
Watcharin Loilome

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1711743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased activation of PI3K/AKT signaling pathway is associated with cholangiocarcinoma metastasis and PI3K/mTOR inhibition presents a possible therapeutic strategy. Tumor Biology, 2013, 34, 3637-3648.	1.8	100
2	Cohort profile: cholangiocarcinoma screening and care program (CASCAP). BMC Cancer, 2015, 15, 459.	2.6	93
3	Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells. Tumor Biology, 2014, 35, 5357-5367.	1.8	87
4	Mechanisms of oxysterol-induced carcinogenesis. Lipids in Health and Disease, 2011, 10, 44.	3.0	69
5	Cholangiocarcinoma: a guide for the nonspecialist. International Journal of General Medicine, 2019, Volume 12, 13-23.	1.8	67
6	Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling. Journal of Neuro-Oncology, 2009, 94, 359-366.	2.9	65
7	Circulating miR-192 in liver fluke-associated cholangiocarcinoma patients: a prospective prognostic indicator. Journal of Hepato-Biliary-Pancreatic Sciences, 2014, 21, 864-872.	2.6	65
8	Prolonged oxidative stress down-regulates Early B cell factor 1 with inhibition of its tumor suppressive function against cholangiocarcinoma genesis. Redox Biology, 2018, 14, 637-644.	9.0	62
9	Resveratrol interrupts the pro-invasive communication between cancer associated fibroblasts and cholangiocarcinoma cells. Cancer Letters, 2018, 430, 160-171.	7.2	60
10	Altered gene expression inOpisthorchis viverrini-associated cholangiocarcinoma in hamster model. Molecular Carcinogenesis, 2006, 45, 279-287.	2.7	59
11	Myristoylated alanineâ€rich C kinase substrate phosphorylation promotes cholangiocarcinoma cell migration and metastasis via the protein kinase Câ€dependent pathway. Cancer Science, 2010, 101, 658-665.	3.9	59
12	Histological confirmation of periductal fibrosis from ultrasound diagnosis in cholangiocarcinoma patients. Journal of Hepato-Biliary-Pancreatic Sciences, 2014, 21, 316-322.	2.6	58
13	Quantitative Changes in Tumor-Associated M2 Macrophages Characterize Cholangiocarcinoma and their Association with Metastasis. Asian Pacific Journal of Cancer Prevention, 2015, 16, 3043-3050.	1.2	58
14	Tumor necrosis factor-α (TNF-α) stimulates the epithelial–mesenchymal transition regulator Snail in cholangiocarcinoma. Medical Oncology, 2012, 29, 3083-3091.	2.5	57
15	CD44 variantâ€dependent redox status regulation in liver flukeâ€associated cholangiocarcinoma: A target for cholangiocarcinoma treatment. Cancer Science, 2016, 107, 991-1000.	3.9	57
16	Urinary microRNA-192 and microRNA-21 as potential indicators for liver fluke-associated cholangiocarcinoma risk group. Parasitology International, 2017, 66, 479-485.	1.3	52
17	A Comprehensive Public Health Conceptual Framework and Strategy to Effectively Combat Cholangiocarcinoma in Thailand. PLoS Neglected Tropical Diseases, 2016, 10, e0004293.	3.0	51
18	Current Perspectives on Opisthorchiasis Control and Cholangiocarcinoma Detection in Southeast Asia, Frontiers in Medicine, 2018, 5, 117.	2.6	51

WATCHARIN LOILOME

#	Article	IF	CITATIONS
19	Advances in the Diagnosis of Human Opisthorchiasis: Development of Opisthorchis viverrini Antigen Detection in Urine. PLoS Neglected Tropical Diseases, 2015, 9, e0004157.	3.0	50
20	Inhibition of <scp>l</scp> -type amino acid transporter 1 activity as a new therapeutic target for cholangiocarcinoma treatment. Tumor Biology, 2017, 39, 101042831769454.	1.8	50
21	High Expression of HIF-1α, BNIP3 and PI3KC3: Hypoxia-Induced Autophagy Predicts Cholangiocarcinoma Survival and Metastasis. Asian Pacific Journal of Cancer Prevention, 2014, 15, 5873-5878.	1.2	49
22	Dihydroartemisinin induces apoptosis and autophagyâ€dependent cell death in cholangiocarcinoma through a DAPK1â€BECLIN1 pathway. Molecular Carcinogenesis, 2018, 57, 1735-1750.	2.7	48
23	Characterization of 5-Fluorouracil-Resistant Cholangiocarcinoma Cell Lines. Chemotherapy, 2008, 54, 343-351.	1.6	47
24	PRKAR1A is overexpressed and represents a possible therapeutic target in human cholangiocarcinoma. International Journal of Cancer, 2011, 129, 34-44.	5.1	47
25	Loss of E-cadherin promotes migration and invasion of cholangiocarcinoma cells and serves as a potential marker of metastasis. Tumor Biology, 2014, 35, 8645-8652.	1.8	47
26	BMP-7 blocks the effects of TGF-β-induced EMT in cholangiocarcinoma. Tumor Biology, 2014, 35, 9667-9676.	1.8	43
27	Platelet-derived growth factor may be a potential diagnostic and prognostic marker for cholangiocarcinoma. Tumor Biology, 2012, 33, 1785-1802.	1.8	38
28	<scp>STAT</scp> s profiling reveals predominantlyâ€activated <scp>STAT3</scp> in cholangiocarcinoma genesis and progression. Journal of Hepato-Biliary-Pancreatic Sciences, 2014, 21, 767-776.	2.6	38
29	Opisthorchiasis and cholangiocarcinoma in Southeast Asia: an unresolved problem. International Journal of General Medicine, 2017, Volume 10, 227-237.	1.8	38
30	Liver fluke-induced hepatic oxysterols stimulate DNA damage and apoptosis in cultured human cholangiocytes. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 731, 48-57.	1.0	36
31	Tumor necrosis factorâ€Î± modulates epithelial mesenchymal transition mediators <scp>ZEB2</scp> and <scp>S100A4</scp> to promote cholangiocarcinoma progression. Journal of Hepato-Biliary-Pancreatic Sciences, 2014, 21, 703-711.	2.6	36
32	Opisthorchis viverrini Infection Activates the PI3K/AKT/PTEN and Wnt/β-catenin Signaling Pathways in a Cholangiocarcinogenesis Model. Asian Pacific Journal of Cancer Prevention, 2015, 15, 10463-10468.	1.2	36
33	Survey of activated kinase proteins reveals potential targets for cholangiocarcinoma treatment. Tumor Biology, 2013, 34, 3519-3528.	1.8	34
34	Cancer-Associated Fibroblast-Derived IL-6 Determines Unfavorable Prognosis in Cholangiocarcinoma by Affecting Autophagy-Associated Chemoresponse. Cancers, 2021, 13, 2134.	3.7	33
35	Increased EphB2 expression predicts cholangiocarcinoma metastasis. Tumor Biology, 2014, 35, 10031-10041.	1.8	32
36	Xanthohumol inhibits STAT3 activation pathway leading to growth suppression and apoptosis induction in human cholangiocarcinoma cells. Oncology Reports, 2016, 35, 2065-2072.	2.6	32

#	Article	IF	CITATIONS
37	Risk biomarkers for assessment and chemoprevention of liver fluke-associated cholangiocarcinoma. Journal of Hepato-Biliary-Pancreatic Sciences, 2014, 21, 309-315.	2.6	31
38	Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool. Tumor Biology, 2017, 39, 101042831771765.	1.8	31
39	Expression of oxysterol binding protein isoforms in opisthorchiasis-associated cholangiocarcinoma: A potential molecular marker for tumor metastasis. Parasitology International, 2012, 61, 136-139.	1.3	28
40	Establishment of cholangiocarcinoma cell lines from patients in the endemic area of liver fluke infection in Thailand. Tumor Biology, 2017, 39, 101042831772592.	1.8	27
41	Cytokines released from activated human macrophages induce epithelial mesenchymal transition markers of cholangiocarcinoma cells. Asian Pacific Journal of Cancer Prevention, 2012, 13 Suppl, 115-8.	1.2	25
42	Comparing the performance of urine and copro-antigen detection in evaluating Opisthorchis viverrini infection in communities with different transmission levels in Northeast Thailand. PLoS Neglected Tropical Diseases, 2019, 13, e0007186.	3.0	24
43	Potential role of HIF-1-responsive microRNA210/HIF3 axis on gemcitabine resistance in cholangiocarcinoma cells. PLoS ONE, 2018, 13, e0199827.	2.5	22
44	Progranulin modulates cholangiocarcinoma cell proliferation, apoptosis, and motility via the PI3K/pAkt pathway. OncoTargets and Therapy, 2018, Volume 11, 395-408.	2.0	21
45	Urine proteomics study reveals potential biomarkers for the differential diagnosis of cholangiocarcinoma and periductal fibrosis. PLoS ONE, 2019, 14, e0221024.	2.5	21
46	Anti-apoptotic phenotypes of cholestan-3β,5α,6β-triol-resistant human cholangiocytes: Characteristics contributing to the genesis of cholangiocarcinoma. Journal of Steroid Biochemistry and Molecular Biology, 2013, 138, 368-375.	2.5	20
47	Evaluation of anticancer potential of Thai medicinal herb extracts against cholangiocarcinoma cell lines. PLoS ONE, 2019, 14, e0216721.	2.5	20
48	Nimotuzumab Inhibits Cholangiocarcinoma Cell Metastasis via Suppression of the Epithelial–Mesenchymal Transition Process. Anticancer Research, 2017, 37, 3591-3597.	1.1	20
49	Oxidized alpha-1 antitrypsin as a predictive risk marker of opisthorchiasis-associated cholangiocarcinoma. Tumor Biology, 2013, 34, 695-704.	1.8	19
50	Increase in L-type amino acid transporter 1 expression during cholangiocarcinogenesis caused by liver fluke infection and its prognostic significance. Parasitology International, 2017, 66, 471-478.	1.3	19
51	Diagnostic performance of urinary IgG antibody detection: A novel approach for population screening of strongyloidiasis. PLoS ONE, 2018, 13, e0192598.	2.5	19
52	Discovery and Qualification of Serum Protein Biomarker Candidates for Cholangiocarcinoma Diagnosis. Journal of Proteome Research, 2019, 18, 3305-3316.	3.7	18
53	Discovery of Serotransferrin Glycoforms: Novel Markers for Diagnosis of Liver Periductal Fibrosis and Prediction of Cholangiocarcinoma. Biomolecules, 2019, 9, 538.	4.0	17
54	Smartphone-based fluorescent ELISA with simple fluorescent enhancement strategy for Opisthorchis viverrini (Ov) antigen detection in urine samples. Sensors and Actuators B: Chemical, 2021, 348, 130705.	7.8	17

#	Article	IF	CITATIONS
55	Genetic and environmental determinants of risk for cholangiocarcinoma in Thailand. World Journal of Gastrointestinal Pathophysiology, 2014, 5, 570.	1.0	17
56	Synchrotron FTIR microspectroscopy revealed apoptosis-induced biomolecular changes of cholangiocarcinoma cells treated with ursolic acid. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129708.	2.4	16
57	Overexpression of a panel of cancer stem cell markers enhances the predictive capability of the progression and recurrence in the early stage cholangiocarcinoma. Journal of Translational Medicine, 2020, 18, 64.	4.4	16
58	Targeting Fatty Acid Synthase Modulates Metabolic Pathways and Inhibits Cholangiocarcinoma Cell Progression. Frontiers in Pharmacology, 2021, 12, 696961.	3.5	16
59	Teleconsultation ultrasonography: a new weapon to combat cholangiocarcinoma. ESMO Open, 2017, 2, e000231.	4.5	15
60	Zileuton suppresses cholangiocarcinoma cell proliferation and migration through inhibition of the Akt signaling pathway. OncoTargets and Therapy, 2018, Volume 11, 7019-7029.	2.0	15
61	Smartphone-based portable fluorescence sensor with gold nanoparticle mediation for selective detection of nitrite ions. Food Chemistry, 2022, 384, 132478.	8.2	15
62	Opisthorchis viverrini-antigen induces expression of MARCKS during inflammation-associated cholangiocarcinogenesis. Parasitology International, 2012, 61, 140-144.	1.3	14
63	Upregulation of endothelial nitric oxide synthase (eNOS) and its upstream regulators in Opisthorchis viverrini associated cholangiocarcinoma and its clinical significance. Parasitology International, 2017, 66, 486-493.	1.3	14
64	Characterisation of the Urinary Metabolic Profile of Liver Fluke-Associated Cholangiocarcinoma. Journal of Clinical and Experimental Hepatology, 2019, 9, 657-675.	0.9	14
65	Sulfasalazine modifies metabolic profiles and enhances cisplatin chemosensitivity on cholangiocarcinoma cells in in vitro and in vivo models. Cancer & Metabolism, 2021, 9, 11.	5.0	14
66	Increased expression of TLR-2, COX-2, and SOD-2 genes in the peripheral blood leukocytes of opisthorchiasis patients induced by Opisthorchis viverrini antigen. Parasitology Research, 2012, 110, 1969-1977.	1.6	13
67	Imbalanced adaptive responses associated with microsatellite instability in cholangiocarcinoma. Oncology Letters, 2017, 13, 639-646.	1.8	13
68	Inhibition of endothelial nitric oxide synthase in cholangiocarcinoma cell lines – a new strategy for therapy. FEBS Open Bio, 2018, 8, 513-522.	2.3	13
69	The Socioeconomic Burden of Cholangiocarcinoma Associated With Opisthorchis viverrini Sensu Lato Infection in Northeast Thailand. Advances in Parasitology, 2018, 102, 141-163.	3.2	13
70	A panel of protein kinase high expression is associated with postoperative recurrence in cholangiocarcinoma. BMC Cancer, 2020, 20, 154.	2.6	13
71	Chloroquine Exerts Anti-metastatic Activities Under Hypoxic Conditions in Cholangiocarcinoma Cells. Asian Pacific Journal of Cancer Prevention, 2015, 16, 2031-2035.	1.2	13
72	Immunosuppressive Prednisolone Enhances Early Cholangiocarcinoma in Syrian Hamsters with Liver Fluke Infection and Administration of N-nitrosodimethylamine. Pathology and Oncology Research, 2013, 19, 55-62.	1.9	12

WATCHARIN LOILOME

#	Article	IF	CITATIONS
73	Characterisation of the Serum Metabolic Signature of Cholangiocarcinoma in a United Kingdom Cohort. Journal of Clinical and Experimental Hepatology, 2020, 10, 17-29.	0.9	12
74	AuNPs-LISA, an efficient detection assay for Opisthorchis viverrini (Ov) antigen in urine. Talanta, 2020, 209, 120592.	5.5	12
75	Antifibrotic effect of xanthohumol in combination with praziquantel is associated with altered redox status and reduced iron accumulation during liver fluke-associated cholangiocarcinogenesis. PeerJ, 2018, 6, e4281.	2.0	12
76	PRKAR1A overexpression is associated with increased ECPKA autoantibody in liver fluke-associated cholangiocarcinoma: application for assessment of the risk group. Tumor Biology, 2012, 33, 2289-2298.	1.8	11
77	Combination of Praziquantel and Aspirin Minimizes Liver Pathology of Hamster Opisthorchis viverrini Infection Associated Cholangiocarcinoma. Pathology and Oncology Research, 2016, 22, 57-65.	1.9	11
78	<p>In vitro and in vivo Anti-Tumor Effects of Pan-HER Inhibitor Varlitinib on Cholangiocarcinoma Cell Lines</p> . Drug Design, Development and Therapy, 2020, Volume 14, 2319-2334.	4.3	11
79	A comparison of the proportion of early stage cholangiocarcinoma found in an ultrasound-screening program compared to walk-in patients. Hpb, 2020, 22, 874-883.	0.3	11
80	Integration of global metabolomics and lipidomics approaches reveals the molecular mechanisms and the potential biomarkers for postoperative recurrence in early-stage cholangiocarcinoma. Cancer & Metabolism, 2021, 9, 30.	5.0	11
81	Upregulation of TCTP is associated with cholangiocarcinoma progression and metastasis. Oncology Letters, 2017, 14, 5973-5979.	1.8	10
82	A fluorescence AuNPs-LISA: A new approach for Opisthorchis viverrini (Ov) antigen detection with a simple fluorescent enhancement strategy by surfactant micelle in urine samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 254, 119633.	3.9	10
83	Association of CYP39A1, RUNX2 and Oxidized Alpha-1 Antitrypsin Expression in Relation to Cholangiocarcinoma Progression. Asian Pacific Journal of Cancer Prevention, 2015, 15, 10187-10192.	1.2	10
84	Anti-inflammatory agents suppress the prostaglandin E2 production and migration ability of cholangiocarcinoma cell lines. Asian Pacific Journal of Cancer Prevention, 2012, 13 Suppl, 47-51.	1.2	10
85	PGE2 signaling and its biosynthesis-related enzymes in cholangiocarcinoma progression. Tumor Biology, 2014, 35, 8051-8064.	1.8	9
86	Circulating TGF-β1 as the potential epithelial mesenchymal transition-biomarker for diagnosis of cholangiocarcinoma. Journal of Gastrointestinal Oncology, 2020, 11, 304-318.	1.4	9
87	CD44 modulates metabolic pathways and altered ROS-mediated Akt signal promoting cholangiocarcinoma progression. PLoS ONE, 2021, 16, e0245871.	2.5	9
88	Potential of Selenium Compounds as New Anticancer Agents for Cholangiocarcinoma. Anticancer Research, 2016, 36, 5981-5988.	1.1	9
89	<i>ARID1A</i> alterations and their clinical significance in cholangiocarcinoma. PeerJ, 2020, 8, e10464.	2.0	9
90	In vitro and molecular chemosensitivity in human cholangiocarcinoma tissues. PLoS ONE, 2019, 14, e0222140.	2.5	8

WATCHARIN LOILOME

#	Article	IF	CITATIONS
91	Mass Spectrometry: A Guide for the Clinician. Journal of Clinical and Experimental Hepatology, 2019, 9, 597-606.	0.9	8
92	Diagnostic and Prognostic Value of Circulating Cell-Free DNA for Cholangiocarcinoma. Diagnostics, 2021, 11, 999.	2.6	8
93	Milk fat globule epidermal growth factor 8 serves a novel biomarker of opisthorchiasis-associated cholangiocarcinoma. Tumor Biology, 2014, 35, 1985-1995.	1.8	7
94	Bacterial challenge-associated metabolic phenotypes in Hermetia illucens defining nutritional and functional benefits. Scientific Reports, 2021, 11, 23316.	3.3	7
95	Inhibitory effect of NVP‑BKM120 on cholangiocarcinoma cell growth. Oncology Letters, 2018, 16, 1627-1633.	1.8	6
96	Serum IgG as a Marker for Opisthorchis viverrini -Associated Cholangiocarcinoma Correlated with HER2 Overexpression. International Journal of General Medicine, 2020, Volume 13, 1271-1283.	1.8	6
97	Modification of the AJCC/UICC 8th edition staging system for intrahepatic cholangiocarcinoma: proposal for an alternative staging system from cholangiocarcinoma-prevalent Northeast Thailand. Hpb, 2022, 24, 1944-1956.	0.3	6
98	Performance of Mini Parasep® SF stool concentrator kit, Kato-Katz, and formalin-ethyl acetate concentration methods for diagnosis of opisthorchiasis in Northeast Thailand. Parasites and Vectors, 2022, 15, .	2.5	6
99	Suppression of 14-3-3ζ in cholangiocarcinoma cells inhibits proliferation through attenuated Akt activity, enhancing chemosensitivity to gemcitabine. Oncology Letters, 2018, 15, 347-353.	1.8	5
100	PRIMA-1 ^{MET} Induces Cellular Senescence and Apoptotic Cell Death in Cholangiocarcinoma Cells. Cancer Genomics and Proteomics, 2019, 16, 543-552.	2.0	5
101	Curative effect of xanthohumol supplementation during liver fluke-associated cholangiocarcinogenesis: Potential involvement ofÂautophagy. Journal of Traditional and Complementary Medicine, 2020, 10, 230-235.	2.7	5
102	High Levels of Serum IgG for Opisthorchis viverrini and CD44 Expression Predict Worse Prognosis for Cholangiocarcinoma Patients after Curative Resection. International Journal of General Medicine, 2021, Volume 14, 2191-2204.	1.8	5
103	Arctigenin inhibits cholangiocarcinoma progression by regulating cell migration and cell viability via the N-cadherin and apoptosis pathway. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 2049-2059.	3.0	5
104	Therapeutic targeting of ARID1A and PI3K/AKT pathway alterations in cholangiocarcinoma. PeerJ, 2022, 10, e12750.	2.0	5
105	Metabolic Phenotyping Predicts Gemcitabine and Cisplatin Chemosensitivity in Patients With Cholangiocarcinoma. Frontiers in Public Health, 2022, 10, 766023.	2.7	5
106	Impaired antioxidant enzyme activity and increased DNA repair enzyme expression in hamster liver tissues related to cholangiocarcinoma development. Asian Pacific Journal of Cancer Prevention, 2012, 13 Suppl, 59-64.	1.2	5
107	Promoter hypermethylation of early B cell factor 1 (EBF1) is associated with cholangiocarcinoma progression. Journal of Cancer, 2021, 12, 2673-2686.	2.5	4
108	Metabolic Profiling of Praziquantel-mediated Prevention of <i>Opisthorchis viverrini</i> -induced Cholangiocyte Transformation in the Hamster Model of Cholangiocarcinoma. Cancer Genomics and Proteomics, 2021, 18, 29-42.	2.0	4

#	Article	IF	CITATIONS
109	Elevated Levels of Urinary 8-oxodG Correlate with Persistent Periductal Fibrosis after Praziquantel Treatment in Chronic Opisthorchiasis. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1763-1769.	1.4	4
110	A Promising Serum Autoantibody Marker, Anti-Heat Shock Protein 90α, for Cholangiocarcinoma. Asian Pacific Journal of Cancer Prevention, 2015, 16, 5779-5785.	1.2	4
111	Therapeutic challenges at the preclinical level for targeted drug development for Opisthorchis viverrini-associated cholangiocarcinoma. Expert Opinion on Investigational Drugs, 2021, 30, 985-1006.	4.1	3
112	1H NMR metabolic phenotyping of Dipterocarpus alatus as a novel tool for age and growth determination. PLoS ONE, 2020, 15, e0243432.	2.5	3
113	Evaluation of a short term effect of praziquantel treatment in opisthorchiasis-induced hepatobiliary inflammation by urinary 8-oxodG. Acta Tropica, 2019, 189, 124-128.	2.0	2
114	Metabolic Changes of Cholangiocarcinoma Cells in Response to Coniferyl Alcohol Treatment. Biomolecules, 2021, 11, 476.	4.0	2
115	Mapping of population disparities in the cholangiocarcinoma urinary metabolome. Scientific Reports, 2021, 11, 21286.	3.3	2
116	Suppression of PRKAR1A expression enhances anti-proliferative and apoptotic effects of protein kinase inhibitors and chemotherapeutic drugs on cholangiocarcinoma cells. Asian Pacific Journal of Cancer Prevention, 2012, 13 Suppl, 143-7.	1.2	2
117	Protein Kinases as Targets for Opisthorchis viverrini- Associated Cholangiocarcinoma Therapy. Current Pharmaceutical Design, 2017, 23, 4281-4289.	1.9	1
118	Lipidomic Analyses Uncover Apoptotic and Inhibitory Effects of Pyrvinium Pamoate on Cholangiocarcinoma Cells via Mitochondrial Membrane Potential Dysfunction. Frontiers in Public Health, 2021, 9, 766455.	2.7	1