
Ji Heon Ryu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/171228/publications.pdf Version: 2024-02-01

IL HEON RVIL

#	Article	IF	CITATIONS
1	An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries. Advanced Materials, 2013, 25, 3045-3049.	21.0	770
2	The Current Move of Lithium Ion Batteries Towards the Next Phase. Advanced Energy Materials, 2012, 2, 860-872.	19.5	611
3	Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries. Electrochemical and Solid-State Letters, 2004, 7, A306.	2.2	576
4	Tin Phosphide as a Promising Anode Material for Naâ€lon Batteries. Advanced Materials, 2014, 26, 4139-4144.	21.0	356
5	Effect of slurry preparation process on electrochemical performances of LiCoO2 composite electrode. Journal of Power Sources, 2010, 195, 6049-6054.	7.8	166
6	Reversible Lithium Storage with High Mobility at Structural Defects in Amorphous Molybdenum Dioxide Electrode. Advanced Functional Materials, 2012, 22, 3658-3664.	14.9	166
7	Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors. Journal of Power Sources, 2014, 267, 411-420.	7.8	164
8	Failure mechanisms of LiNi0.5Mn1.5O4 electrode at elevated temperature. Journal of Power Sources, 2012, 215, 312-316.	7.8	158
9	Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries. Journal of Power Sources, 2005, 147, 227-233.	7.8	154
10	Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries. Electrochemistry Communications, 2012, 22, 1-3.	4.7	142
11	Reversible Lithium Storage at Highly Populated Vacant Sites in an Amorphous Vanadium Pentoxide Electrode. Chemistry of Materials, 2014, 26, 5874-5881.	6.7	137
12	Sn-Carbon Core-Shell Powder for Anode in Lithium Secondary Batteries. Journal of the Electrochemical Society, 2005, 152, A1452.	2.9	133
13	Poly(phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes. Energy and Environmental Science, 2015, 8, 1538-1543.	30.8	75
14	Cointercalation of Mg ²⁺ lons into Graphite for Magnesium-Ion Batteries. Chemistry of Materials, 2018, 30, 3199-3203.	6.7	71
15	A Bifunctional Electrolyte Additive for High-Voltage LiNi _{0.5} Mn _{1.5} O ₄ Positive Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 11306-11316.	8.0	69
16	Li2NiO2 as a sacrificing positive additive for lithium-ion batteries. Electrochimica Acta, 2013, 108, 591-595.	5.2	63
17	Linear-Sweep Thermammetry Study on Corrosion Behavior of Al Current Collector in Ionic Liquid Solvent. Electrochemical and Solid-State Letters, 2010, 13, A109.	2.2	52
18	Solid-state synthesis of Li4Ti5O12 for high power lithium ion battery applications. Journal of Alloys and Compounds, 2013, 570, 144-149.	5.5	47

#	Article	IF	CITATIONS
19	Effects of the starting materials and mechanochemical activation on the properties of solid-state reacted Li4Ti5O12 for lithium ion batteries. Ceramics International, 2012, 38, 301-310.	4.8	46
20	Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries. Electrochimica Acta, 2013, 103, 226-230.	5.2	43
21	Thermal Degradation of Solid Electrolyte Interphase (SEI) Layers by Phosphorus Pentafluoride (PF ₅) Attack. Journal of the Electrochemical Society, 2017, 164, A2418-A2425.	2.9	42
22	A tetradentate Ni(II) complex cation as a single redox couple for non-aqueous flow batteries. Journal of Power Sources, 2015, 283, 300-304.	7.8	41
23	N-ferrocenylphthalimide; A single redox couple formed by attaching a ferrocene moiety to phthalimide for non-aqueous flow batteries. Journal of Power Sources, 2018, 395, 60-65.	7.8	40
24	Performance Improvement of Nano-Sized Zinc Oxide Electrode by Embedding in Carbon Matrix for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A11-A14.	2.9	39
25	Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries. Electrochimica Acta, 2010, 55, 8051-8055.	5.2	37
26	A Comparative Study on Thermal Stability of Two Solid Electrolyte Interphase (SEI) Films on Graphite Negative Electrode. Journal of the Electrochemical Society, 2013, 160, A1539-A1543.	2.9	37
27	Increase of both solubility and working voltage by acetyl substitution on ferrocene for non-aqueous flow battery. Electrochemistry Communications, 2016, 69, 72-75.	4.7	37
28	Passivating Ability of Surface Film Derived from Vinylene Carbonate on Tin Negative Electrode. Journal of the Electrochemical Society, 2011, 158, A498.	2.9	36
29	Dissolution of cathode–electrolyte interphase deposited on LiNi0.5Mn1.5O4 for lithium-ion batteries. Journal of Power Sources, 2021, 503, 230051.	7.8	35
30	Low-Temperature Performance Improvement of Graphite Electrode by Allyl Sulfide Additive and Its Film-Forming Mechanism. Journal of the Electrochemical Society, 2016, 163, A1798-A1804.	2.9	34
31	Nano-scale uniform distribution of Ge/Cu3Ge phase and its electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2010, 55, 2894-2900.	5.2	33
32	Thermo-electrochemical activation of Cu3Sn negative electrode for lithium-ion batteries. Journal of Alloys and Compounds, 2011, 509, 7595-7599.	5.5	31
33	Compositional Change of Surface Film Deposited on LiNi0.5Mn1.5O4Positive Electrode. Journal of the Electrochemical Society, 2014, 161, A519-A523.	2.9	31
34	Mediator-free glucose/O2 biofuel cell based on a 3-dimensional glucose oxidase/SWNT/polypyrrole composite electrode. Biotechnology and Bioprocess Engineering, 2010, 15, 371-375.	2.6	29
35	Electrochemical activation behaviors studied with graphitic carbon electrodes of different interlayer distance. Electrochimica Acta, 2011, 56, 9931-9936.	5.2	27
36	Unusual Conversion-type Lithiation in LiVO ₃ Electrode for Lithium-Ion Batteries. Chemistry of Materials, 2016, 28, 5314-5320.	6.7	27

#	Article	IF	CITATIONS
37	A Firstâ€Cycle Coulombic Efficiency Higher than 100 % Observed for a Li ₂ MO ₃ (M=Mo or Ru) Electrode. Angewandte Chemie - International Edition, 2014, 53, 10654-10657.	13.8	26
38	Iron oxide/carbon black (Fe2O3/CB) composite electrode for the detection of reduced nicotinamide cofactors using an amperometric method under a low overpotential. Biosensors and Bioelectronics, 2010, 25, 1160-1165.	10.1	25
39	Thermal Behavior of Solid Electrolyte Interphase Films Deposited on Graphite Electrodes with Different States-of-Charge. Journal of the Electrochemical Society, 2015, 162, A892-A896.	2.9	25
40	Mechanical Damage of Surface Films and Failure of Nano-Sized Silicon Electrodes in Lithium Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A6103-A6109.	2.9	25
41	A comparative study on the solubility and stability of p -phenylenediamine-based organic redox couples for non-aqueous flow batteries. Journal of Power Sources, 2017, 348, 264-269.	7.8	24
42	An azamacrocyclic electrolyte additive to suppress metal deposition in lithium-ion batteries. Electrochemistry Communications, 2015, 58, 25-28.	4.7	23
43	Tris(pentafluorophenyl)silane as an Electrolyte Additive for 5 V LiNi _{0.5} Mn _{1.5} O ₄ Positive Electrode. Journal of the Electrochemical Society, 2016, 163, A898-A903.	2.9	23
44	Passivating film artificially built on LiNi0.5Mn1.5O4 by molecular layer deposition of (pentafluorophenylpropyl)trimethoxysilane. Journal of Power Sources, 2018, 392, 159-167.	7.8	21
45	A Calculation Model to Assess Two Irreversible Capacities Evolved in Silicon Negative Electrodes. Journal of the Electrochemical Society, 2015, 162, A1579-A1584.	2.9	19
46	N-(α-ferrocenyl)ethylphthalimide as a single redox couple for non-aqueous flow batteries. Journal of Power Sources, 2019, 421, 1-5.	7.8	17
47	Carbon fabric as a current collector for electroless-plated Cu6Sn5 negative electrode for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 692, 583-588.	5.5	16
48	Solid Permeable Interface (SPI) on a High-Voltage Positive Electrode of Lithium-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A575-A583.	2.9	16
49	The feasibility of a pyrrolidinium-based ionic liquid solvent for non-graphitic carbon electrodes. Electrochemistry Communications, 2011, 13, 1256-1259.	4.7	14
50	The Investigation of Electrolyte Oxidation and Film Deposition Characteristics at High Potentials in a Carbonate-Based Electrolyte Using Pt Electrode. Journal of the Electrochemical Society, 2018, 165, A1095-A1098.	2.9	14
51	Electrode Performances of Amorphous Molybdenum Oxides of Different Molybdenum Valence for Lithiumâ€ion Batteries. Israel Journal of Chemistry, 2015, 55, 604-610.	2.3	13
52	Ni(II)-chelated thio-crown complex as a single redox couple for non-aqueous flow batteries. Electrochemistry Communications, 2017, 85, 36-39.	4.7	13
53	Effects of Li/Ti ratios on the electrochemical properties of Li4Ti5O12 examined by time-resolved X-ray diffraction. Applied Physics A: Materials Science and Processing, 2012, 107, 769-775.	2.3	12
54	Effects of post-treatments on the electrochemical properties of solid-state reacted Li4Ti5O12—high energy milling and annealing. Journal of Electroceramics, 2012, 28, 178-184.	2.0	12

#	Article	IF	CITATIONS
55	Effects of Interlayer Distance and van der Waals Energy on Electrochemical Activation of Partially Reduced Graphite Oxide. Electrochimica Acta, 2015, 173, 827-833.	5.2	12
56	Reinforcement of an electrically conductive network with ethanol as a dispersing agent in the slurry preparation step. Journal of Power Sources, 2015, 287, 359-362.	7.8	12
57	Amorphous V2O5 Positive Electrode Materials by Precipitation Method in Magnesium Rechargeable Batteries. Electronic Materials Letters, 2019, 15, 415-420.	2.2	12
58	Copper Oxide as a Hydrogen Fluoride Scavenger for High-Voltage LiNi0.5Mn1.5O4Positive Electrode. Journal of the Electrochemical Society, 2017, 164, A2677-A2682.	2.9	11
59	Counter anion effects on the energy density of Ni(II)-chelated tetradentate azamacrocyclic complex cation as single redox couple for non-aqueous flow batteries. Electrochimica Acta, 2019, 308, 227-230.	5.2	11
60	Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell. APL Materials, 2018, 6, .	5.1	10
61	Concentration Gradient Induced Delithiation Failure of MoO ₃ for Li-Ion Batteries. Nano Letters, 2022, 22, 761-767.	9.1	10
62	Composites: An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries (Adv. Mater. 22/2013). Advanced Materials, 2013, 25, 3010-3010.	21.0	9
63	One pot synthesis of ordered mesoporous carbon–silica–titania with parallel alignment against graphene as advanced anode material in lithium ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 71, 93-98.	5.8	9
64	Novel silicon–tungsten oxide–carbon composite as advanced negative electrode for lithium-ion batteries. Solid State Ionics, 2018, 314, 41-45.	2.7	8
65	Grafting Nitrophenyl Groups on Carbon Surfaces by Diazonium Chemistry to Suppress Irreversible Reactions in High-Voltage LiNi _{0.5} Mn _{1.5} O ₄ Positive Electrodes. Journal of the Electrochemical Society, 2018, 165, A1372-A1376.	2.9	8
66	Preparation and Characterization of Sol–Gel-Driven Li _{<i>x</i>} La ₃ Zr ₂ O ₁₂ Solid Electrolytes and LiCoO ₂ Cathodes for All-Solid-State Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2020, 20, 7002-7009.	0.9	8
67	An Azamacrocyclic Ligand-Functionalized Transition-Metal Scavenging Polymer for 5.0 V Class High-Energy Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 128-133.	5.1	8
68	Communication—A Phosphorus Pentafluoride Scavenger to Suppress Solid Electrolyte Interphase Damage at Moderately Elevated Temperature. Journal of the Electrochemical Society, 2017, 164, A3699-A3701.	2.9	8
69	Degradation of surface film on LiCoO2 electrode by hydrogen fluoride attack at moderately elevated temperature. Electrochimica Acta, 2018, 277, 59-66.	5.2	6
70	Communication—Lithium Bis(fluorosulfonyl)imide (LiFSI) as a Promising Salt to Suppress Solid Electrolyte Interphase Degradation at Elevated Temperatures. Journal of the Electrochemical Society, 2020, 167, 080529.	2.9	6
71	Binder―and Carbonâ€free Porous Thick Tin Foil Electrode via a Spontaneous Electrochemical and Chemical Process. Bulletin of the Korean Chemical Society, 2016, 37, 48-51.	1.9	5
72	<scp>Oneâ€step</scp> surface nitridation of <scp>CoO</scp> for <scp>highâ€energyâ€density</scp> lithiumâ€ion batteries. International Journal of Energy Research, 2020, 44, 9233-9239.	4.5	5

#	Article	IF	CITATIONS
73	Amorphous Vanadium Titanates as a Negative Electrode for Lithium-ion Batteries. Journal of Electrochemical Science and Technology, 2016, 7, 306-315.	2.2	5
74	Reduction of heat generation for lithiated graphite by forming a local galvanic cell with Cu3Sn at elevated temperature. Electrochemistry Communications, 2013, 37, 88-90.	4.7	4
75	Re-Deposition of Aluminum Species after Dissolution to Improve Electrode Performances of Lithium Manganese Oxide. Journal of the Electrochemical Society, 2014, 161, A2020-A2025.	2.9	4
76	Influence of Surface Area Change of Spinel Cathode on Highâ€Temperature Storage Behavior of Lithiumâ€Ion Pouch Cell. Bulletin of the Korean Chemical Society, 2015, 36, 2658-2663.	1.9	4
77	Highly flexible TiO2-coated stainless steel fabric electrode prepared by liquid-phase deposition. Journal of Power Sources, 2016, 330, 204-210.	7.8	4
78	Artificially-built solid electrolyte interphase via surface-bonded vinylene carbonate derivative on graphite by molecular layer deposition. Journal of Power Sources, 2017, 370, 131-137.	7.8	4
79	Decrease in dendritic growth and overpotential through inâ€situ generated lithiumâ€aluminum alloys for lithium metal batteries. International Journal of Energy Research, 2021, 45, 16884-16890.	4.5	4
80	Surface nitridation of Li4Ti5O12 by thermal decomposition of urea to improve quick charging capability of lithium ion batteries. Scientific Reports, 2021, 11, 13095.	3.3	4
81	A comparative study of increased lithium storage with low resistance at structural defects in amorphous titanium dioxide electrode. Electrochimica Acta, 2021, 398, 139358.	5.2	4
82	Charge/discharge Capacity of Natural Graphite Anode According to the Charge/discharge Rate in Lithium Secondary Batteries. Journal of the Korean Electrochemical Society, 2004, 7, 32-37.	0.1	4
83	A comparative study of polarization during the initial lithiation step in tungsten-oxide negative electrodes for lithium-ion batteries. Solid State Ionics, 2017, 311, 1-5.	2.7	3
84	Li-Salt Concentration Effects on Quick-Charge Performances of Spinel Lithium Titanium Oxide Negative Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 040523.	2.9	3
85	Permeable characteristics of surface film deposited on LiMn2O4 positive electrode revealed by redox-active indicator. Nano Convergence, 2021, 8, 21.	12.1	3
86	Communication—Aliphatic Chain Substitution for Enhancing Energy Density of <i>p</i> -Benzoquinone Redox Couple for Non-Aqueous Flow Batteries. Journal of the Electrochemical Society, 2020, 167, 020551.	2.9	3
87	Effect of Radical–Solvent Interaction on Battery Performance in Benzophenone-Based Charge Storage Systems. Journal of the Electrochemical Society, 2020, 167, 160526.	2.9	3
88	Development of La0.8Sr0.2MnO3+δ electrocatalysts by Pechini's methods as cathode electrocatalysts in alkaline anion exchange membrane fuel cells. Solid State Ionics, 2016, 290, 124-129.	2.7	2
89	Communication—Electrochemical Conversion of CuV ₂ O ₆ into Metallic Cu and LiVO ₃ with Highly Reversible Lithium Storage. Journal of the Electrochemical Society, 2017, 164, A864-A866.	2.9	2
90	Tris(pentafluorophenyl)silane as a Solid Electrolyte Interphase (SEI)-Forming Agent for Graphite Electrodes. Journal of the Electrochemical Society, 2017, 164, A1887-A1892.	2.9	2

#	Article	IF	CITATIONS
91	Ordered mesoporous tungsten oxide–carbon nanocomposite for use as a highly reversible negative electrode in lithium-ion batteries. Journal of Alloys and Compounds, 2020, 832, 154816.	5.5	2
92	A comparative study of reaction mechanism of MoS2 negative electrode materials for sodium-ion batteries. Journal of Alloys and Compounds, 2021, 876, 160182.	5.5	2
93	Effect of Lithium Bis(oxalate)borate as an Electrolyte Additive on Carbon-coated SiO Negative Electrode. Journal of the Korean Electrochemical Society, 2014, 17, 49-56.	0.1	2
94	Electrochemical characteristics of high-capacity Mg/V2O5 hybrid batteries with Mg-Li dual salt electrolytes. Korean Journal of Chemical Engineering, 2020, 37, 184-187.	2.7	1
95	Amorphous Vanadium Titanates as a Negative Electrode for Lithium-ion Batteries. Journal of Electrochemical Science and Technology, 2016, 7, 306-315.	2.2	1
96	Enhanced High-Temperature Performance of LiNi0.6Co0.2Mn0.2O2Positive Electrode Materials by the Addition of nano-Al2O3during the Synthetic Process. Journal of the Korean Electrochemical Society, 2016, 19, 80-86.	0.1	1
97	Reduction of Li4Ti5O12Powder Agglomeration by the Addition of Carbon Black during Solid-state Synthesis. Journal of the Korean Electrochemical Society, 2016, 19, 63-68.	0.1	1
98	Surface Film Degradation on LiCoO2 Electrode by Hydrogen Fluoride Attack at Moderately Elevated Temperature and CuO Addition to Mitigate the Degradation. Journal of the Electrochemical Society, 2019, 166, A195-A200.	2.9	0
99	Improvement of Rate Capability and Low-temperature Performances of Graphite Negative Electrode by Surface Treatment with Copper Phthalocyanine. Journal of the Korean Electrochemical Society, 2015, 18, 130-135.	0.1	Ο
100	Poly(phenanthrenequinone)-Poly(acrylic acid) Composite as a Conductive Polymer Binder for Submicrometer-Sized Silicon Negative Electrodes. Journal of the Korean Electrochemical Society, 2016, 19, 87-94.	0.1	0
101	Effect of Pre-Cycling Rate on the Passivating Ability of Surface Films on Li4Ti5O12 Electrodes. Journal of Electrochemical Science and Technology, 2017, 8, 15-24.	2.2	0
102	Sol–Gel-Driven Al and Ta Co-Doped Li ₇ La ₃ Zr ₂ O ₁₂ Solid Ceramic Electrolyte for All-Solid-State Lithium Ion Batteries. Nanoscience and Nanotechnology Letters, 2018, 10, 491-496.	0.4	0
103	Electrolyte Additives for Mg Stripping Reaction in Lithium-Magnesium Hybrid Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0