Tesfaye Wubet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1711682/publications.pdf

Version: 2024-02-01

124 papers 10,043 citations

52 h-index 94 g-index

130 all docs

130 docs citations

times ranked

130

12623 citing authors

#	Article	IF	CITATIONS
1	Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution, 2014, 4, 3514-3524.	1.9	697
2	Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 2016, 536, 456-459.	27.8	526
3	Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Frontiers in Microbiology, 2016, 7, 1446.	3.5	462
4	Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 2018, 362, 80-83.	12.6	433
5	Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 2016, 540, 266-269.	27.8	404
6	Horizon-Specific Bacterial Community Composition of German Grassland Soils, as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes. Applied and Environmental Microbiology, 2010, 76, 6751-6759.	3.1	312
7	Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology, 2016, 25, 4059-4074.	3.9	297
8	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	7.1	243
9	Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical <scp>C</scp> hina. Methods in Ecology and Evolution, 2014, 5, 74-89.	5.2	232
10	Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 2020, 11, 3870.	12.8	192
11	The impact of evenâ€aged and unevenâ€aged forest management on regional biodiversity of multiple taxa in European beech forests. Journal of Applied Ecology, 2018, 55, 267-278.	4.0	188
12	Multiple forest attributes underpin the supply of multiple ecosystem services. Nature Communications, 2018, 9, 4839.	12.8	182
13	Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nature Communications, 2020, 11, 576.	12.8	177
14	Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications, 2018, 9, 2989.	12.8	169
15	Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28140-28149.	7.1	164
16	Effects of longâ€term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Molecular Ecology, 2014, 23, 3341-3355.	3.9	163
17	Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 2010, 158, 2757-2765.	7.5	152
18	Resource Partitioning between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural Soil. Frontiers in Microbiology, 2016, 7, 1524.	3.5	143

#	Article	IF	Citations
19	Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera). Fungal Diversity, 2018, 90, 85-107.	12.3	143
20	General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types. PLoS ONE, 2012, 7, e43292.	2.5	142
21	Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Diversity, 2016, 77, 367-379.	12.3	140
22	Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems. Frontiers in Microbiology, 2015, 6, 1300.	3.5	136
23	Host plant genusâ€level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest. Molecular Ecology, 2013, 22, 3403-3414.	3.9	133
24	Network Analysis Reveals Ecological Links between N-Fixing Bacteria and Wood-Decaying Fungi. PLoS ONE, 2014, 9, e88141.	2.5	129
25	Can We Use Functional Annotation of Prokaryotic Taxa (FAPROTAX) to Assign the Ecological Functions of Soil Bacteria?. Applied Sciences (Switzerland), 2021, 11, 688.	2.5	122
26	Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150269.	4.0	117
27	Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME Journal, 2012, 6, 2291-2301.	9.8	109
28	Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytologist, 2015, 205, 771-785.	7.3	107
29	On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—a study from SE China. Journal of Plant Ecology, 2017, 10, 111-127.	2.3	102
30	A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Scientific Reports, 2015, 5, 9456.	3.3	101
31	Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Diversity, 2018, 90, 1-84.	12.3	101
32	OakContig <scp>DF</scp> 159.1, a reference library for studying differential gene expression in <i>Quercus robur</i> during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis. New Phytologist, 2013, 199, 529-540.	7.3	97
33	pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils. Microbial Ecology, 2015, 69, 879-883.	2.8	95
34	Differences in Soil Fungal Communities between European Beech (Fagus sylvatica L.) Dominated Forests Are Related to Soil and Understory Vegetation. PLoS ONE, 2012, 7, e47500.	2.5	93
35	Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecology Letters, 2019, 22, 170-180.	6.4	92
36	Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. ISME Journal, 2018, 12, 289-295.	9.8	90

#	Article	IF	Citations
37	Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Scientific Reports, 2016, 6, 31439.	3.3	84
38	A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiology, 2018, 18, 190.	3.3	84
39	Metacommunity analysis of amoeboid protists in grassland soils. Scientific Reports, 2016, 6, 19068.	3.3	82
40	Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia. Scientific Reports, 2017, 7, 13602.	3.3	82
41	Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed). Fungal Diversity, 2020, 101, 1-175.	12.3	82
42	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.	12.8	81
43	Functionally and phylogenetically diverse plant communities key to soil biota. Ecology, 2013, 94, 1878-1885.	3.2	80
44	Mycorrhizal status of indigenous trees in dry Afromontane forests of Ethiopia. Forest Ecology and Management, 2003, 179, 387-399.	3.2	77
45	Insights into organohalide respiration and the versatile catabolism of <scp><i>S</i></scp> <i>ulfurospirillum multivorans</i> gained from comparative genomics and physiological studies. Environmental Microbiology, 2014, 16, 3562-3580.	3.8	76
46	Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce. Frontiers in Microbiology, 2016, 7, 2067.	3.5	74
47	Genome sequences of two dehalogenation specialists <i>- Dehalococcoides mccartyi </i> > strains BTF08 and DCMB5 enriched from the highly polluted Bitterfeld region. FEMS Microbiology Letters, 2013, 343, 101-104.	1.8	73
48	TaqMan Real-Time PCR Assays To Assess Arbuscular Mycorrhizal Responses to Field Manipulation of Grassland Biodiversity: Effects of Soil Characteristics, Plant Species Richness, and Functional Traits. Applied and Environmental Microbiology, 2010, 76, 3765-3775.	3.1	72
49	Molecular diversity of arbuscular mycorrhizal fungi in Prunus africana , an endangered medicinal tree species in dry Afromontane forests of Ethiopia. New Phytologist, 2004, 161, 517-528.	7.3	71
50	Spatial Distribution of Fungal Communities in an Arable Soil. PLoS ONE, 2016, 11, e0148130.	2.5	63
51	Land-Use Intensity Rather Than Plant Functional Identity Shapes Bacterial and Fungal Rhizosphere Communities. Frontiers in Microbiology, 2018, 9, 2711.	3.5	62
52	Soil property and management effects on grassland microbial communities across a latitudinal gradient in Germany. Applied Soil Ecology, 2014, 73, 41-50.	4.3	57
53	Forest Age and Plant Species Composition Determine the Soil Fungal Community Composition in a Chinese Subtropical Forest. PLoS ONE, 2013, 8, e66829.	2.5	53
54	Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere, 2018, 9, e02226.	2.2	49

#	Article	IF	CITATIONS
55	Phylogenetic analysis of nuclear small subunit rDNA sequences suggests that the endangered African Pencil Cedar, Juniperus procera, is associated with distinct members of Glomeraceae. Mycological Research, 2006, 110, 1059-1069.	2.5	46
56	Correlations between the composition of modular fungal communities and litter decomposition-associated ecosystem functions. Fungal Ecology, 2016, 22, 106-114.	1.6	46
57	Determinants of Deadwood-Inhabiting Fungal Communities in Temperate Forests: Molecular Evidence From a Large Scale Deadwood Decomposition Experiment. Frontiers in Microbiology, 2018, 9, 2120.	3.5	43
58	Relationships Between Soil Microorganisms, Plant Communities, and Soil Characteristics in Chinese Subtropical Forests. Ecosystems, 2012, 15, 624-636.	3.4	42
59	Toward a methodical framework for comprehensively assessing forest multifunctionality. Ecology and Evolution, 2017, 7, 10652-10674.	1.9	41
60	Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nature Communications, 2021, 12, 4431.	12.8	40
61	Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiology, 2013, 13, 205.	3.3	39
62	Belowground top-down and aboveground bottom-up effects structure multitrophic community relationships in a biodiverse forest. Scientific Reports, 2017, 7, 4222.	3.3	38
63	Can multiâ€ŧaxa diversity in European beech forest landscapes be increased by combining different management systems?. Journal of Applied Ecology, 2020, 57, 1363-1375.	4.0	38
64	The significance of tree-tree interactions for forest ecosystem functioning. Basic and Applied Ecology, 2021, 55, 33-52.	2.7	38
65	Land use and host neighbor identity effects on arbuscular mycorrhizal fungal community composition in focal plant rhizosphere. Biodiversity and Conservation, 2013, 22, 2193-2205.	2.6	37
66	Multitrophic diversity in a biodiverse forest is highly nonlinear across spatial scales. Nature Communications, 2015, 6, 10169.	12.8	37
67	DRomics: A Turnkey Tool to Support the Use of the Dose–Response Framework for Omics Data in Ecological Risk Assessment. Environmental Science & Ecological Risk Assessment. Environmental Science & Ecological Risk Assessment.	10.0	37
68	Preservation of nucleic acids by freeze-drying for next generation sequencing analyses of soil microbial communities. Journal of Plant Ecology, 2017, 10, 81-90.	2.3	36
69	Wood decomposition is more strongly controlled by temperature than by tree species and decomposer diversity in highly species rich subtropical forests. Oikos, 2019, 128, 701-715.	2.7	36
70	Arbuscular mycorrhizal fungal community structures differ between co-occurring tree species of dry Afromontane tropical forest, and their seedlings exhibit potential to trap isolates suited for reforestation. Mycological Progress, 2009, 8, 317-328.	1.4	35
71	Characterization of Unexplored Deadwood Mycobiome in Highly Diverse Subtropical Forests Using Culture-independent Molecular Technique. Frontiers in Microbiology, 2017, 8, 574.	3.5	35
72	Tree species richness and fungi in freshly fallen leaf litter: Unique patterns of fungal species composition and their implications for enzymatic decomposition. Soil Biology and Biochemistry, 2018, 127, 120-126.	8.8	33

#	Article	IF	Citations
73	Morphology and molecular diversity of arbuscular mycorrhizal fungi in wild and cultivated yew (Taxus baccata). Canadian Journal of Botany, 2003, 81, 255-266.	1.1	31
74	Glomus africanumandG. iranicum, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycologia, 2010, 102, 1450-1462.	1.9	31
75	Phylogenetic relatedness explains highly interconnected and nested symbiotic networks of woody plants and arbuscular mycorrhizal fungi in a Chinese subtropical forest. Molecular Ecology, 2017, 26, 2563-2575.	3.9	31
76	Two threatened coexisting indigenous conifer species in the dry Afromontane forests of Ethiopia are associated with distinct arbuscular mycorrhizal fungal communities. Canadian Journal of Botany, 2006, 84, 1617-1627.	1.1	30
77	Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil. Frontiers in Microbiology, 2017, 8, 1361.	3.5	28
78	Archaeal Diversity and CO ₂ Fixers in Carbonate-/Siliciclastic-Rock Groundwater Ecosystems. Archaea, 2017, 2017, 1-13.	2.3	28
79	Fine-scale variations of fungal community in a heterogeneous grassland in Inner Mongolia: Effects of the plant community and edaphic parameters. Soil Biology and Biochemistry, 2018, 122, 104-110.	8.8	28
80	Experimental Evidence of Functional Group-Dependent Effects of Tree Diversity on Soil Fungi in Subtropical Forests. Frontiers in Microbiology, 2018, 9, 2312.	3 . 5	28
81	Tree diversity and soil chemical properties drive the linkages between soil microbial community and ecosystem functioning. ISME Communications, 2021, 1 , .	4.2	28
82	Septoglomus fuscum and S. furcatum, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycologia, 2013, 105, 670-680.	1.9	27
83	Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest. Scientific Reports, 2016, 6, 36672.	3.3	27
84	Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environmental Microbiology, 2020, 22, 873-888.	3.8	27
85	<i>Glomus indicum,</i> a new arbuscular mycorrhizal fungus. Botany, 2010, 88, 132-143.	1.0	26
86	Contrasting effects of grassland management modes on species-abundance distributions of multiple groups. Agriculture, Ecosystems and Environment, 2017, 237, 143-153.	5. 3	26
87	Increasing N deposition impacts neither diversity nor functions of deadwoodâ€inhabiting fungal communities, but adaptation and functional redundancy ensure ecosystem function. Environmental Microbiology, 2018, 20, 1693-1710.	3.8	26
88	First insights into the living groundwater mycobiome of the terrestrial biogeosphere. Water Research, 2018, 145, 50-61.	11.3	26
89	A multi-omics concentration-response framework uncovers novel understanding of triclosan effects in the chlorophyte Scenedesmus vacuolatus. Journal of Hazardous Materials, 2020, 397, 122727.	12.4	25
90	Toward a global platform for linking soil biodiversity data. Frontiers in Ecology and Evolution, 0, 3, .	2.2	24

#	Article	IF	CITATIONS
91	Superimposed Pristine Limestone Aquifers with Marked Hydrochemical Differences Exhibit Distinct Fungal Communities. Frontiers in Microbiology, 2016, 7, 666.	3.5	24
92	Fungal communities in bulk soil and stone compartments of different forest and soil types as revealed by a barcoding ITS rDNA and a functional laccase encoding gene marker. Soil Biology and Biochemistry, 2011, 43, 1292-1299.	8.8	22
93	Tree mycorrhizal type and tree diversity shape the forest soil microbiota. Environmental Microbiology, 2022, 24, 4236-4255.	3.8	22
94	Tree phylogenetic diversity structures multitrophic communities. Functional Ecology, 2021, 35, 521-534.	3.6	21
95	Functional land-use change effects on soil fungal communities in Chilean temperate rainforests. Journal of Soil Science and Plant Nutrition, 2017, 17, 985-1002.	3.4	21
96	Potential links between woodâ€inhabiting and soil fungal communities: Evidence from highâ€throughput sequencing. MicrobiologyOpen, 2019, 8, e00856.	3.0	18
97	Multiâ€trophic guilds respond differently to changing elevation in a subtropical forest. Ecography, 2018, 41, 1013-1023.	4.5	17
98	Resident and phytometer plants host comparable rhizosphere fungal communities in managed grassland ecosystems. Scientific Reports, 2020, 10, 919.	3.3	16
99	National Forest Inventories capture the multifunctionality of managed forests in Germany. Forest Ecosystems, 2021, 8, .	3.1	16
100	Diversity Measures in Environmental Sequences Are Highly Dependent on Alignment Quality—Data from ITS and New LSU Primers Targeting Basidiomycetes. PLoS ONE, 2012, 7, e32139.	2.5	15
101	DNA- and RNA- Derived Fungal Communities in Subsurface Aquifers Only Partly Overlap but React Similarly to Environmental Factors. Microorganisms, 2019, 7, 341.	3.6	15
102	Soil bacterial communities and their associated functions for forest restoration on a limestone mine in northern Thailand. PLoS ONE, 2021, 16, e0248806.	2.5	15
103	Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters. PLoS ONE, 2017, 12, e0173765.	2.5	15
104	Application of nextâ€generation sequencing technologies to conservation of woodâ€inhabiting fungi. Conservation Biology, 2019, 33, 716-724.	4.7	13
105	Drivers for ammonia-oxidation along a land-use gradient in grassland soils. Soil Biology and Biochemistry, 2014, 69, 179-186.	8.8	12
106	Funneliformis mosseae alters soil fungal community dynamics and composition during litter decomposition. Fungal Ecology, 2020, 43, 100864.	1.6	11
107	Linking Soil Fungal Generality to Tree Richness in Young Subtropical Chinese Forests. Microorganisms, 2019, 7, 547.	3.6	10
108	Transition of Ethiopian highland forests to agriculture-dominated landscapes shifts the soil microbial community composition. BMC Ecology, 2018, 18, 58.	3.0	9

#	Article	IF	Citations
109	Distribution of Medically Relevant Antibiotic Resistance Genes and Mobile Genetic Elements in Soils of Temperate Forests and Grasslands Varying in Land Use. Genes, 2020, 11, 150.	2.4	9
110	Among stand heterogeneity is key for biodiversity in managed beech forests but does not question the value of unmanaged forests: Response to Bruun and Heilmannâ€Clausen (2021). Journal of Applied Ecology, 2021, 58, 1817-1826.	4.0	8
111	Host plant richness explains diversity of ectomycorrhizal fungi: Response to the comment of Tedersoo <i>etÂal</i> . (2014). Molecular Ecology, 2014, 23, 996-999.	3.9	6
112	Root-Associated Mycobiome Differentiate between Habitats Supporting Production of Different Truffle Species in Serbian Riparian Forests. Microorganisms, 2020, 8, 1331.	3.6	6
113	Community and neighbourhood tree species richness effects on fungal species in leaf litter. Fungal Ecology, 2020, 47, 100961.	1.6	6
114	Early Stage Root-Associated Fungi Show a High Temporal Turnover, but Are Independent of Beech Progeny. Microorganisms, 2020, 8, 210.	3.6	5
115	Local Tree Diversity Suppresses Foliar Fungal Infestation and Decreases Morphological but Not Molecular Richness in a Young Subtropical Forest. Journal of Fungi (Basel, Switzerland), 2021, 7, 173.	3.5	5
116	Genome Sequence of the Mycorrhiza Helper Bacterium Streptomyces sp. Strain AcH 505. Genome Announcements, $2015, 3, \ldots$	0.8	4
117	Common toxigenic <i> Fusarium</i> species in maize grain in Ethiopia. Sinet, 2000, 23, 73.	0.3	3
118	Life on the Rocks: First Insights Into the Microbiota of the Threatened Aquatic Rheophyte Hanseniella heterophylla. Frontiers in Plant Science, 2021, 12, 634960.	3.6	3
119	Contrasting protist communities (Cercozoa: Rhizaria) in pristine and earthworm-invaded North American deciduous forests. Biological Invasions, 2022, 24, 1345-1357.	2.4	2
120	Mycorrhization of transgenic apple trees with increased resistance against fungal pathogens. BMC Proceedings, 2011, 5, .	1.6	1
121	Scaleâ€dependent impact of land management on above―and belowground biodiversity. Ecology and Evolution, 2020, 10, 10139-10149.	1.9	1
122	Tree diversity and functional leaf traits drive herbivoreâ€associated microbiomes in subtropical China. Ecology and Evolution, 2021, 11, 6153-6166.	1.9	1
123	International Workshop of the African Network on Mycorrhiza (AFRINOM 1): advancing plant–microbe interactions in crop nutrition, integration of mycorrhiza into agroecosystems. Mycorrhiza, 2014, 24, 75-76.	2.8	0
124	Draft Genome Sequence of Streptomyces sp. Strain 150FB, a Mushroom Mycoparasite Antagonist. Genome Announcements, 2015, 3, .	0.8	0