, 6, 30739-30746.	3.6	21

#	Article	IF	CITATIONS
55	Engineering nano-porous graphene oxide by hydroxyl radicals. Carbon, 2016, 105, 291-296.	10.3	49
56	High-Performance Perovskite Solar Cells Engineered by an Ammonia Modified Graphene Oxide Interfacial Layer. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14503-14512.	8.0	120
57	Electrospun nanofibers with both surface nanopores and internal interpenetrated nanochannels for oil absorption. RSC Advances, 2016, 6, 33781-33788.	3.6	16
58	Gamma-ray irradiation-induced reduction and self-assembly of graphene oxide into three-dimensional graphene aerogel. Materials Letters, 2016, 177, 76-79.	2.6	40
59	Synergistic nanofibrous adsorbent for uranium extraction from seawater. RSC Advances, 2016, 6, 81995-82005.	3.6	21
60	Graphene oxide: A potential bodyguard protecting proteins from photosensitive damage. Carbon, 2016, 109, 487-494.	10.3	11
61	Preparation of flexible graphene@SnO2 composite fiber via in situ chemical reduction and self-assembly method. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 531-534.	2.1	1
62	Formation of Interfacial Janus Nanomicelles by Reactive Blending and Their Compatibilization Effects on Immiscible Polymer Blends. Journal of Physical Chemistry B, 2016, 120, 9240-9252.	2.6	50
63	Photo-enhanced oxidizability of tetrazolium salts and its impact on superoxide assaying. Chemical Communications, 2016, 52, 11595-11598.	4.1	12
64	Antisuperbug Cotton Fabric with Excellent Laundering Durability. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19866-19871.	8.0	47
65	Local Grafting of Ionic Liquid in Poly(vinylidene fluoride) Amorphous Region and the Subsequent Microphase Separation Behavior in Melt. Macromolecular Rapid Communications, 2016, 37, 1559-1565.	3.9	12
66	Covalent immobilization of metal–organic frameworks onto the surface of nylon—a new approach to the functionalization and coloration of textiles. Scientific Reports, 2016, 6, 22796.	3.3	32
67	A facile method for preparing 3D graphene/Ag aerogel via gamma-ray irradiation. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 720-724.	2.1	12
68	Fabrication of PES-based membranes with a high and stable desalination performance for membrane distillation. RSC Advances, 2016, 6, 107840-107850.	3.6	15
69	The synergy reduction and self-assembly of graphene oxide via gamma-ray irradiation in an ethanediamine aqueous solution. Nuclear Science and Techniques/Hewuli, 2016, 27, 1.	3.4	14
70	Poly(vinylidene fluoride) Nanocomposites with Simultaneous Organic Nanodomains and Inorganic Nanoparticles. Macromolecules, 2016, 49, 1026-1035.	4.8	36
71	"Lotus-effect―tape: imparting superhydrophobicity to solid materials with an electrospun Janus composite mat. RSC Advances, 2016, 6, 17215-17221.	3.6	19
72	Preparation of Amidoximated Ultrahigh Molecular Weight Polyethylene Fiber by Radiation Grafting and Uranium Adsorption Test. Industrial & Engineering Chemistry Research, 2016, 55, 4118-4124.	3.7	77

#	Article	IF	Citations
73	Engineering Reduced Graphene Oxide Aerogel Produced by Effective γ-ray Radiation-Induced Self-Assembly and Its Application for Continuous Oil–Water Separation. Industrial & Engineering Chemistry Research, 2016, 55, 3775-3781.	3.7	69
74	Polyethylenimine nanofibrous adsorbent for highly effective removal of anionic dyes from aqueous solution. Science China Materials, 2016, 59, 38-50.	6.3	33
75	Radiation induced graft polymerization of multi-walled carbon nanotubes for superhydrophobic composite membrane preparation. Science China Chemistry, 2016, 59, 303-309.	8.2	6
76	Extended X-ray Absorption Fine Structure and Density Functional Theory Studies on the Complexation Mechanism of Amidoximate Ligand to Uranyl Carbonate. Industrial & Engineering Chemistry Research, 2016, 55, 4224-4230.	3.7	43
77	Adsorption of Uranyl ions on Amine-functionalization of MIL-101(Cr) Nanoparticles by a Facile Coordination-based Post-synthetic strategy and X-ray Absorption Spectroscopy Studies. Scientific Reports, 2015, 5, 13514.	3.3	78
78	Preparation of a Thermally Insulating Nanocomposite by Blending Ultra-High-Molecular-Weight Polyethylene with Gas-Phase Silica. Industrial & Engineering Chemistry Research, 2015, 54, 6093-6099.	3.7	7
79	Immobilization of Ionic Liquids onto the Poly(vinylidene fluoride) by Electron Beam Irradiation. Industrial & Engineering Chemistry Research, 2015, 54, 9351-9359.	3.7	32
80	pH-Induced non-fouling membrane for effective separation of oil-in-water emulsion. Journal of Membrane Science, 2015, 477, 131-138.	8.2	72
81	Novel multifunctional nanofibers based on thermoplastic polyurethane and ionic liquid: towards antibacterial, anti-electrostatic and hydrophilic nonwovens by electrospinning. Nanotechnology, 2015, 26, 105704.	2.6	28
82	Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property. ACS Applied Materials & Eamp; Interfaces, 2015, 7, 17558-17564.	8.0	76
83	Electrical Switchability and Dry-Wash Durability of Conductive Textiles. Scientific Reports, 2015, 5, 11255.	3.3	39
84	A Study on the Degree of Amidoximation of Polyacrylonitrile Fibers and Its Effect on Their Capacity to Adsorb Uranyl Ions. Industrial & Engineering Chemistry Research, 2015, 54, 3101-3106.	3.7	71
85	Designing breathable superhydrophobic cotton fabrics. RSC Advances, 2015, 5, 27752-27758.	3.6	39
86	Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field. ACS Nano, 2015, 9, 3969-3977.	14.6	266
87	Micro/nano hierarchical poly(acrylic acid)-grafted-poly(vinylidene fluoride) layer coated foam membrane for temperature-controlled separation of heavy oil/water. Separation and Purification Technology, 2015, 156, 207-214.	7.9	26
88	Nanostructured Poly(vinylidene fluoride)/lonic Liquid Composites: Formation of Organic Conductive Nanodomains in Polymer Matrix. Journal of Physical Chemistry C, 2015, 119, 21155-21164.	3.1	36
89	Electrospun nanofibrous adsorbents for uranium extraction from seawater. Journal of Materials Chemistry A, 2015, 3, 2552-2558.	10.3	103
90	\hat{l}^3 -ray irradiation effects on graphene oxide in an ethylenediamine aqueous solution. Radiation Physics and Chemistry, 2014, 94, 80-83.	2.8	41

#	Article	IF	Citations
91	Saltâ€Induced Fabrication of Superhydrophilic and Underwater Superoleophobic PAAâ€gâ€PVDF Membranes for Effective Separation of Oilâ€inâ€Water Emulsions. Angewandte Chemie - International Edition, 2014, 53, 856-860.	13.8	673
92	Pre-irradiation induced emulsion co-graft polymerization of acrylonitrile and acrylic acid onto a polyethylene nonwoven fabric. Radiation Physics and Chemistry, 2014, 94, 129-132.	2.8	14
93	Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. Journal of Materials Chemistry A, 2014, 2, 2934.	10.3	380
94	Flexible graphene fibers prepared by chemical reduction-induced self-assembly. Journal of Materials Chemistry A, 2014, 2, 6359.	10.3	78
95	Built-up superhydrophobic composite membrane with carbon nanotubes for water desalination. RSC Advances, 2014, 4, 16561.	3.6	20
96	Synthesis of Few-Layer Reduced Graphene Oxide for Lithium-Ion Battery Electrode Materials. Industrial & Samp; Engineering Chemistry Research, 2014, 53, 13348-13355.	3.7	32
97	Effect of a Room-Temperature Ionic Liquid on the Structure and Properties of Electrospun Poly(vinylidene fluoride) Nanofibers. ACS Applied Materials & Empty Interfaces, 2014, 6, 4447-4457.	8.0	103
98	Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations. Scientific Reports, 2014, 4, 5920.	3.3	68
99	Primary Photochemical Properties of Difloxacin in Neutral Aqueous Solution. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 2134-2141.	4.9	1
100	A Novel Avenue to Gold Nanostructured Microtubes Using Functionalized Fiber as the Ligand, the Reductant, and the Template. ACS Applied Materials & Samp; Interfaces, 2013, 5, 8761-8765.	8.0	14
101	Sol–gel preparation of PAA-g-PVDF/TiO2 nanocomposite hollow fiber membranes with extremely high water flux and improved antifouling property. Journal of Membrane Science, 2013, 432, 25-32.	8.2	167
102	Graphene Oxideâ€Based Antibacterial Cotton Fabrics. Advanced Healthcare Materials, 2013, 2, 1259-1266.	7.6	207
103	Laundering Durability of Photocatalyzed Self-Cleaning Cotton Fabric with TiO ₂ Nanoparticles Covalently Immobilized. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3697-3703.	8.0	97
104	Self-healing of the superhydrophobicity by ironing for the abrasion durable superhydrophobic cotton fabrics. Scientific Reports, 2013, 3, 2951.	3.3	58
105	Building up Graphene-Based Conductive Polymer Composite Thin Films Using Reduced Graphene Oxide Prepared by $\langle b \rangle \langle i \rangle \hat{l}^3 \langle j \rangle \langle b \rangle$ -Ray Irradiation. Scientific World Journal, The, 2013, 2013, 1-7.	2.1	9
106	Preparation of polymer decorated graphene oxide by \hat{I}^3 -ray induced graft polymerization. Nanoscale, 2012, 4, 1742.	5.6	89
107	Adsorption of the Uranyl Ions on an Amidoxime-Based Polyethylene Nonwoven Fabric Prepared by Preirradiation-Induced Emulsion Graft Polymerization. Industrial & Engineering Chemistry Research, 2012, 51, 15089-15095.	3.7	75
108	A mild method of amine-type adsorbents syntheses with emulsion graft polymerization of glycidyl methacrylate on polyethylene non-woven fabric by pre-irradiation. Radiation Physics and Chemistry, 2012, 81, 1393-1397.	2.8	16

#	Article	IF	CITATIONS
109	Radiation induced graft polymerization of a fluorinated acrylate onto fabric. Radiation Physics and Chemistry, 2012, 81, 1354-1356.	2.8	22
110	High-selective removal of ultra-low level mercury ions from aqueous solution using oligothymonucleic acid functionalized polyethylene film. Science China Chemistry, 2012, 55, 2202-2208.	8.2	11
111	Critical Dipole Length for the Wetting Transition Due to Collective Water-dipoles Interactions. Scientific Reports, 2012, 2, 358.	3.3	64
112	Radiation induced reduction: an effective and clean route to synthesize functionalized graphene. Journal of Materials Chemistry, 2012, 22, 7775.	6.7	163
113	Pre-irradiation induced emulsion graft polymerization of acrylonitrile onto polyethylene nonwoven fabric. Radiation Physics and Chemistry, 2012, 81, 93-96.	2.8	15
114	Fabrication and application of high quality poly(dimethylsiloxane) stamps by gamma ray irradiation. Journal of Materials Chemistry, 2011, 21, 4279.	6.7	10
115	Preparation of the antifouling microfiltration membranes from poly(N,N-dimethylacrylamide) grafted poly(vinylidene fluoride) (PVDF) powder. Journal of Materials Chemistry, 2011, 21, 11908.	6.7	61
116	Tuning the cellular uptake and cytotoxicity of carbon nanotubes by surface hydroxylation. Journal of Nanoparticle Research, 2011, 13, 6941-6952.	1.9	54
117	Ordered water monolayer at room temperature. Rendiconti Lincei, 2011, 22, 5-16.	2.2	9
118	Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid. Radiation Physics and Chemistry, 2011, 80, 159-163.	2.8	12
119	A novel approach to prepare proton exchange membranes from fluoropolymer powder by pre-irradiation induced graft polymerization. Journal of Membrane Science, 2010, 346, 113-120.	8.2	41
120	Antifouling microfiltration membranes prepared from acrylic acid or methacrylic acid grafted poly(vinylidene fluoride) powder synthesized via pre-irradiation induced graft polymerization. Journal of Membrane Science, 2010, 350, 252-258.	8.2	126
121	Laundering Durability of Superhydrophobic Cotton Fabric. Advanced Materials, 2010, 22, 5473-5477.	21.0	276
122	Preirradiationâ€induced emulsion graft polymerization of glycidyl methacrylate onto poly(vinylidene) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
123	Microfiltration membranes prepared from acryl amide grafted poly(vinylidene fluoride) powder and their pH sensitive behaviour. Journal of Membrane Science, 2010, 362, 298-305.	8.2	32
124	Functionalization of C60 with gold nanoparticles. Carbon, 2010, 48, 3570-3574.	10.3	25
125	Introducing reactive groups into polymer chains by radiation induced grafting technique. Plastics, Rubber and Composites, 2010, 39, 79-82.	2.0	5
126	Microfiltration membranes with pH dependent property prepared from poly(methacrylic acid) grafted polyethersulfone powder. Journal of Membrane Science, 2009, 330, 363-368.	8.2	83

#	Article	IF	Citations
127	Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence. Radiation Physics and Chemistry, 2008, 77, 898-906.	2.8	62
128	Application of the radiation induced grafting technology in preparing the proton exchange membranes for fuel cells. , 2008, , .		0
129	Study on PEFC Membrane Based on Crosslinked FEP Using EB-Grafting. Macromolecular Symposia, 2007, 249-250, 221-227.	0.7	11
130	Study on chemical structures of poly (tetrafluoroethylene-co-perfluoroalkylvinylether) by soft-EB irradiation in solid and molten state. Nuclear Instruments & Methods in Physics Research B, 2007, 265, 118-124.	1.4	4
131	Synthesis and characterization of PEFC membranes based on fluorinated-polymer-alloy using pre-soft-EB grafting method. Nuclear Instruments & Methods in Physics Research B, 2007, 265, 162-167.	1.4	8
132	Development of sulfonated FEP–Nafion hybrid proton exchange membranes for PEFC. Nuclear Instruments & Methods in Physics Research B, 2007, 265, 213-216.	1.4	14
133	Cell Performance of the Membrane Electrode Assembly Based on Sulfonated-FEP/Nafion Blended Polymer. Journal of Ion Exchange, 2007, 18, 574-579.	0.3	0
134	Improving the properties of the proton exchange membranes by introducing î±-methylstyrene in the pre-irradiation induced graft polymerization. European Polymer Journal, 2006, 42, 1222-1228.	5 . 4	22
135	Preparation of the crosslinked polyethersulfone films by high-temperature electron-beam irradiation. Polymer Degradation and Stability, 2006, 91, 2867-2873.	5 . 8	25
136	Performance of membrane electrode assemblies based on proton exchange membranes prepared by pre-irradiation induced grafting. Journal of Power Sources, 2006, 161, 99-105.	7.8	25
137	Preparation of ion exchange membranes by preirradiation induced grafting of styrene/divinylbenzene into crosslinked PTFE films and successive sulfonation. Journal of Applied Polymer Science, 2006, 101, 3587-3599.	2.6	12
138	Surface analysis of the proton exchange membranes prepared by pre-irradiation induced grafting of styrene/divinylbenzene into crosslinked thin PTFE membranes. Applied Surface Science, 2005, 245, 260-272.	6.1	26
139	Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes. Nuclear Instruments & Methods in Physics Research B, 2005, 236, 333-337.	1.4	23
140	Fabrication of PEFC membrane based on PTFE/FEP polymer-alloy using radiation-grafting. Nuclear Instruments & Methods in Physics Research B, 2005, 236, 437-442.	1.4	23
141	Synthesis of per-fluorinated polymer-alloy based on PTFE by high temperature EB-irradiation. Nuclear Instruments & Methods in Physics Research B, 2005, 236, 172-178.	1.4	14
142	Pre-irradiation induced grafting of styrene into crosslinked and non-crosslinked polytetrafluoroethylene films for polymer electrolyte fuel cell applications. II: Characterization of the styrene grafted films. European Polymer Journal, 2005, 41, 547-555.	5.4	39
143	Fabrication of a poly-electrolyte membrane based on cross-linked PTFE thin film by EB irradiation grafting. Research on Chemical Intermediates, 2005, 31, 585-593.	2.7	13
144	Pre-irradiation induced grafting of styrene into crosslinked and non-crosslinked polytetrafluoroethylene films for polymer electrolyte fuel cell applications. I: Influence of styrene grafting conditions. European Polymer Journal, 2004, 40, 775-783.	5.4	63

#	ARTICLE	IF	CITATIONS
145	Supramolecular Self-Assembly of Inclusion Complexes of a Multiarm Hyperbranched Polyether with Cyclodextrins. Langmuir, 2004, 20, 484-490.	3.5	84
146	Preparation and characterization of the crystalline inclusion complexes of \hat{l}_{\pm} - and \hat{l}_{\pm} -cyclodextrins with poly(butylene carbonate). Colloid and Polymer Science, 2003, 281, 267-274.	2.1	17
147	Preparation and Characterization of the Crystalline Inclusion Complex between \hat{l}^2 -Cyclodextrin and Poly(neopentyl glycol). Macromolecular Chemistry and Physics, 2002, 203, 155-158.	2.2	4
148	Formation of the crystalline inclusion complex between \hat{I}^3 -cyclodextrin and poly(N-acetylethylenimine). Polymer, 2002, 43, 2625-2629.	3.8	24
149	Inclusion Complexes Formation between Cyclodextrins and Poly(1,3-dioxolane). Macromolecules, 2001, 34, 1542-1544.	4.8	50
150	CONFIGURATIONAL-CONFORMATIONAL STATISTICS OF POLY(ETHYLENE-PROPYLENE)S. Journal of Macromolecular Science - Physics, 2001, 40, 231-237.	1.0	2
151	A promising scalable route to construct GO-based laminate membranes for antifouling ultrafiltration. Materials Advances, 0, , .	5.4	0