
Wolfgang Holzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1711001/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Straightforward synthesis of bench-stable heteroatom-centered difluoromethylated entities <i>via</i> controlled nucleophilic transfer from activated TMSCHF ₂ . Chemical Communications, 2022, 58, 5761-5764.	2.2	4
2	Design, Synthesis, and Biological Evaluation of 4,4'-Difluorobenzhydrol Carbamates as Selective M1 Antagonists. Pharmaceuticals, 2022, 15, 248.	1.7	4
3	Synthesis, Biological Evaluation, and Docking Studies of Antagonistic Hydroxylated Arecaidine Esters Targeting mAChRs. Molecules, 2022, 27, 3173.	1.7	4
4	Taking advantage of lithium monohalocarbenoid intrinsic α-elimination in 2-MeTHF: controlled epoxide ring-opening <i>en route</i> to halohydrins. Organic and Biomolecular Chemistry, 2021, 19, 2038-2043.	1.5	10
5	A 13C chemical shifts study of iodopyrazoles: experimental results and relativistic and non-relativistic calculations. Structural Chemistry, 2021, 32, 925-937.	1.0	1
6	Synthesis of stable α-fluoromethyl putative carbanions via a chemoselective reduction-monofluoromethylation sequence of diselenides under sustainable conditions. Tetrahedron, 2021, 85, 131921.	1.0	11
7	Consecutive and Selective Double Methylene Insertion of Lithium Carbenoids to Isothiocyanates: A Direct Assembly of Fourâ€Membered Sulfurâ€Containing Cycles. Angewandte Chemie - International Edition, 2021, 60, 24854-24858.	7.2	20
8	Direct and straightforward transfer of C1 functionalized synthons to phosphorous electrophiles for accessing <i>gem</i> -P-containing methanes. Organic and Biomolecular Chemistry, 2021, 19, 2425-2429.	1.5	3
9	Pseudo-Dipeptide Bearing α,α-Difluoromethyl Ketone Moiety as Electrophilic Warhead with Activity against Coronaviruses. International Journal of Molecular Sciences, 2021, 22, 1398.	1.8	25
10	Unexpected scaffold rearrangement product of pirenzepine found in commercial samples. Scientific Reports, 2021, 11, 23397.	1.6	1
11	Synthesis and anthelmintic activity of benzopyrano[2,3-c]pyrazol-4(2H)-one derivatives. Molecular Diversity, 2020, 24, 1025-1042.	2.1	13
12	Enhanced arecoline derivatives as muscarinic acetylcholine receptor M1 ligands for potential application as PET radiotracers. European Journal of Medicinal Chemistry, 2020, 204, 112623.	2.6	8
13	Electrophilicity Scale of Activated Amides: 17 Oâ€NMR and 15 Nâ€NMR Chemical Shifts of Acyclic Twisted Amides in Nâ^C(O) Crossâ€Coupling. Chemistry - A European Journal, 2020, 26, 16246-16250.	1.7	13
14	Synthesis, Biological, and Computational Evaluation of Antagonistic, Chiral Hydrobenzoin Esters of Arecaidine Targeting mAChR M1. Pharmaceuticals, 2020, 13, 437.	1.7	6
15	Halogenâ€Imparted Reactivity in Lithium Carbenoid Mediated Homologations of Imine Surrogates: Direct Assembly of bisâ€Trifluoromethylâ€Î²â€Diketiminates and the Dual Role of LiCH 2 I. Angewandte Chemie - International Edition, 2020, 59, 20852-20857.	7.2	17
16	Halogenâ€Imparted Reactivity in Lithium Carbenoid Mediated Homologations of Imine Surrogates: Direct Assembly of bisâ€Trifluoromethylâ€Î²â€Diketiminates and the Dual Role of LiCH 2 I. Angewandte Chemie, 2020, 132, 21038-21043.	1.6	3
17	Straightforward chemoselective access to unsymmetrical dithioacetals through a thiosulfonate homologation-nucleophilic substitution sequence. Chemical Communications, 2020, 56, 12395-12398.	2.2	14
18	Consecutive C1â€Homologation / Displacement Strategy for Converting Thiosulfonates into O,S― Oxothioacetals, Advanced Synthesis and Catalysis, 2020, 362, 5444-5449.	2.1	5

#	Article	IF	CITATIONS
19	Chemoselective Homologation–Deoxygenation Strategy Enabling the Direct Conversion of Carbonyls into (<i>n+1</i>)-Halomethyl-Alkanes. Organic Letters, 2020, 22, 7629-7634.	2.4	23

20 Direct and Chemoselective Electrophilic Monofluoromethylation of Heteroatoms (<i>O</i>, <i>S-</i>,) Tj ETQq0 0 0 rgBT /Overlock 10

21	Straightforward and direct access to β-seleno- amines and sulfonylamides via the controlled addition of phenylselenomethyllithium (LiCH2SePh) to imines. Tetrahedron, 2020, 76, 131220.	1.0	3
22	Direct and Chemoselective Synthesis of Tertiary Difluoroketones via Weinreb Amide Homologation with a CHF ₂ -Carbene Equivalent. Organic Letters, 2019, 21, 8261-8265.	2.4	53
23	Chemoselective reduction of isothiocyanates to thioformamides mediated by the Schwartz reagent. Organic and Biomolecular Chemistry, 2019, 17, 1970-1978.	1.5	25
24	Synthesis of 2 <i>H</i> -furo[2,3- <i>c</i>]pyrazole ring systems through silver(I) ion-mediated ring-closure reaction. Beilstein Journal of Organic Chemistry, 2019, 15, 679-684.	1.3	8
25	¹⁷ 0 NMR and ¹⁵ N NMR chemical shifts of sterically-hindered amides: ground-state destabilization in amide electrophilicity. Chemical Communications, 2019, 55, 4423-4426.	2.2	12
26	Multinuclear NMR spectra and GIAO/DFT calculations of N-benzylazoles and N-benzylbenzazoles. Structural Chemistry, 2019, 30, 1729-1735.	1.0	10
27	Highly chemoselective difluoromethylative homologation of iso(thio)cyanates: expeditious access to unprecedented α,α-difluoro(thio)amides. Chemical Communications, 2019, 55, 12960-12963.	2.2	24
28	A Straightforward Homologation of Carbon Dioxide with Magnesium Carbenoids en Route to αâ€Halocarboxylic Acids. Advanced Synthesis and Catalysis, 2019, 361, 1001-1006.	2.1	9
29	Modular and Chemoselective Strategy for the Direct Access to α-Fluoroepoxides and Aziridines via the Addition of Fluoroiodomethyllithium to Carbonyl-Like Compounds. Organic Letters, 2019, 21, 584-588.	2.4	65
30	Sustainable Asymmetric Organolithium Chemistry: Enantio―and Chemoselective Acylations through Recycling of Solvent, Sparteine, and Weinreb "Amine― ChemSusChem, 2019, 12, 1147-1154.	3.6	23
31	Telescoped, Divergent, Chemoselective C1 and C1â€C1 Homologation of Imine Surrogates: Access to Quaternary Chloro―and Halomethylâ€Trifluoromethyl Aziridines. Angewandte Chemie - International Edition, 2019, 58, 2479-2484.	7.2	64
32	Design, Synthesis, and Pharmacological Evaluation of Novel β2/3 Subunit-Selective γ-Aminobutyric Acid Type A (GABA _A) Receptor Modulators. Journal of Medicinal Chemistry, 2019, 62, 317-341.	2.9	9
33	Substituted αâ€6ulfur Methyl Carbanions: Effective Homologating Agents for the Chemoselective Preparation of βâ€0xo Thioethers from Weinreb Amides. European Journal of Organic Chemistry, 2018, 2018, 2466-2470.	1.2	19
34	Expeditious and Chemoselective Synthesis of α-Aryl and α-Alkyl Selenomethylketones via Homologation Chemistry. Organic Letters, 2018, 20, 2685-2688.	2.4	39
35	Merging lithium carbenoid homologation and enzymatic reduction: A combinative approach to the HIV-protease inhibitor Nelfinavir. Tetrahedron, 2018, 74, 2211-2217.	1.0	21
36	α-Arylamino Diazoketones: Diazomethane-Loading Controlled Synthesis, Spectroscopic Investigations, and Structural X-ray Analysis. Journal of Organic Chemistry, 2018, 83, 4336-4347.	1.7	13

#	Article	IF	CITATIONS
37	Synthesis and anti-mitotic activity of 2,4- or 2,6-disubstituted- and 2,4,6-trisubstituted-2H-pyrazolo[4,3-c]pyridines. European Journal of Medicinal Chemistry, 2018, 150, 908-919.	2.6	15
38	Synthesis and NMRâ€Spectroscopic Investigations with 4â€Chloroacylâ€1â€phenylpyrazolinâ€5â€ones. Journal c Heterocyclic Chemistry, 2018, 55, 132-137.	^f 1.4	1
39	Ring-closing metathesis as a key step to construct 2,6-dihydropyrano[2,3-c]pyrazole ring system. Arkivoc, 2018, 2018, 296-307.	0.3	9
40	One-pot synthesis of polycyclic heterocyclic compounds by condensation of 1-carbamoylmethyl-2,3,3-trimethyl-3H-indolium salts with pyridine-2, 3, and 4- and quinoline-4-carboxaldehydes. Tetrahedron, 2018, 74, 3679-3690.	1.0	2
41	On the Tautomerism of N-Substituted Pyrazolones: 1,2-Dihydro-3H-pyrazol-3-ones versus 1H-Pyrazol-3-ols. Molecules, 2018, 23, 129.	1.7	17
42	An unusual thionyl chloride-promoted Câ^C bond formation to obtain 4,4'-bipyrazolones. Beilstein Journal of Organic Chemistry, 2018, 14, 1287-1292.	1.3	7
43	Homologation of halostannanes with carbenoids: a convenient and straightforward one-step access to α-functionalized organotin reagents. Chemical Communications, 2018, 54, 10112-10115.	2.2	18
44	A greener and efficient access to substituted four- and six-membered sulfur-bearing heterocycles. Organic and Biomolecular Chemistry, 2017, 15, 5000-5015.	1.5	21
45	Efficient Access to Allâ€Carbon Quaternary and Tertiary αâ€Functionalized Homoallylâ€ŧype Aldehydes from Ketones. Angewandte Chemie, 2017, 129, 12851-12856.	1.6	23
46	Exploiting a "Beast―in Carbenoid Chemistry: Development of a Straightforward Direct Nucleophilic Fluoromethylation Strategy. Journal of the American Chemical Society, 2017, 139, 13648-13651.	6.6	104
47	Efficient Access to Allâ€Carbon Quaternary and Tertiary αâ€Functionalized Homoallylâ€ŧype Aldehydes from Ketones. Angewandte Chemie - International Edition, 2017, 56, 12677-12682.	7.2	71
48	Evidence and isolation of tetrahedral intermediates formed upon the addition of lithium carbenoids to Weinreb amides and N-acylpyrroles. Chemical Communications, 2017, 53, 9498-9501.	2.2	52
49	Eulophia macrobulbon – an orchid with significant anti-inflammatory and antioxidant effect and anticancerogenic potential exerted by its root extract. Phytomedicine, 2017, 24, 157-165.	2.3	29
50	Molecular dimensions and structural features of neutral polysaccharides from the seed mucilage of Hyptis suaveolens L Food Chemistry, 2017, 221, 1997-2004.	4.2	13
51	Synthesis of tetrasubstituted pyrazoles containing pyridinyl substituents. Beilstein Journal of Organic Chemistry, 2017, 13, 895-902.	1.3	5
52	Anti-inflammatory Effects of Compounds from Polygonum odoratum. Natural Product Communications, 2016, 11, 1934578X1601101.	0.2	6
53	The use of the Comins-Meyers Amide in Synthetic Chemistry: An Overview. Natural Product Communications, 2016, 11, 1934578X1601101.	0.2	4
54	Chemoselective Addition of Halomethyllithiums to Functionalized Isatins:A Straightforward Access to Spiroâ€Epoxyoxindoles. Advanced Synthesis and Catalysis, 2016, 358, 172-177.	2.1	47

#	Article	IF	CITATIONS
55	Highly efficient synthesis of functionalized α-oxyketones via Weinreb amides homologation with α-oxygenated organolithiums. Chemical Communications, 2016, 52, 7584-7587.	2.2	44
56	Cajanus cajan – a source of PPARγ activators leading to anti-inflammatory and cytotoxic effects. Food and Function, 2016, 7, 3798-3806.	2.1	26
57	Lithium Halomethylcarbenoids: Preparation and Use in the Homologation of Carbon Electrophiles. Chemical Record, 2016, 16, 2061-2076.	2.9	55
58	Structures of Highly Twisted Amides Relevant to Amide Nâ^'C Crossâ€Coupling: Evidence for Groundâ€State Amide Destabilization. Chemistry - A European Journal, 2016, 22, 14494-14498.	1.7	94
59	Compounds from Caesalpinia sappan with anti-inflammatory properties in macrophages and chondrocytes. Food and Function, 2016, 7, 1671-1679.	2.1	44
60	Bromomethyllithium-mediated chemoselective homologation of disulfides to dithioacetals. Chemical Communications, 2016, 52, 2639-2642.	2.2	59
61	Metalâ€Free Intramolecular Alkyneâ€Azide Cycloaddition To Construct the PyrazÂolo[4,3â€ <i>f</i>][1,2,3]triazolo[5,1â€ <i>c</i>][1,4]oxazepine Ring System. European Journal of Organic Chemistry, 2015, 2015, 5663-5670.	1.2	22
62	A Robust, Ecoâ€Friendly Access to Secondary Thioamides through the Addition of Organolithium Reagents to Isothiocyanates in Cyclopentyl Methyl Ether (CPME). Chemistry - A European Journal, 2015, 21, 18966-18970.	1.7	38
63	2-Fluoro-N-methyl-N-({(3S,4S)-4-[2-(trifluoromethyl)phenoxy]-3,4-dihydro-1H-isochromen-3-yl}methyl)ethanamine MolBank, 2015, 2015, M858.	2. 0.2	0
64	1-(3-Amino-1-phenylpropyl)-3-(2-fluorophenyl)-1,3-dihydro-2H-benzimidazol-2-one. MolBank, 2015, 2015, M867.	0.2	0
65	Synthesis and in Silico Evaluation of Novel Compounds for PET-Based Investigations of the Norepinephrine Transporter. Molecules, 2015, 20, 1712-1730.	1.7	6
66	2-Fluoro-N-methyl-N-{[(3S*,4S*)-4-(2-methylphenoxy)-3,4-dihydro-1H-isochromen-3-yl]methyl}ethanamine. MolBank, 2015, 2015, M862.	0.2	0
67	Eco-friendly chemoselective N-functionalization of isatins mediated by supported KF in 2-MeTHF. Green Chemistry, 2015, 17, 4194-4197.	4.6	22
68	Synthesis of pyrazolo[4′,3′:3,4]pyrido[1,2-a]benzimidazoles and related new ring systems by tandem cyclisation of vic-alkynylpyrazole-4-carbaldehydes with (het)aryl-1,2-diamines and investigation of their optical properties. Tetrahedron, 2015, 71, 3385-3395.	1.0	14
69	Chemoselective efficient synthesis of functionalized β-oxonitriles through cyanomethylation of Weinreb amides. Organic and Biomolecular Chemistry, 2015, 13, 1969-1973.	1.5	41
70	Use of activated enol ethers in the synthesis of pyrazoles: reactions with hydrazine and a study of pyrazole tautomerism. Beilstein Journal of Organic Chemistry, 2014, 10, 752-760.	1.3	16
71	Synthesis of trifluoromethyl-substituted pyrazolo[4,3- <i>c</i>]pyridines – sequential versus multicomponent reaction approach. Beilstein Journal of Organic Chemistry, 2014, 10, 1759-1764.	1.3	13
72	A One-Step Microwave-Assisted Synthetic Method for an O/S-Chemoselective Route to Derivatives of the First Adenosine A3 PET Radiotracer. Molecules, 2014, 19, 4076-4082.	1.7	0

#	Article	IF	CITATIONS
73	Homologation of Isocyanates with Lithium Carbenoids: A Straightforward Access to α-Halomethyl- and α,α-Dihalomethylamides. Synthesis, 2014, 46, 2897-2909.	1.2	45
74	Increasing the Reactivity of Amides towards Organometallic Reagents: An Overview. Advanced Synthesis and Catalysis, 2014, 356, 3697-3736.	2.1	207
75	Chemoselective Additions of Chloromethyllithium Carbenoid to Cyclic Enones: A Direct Access to Chloromethyl Allylic Alcohols. Advanced Synthesis and Catalysis, 2014, 356, 1761-1766.	2.1	30
76	H-Bond activated glycosylation of nucleobases: implications for prebiotic nucleoside synthesis. RSC Advances, 2014, 4, 3158-3161.	1.7	5
77	Development of potential selective and reversible pyrazoline based MAO-B inhibitors as MAO-B PET tracer precursors and reference substances for the early detection of Alzheimer's disease. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4490-4495.	1.0	9
78	Synthesis of pyridyl substituted pyrazolo[4,3-c]pyridines as potential inhibitors of protein kinases. Arkivoc, 2014, 2014, 135-149.	0.3	4
79	Synthesis of α,β-Unsaturated α′-Haloketones through the Chemoselective Addition of Halomethyllithiums to Weinreb Amides. Journal of Organic Chemistry, 2013, 78, 7764-7770.	1.7	57
80	Addition of lithium carbenoids to isocyanates: a direct access to synthetically useful N-substituted 2-haloacetamides. Chemical Communications, 2013, 49, 8383.	2.2	85
81	Synthesis of 1′,3,3′,4-tetrahydrospiro[chromene-2,2′-indoles] as a new class of ultrafast light-driven molecular switch. Tetrahedron, 2013, 69, 9309-9315.	1.0	7
82	Azido derivatives of cellobiose: oxidation at C1 with cellobiose dehydrogenase from Sclerotium rolfsii. Carbohydrate Research, 2013, 382, 86-94.	1.1	4
83	Pdâ€Assisted Cross oupling Reactions with 4 hlorocinnoline. Journal of Heterocyclic Chemistry, 2013, 50, 141-144.	1.4	2
84	Synthesis and antiproliferative activity of new cytotoxic tri- and tetraazabenzo[3,2-a]fluorene-5,6-dione derivatives. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5264-5266.	1.0	5
85	Highly efficient and environmentally benign preparation of Weinreb amides in the biphasic system 2-MeTHF/water. RSC Advances, 2013, 3, 10158.	1.7	22
86	Highly efficient and chemoselective α-iodination of acrylate esters through Morita–Baylis–Hillman-type chemistry. Organic and Biomolecular Chemistry, 2013, 11, 1085.	1.5	16
87	Synthesis and biological evaluation of new cytotoxic indazolo[4,3-gh]isoquinolinone derivatives. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1846-1852.	1.0	4
88	Chemoselective Activation Strategies of Amidic Carbonyls towards Nucleophilic Reagents. Australian Journal of Chemistry, 2013, 66, 507.	0.5	78
89	Chemoselective Synthesis of <i>N</i> ‣ubstituted αâ€Aminoâ€Î±â€²â€chloro Ketones <i>via</i> Chloromethy of Glycineâ€Derived Weinreb Amides. Advanced Synthesis and Catalysis, 2013, 355, 919-926.	/lation 2.1	41
90	Chemoselective oxidative hydrolysis of EWG protected α-arylamino vinyl bromides to α-arylamino-α′-bromoacetones. Tetrahedron Letters, 2013, 54, 4369-4372.	0.7	9

#	Article	IF	CITATIONS
91	Chemoselective CaOâ€Mediated Acylation of Alcohols and Amines in 2â€Methyltetrahydrofuran. ChemSusChem, 2013, 6, 905-910.	3.6	18
92	Synthesis of 10-methyl-8,10-diazabicyclo[4.3.1]decane as a new building block for nicotinic modulators. Arkivoc, 2013, 2013, 240-250.	0.3	2
93	4-{[(1-Phenyl-1H-pyrazol-3-yl)oxy]methyl}-1,3-dioxolan-2-one. MolBank, 2012, 2012, M786.	0.2	2
94	A straightforward and general access to α-phthalimido-α′-substituted propan-2-ones. Tetrahedron Letters, 2012, 53, 5106-5109.	0.7	10
95	Dipyrazolo[1,5- <i>a</i> :4',3'- <i>c</i>]pyridines – a new heterocyclic system accessed via multicomponent reaction. Beilstein Journal of Organic Chemistry, 2012, 8, 2223-2229.	1.3	9
96	Robust eco-friendly protocol for the preparation of γ-hydroxy-α,β-acetylenic esters by sequential one-pot elimination–addition of 2-bromoacrylates to aldehydes promoted by LTMP in 2-MeTHF. Green Chemistry, 2012, 14, 1859.	4.6	30
97	Synthesis of electroactive hydrazones derived from 3-(10-alkyl-10H-phenothiazin-3-yl)-2-propenals and their corresponding 3,3â€2-bispropenals. Tetrahedron, 2012, 68, 3552-3559.	1.0	18
98	Highly chemoselective synthesis of aryl allylic sulfoxides through calcium hypobromite oxidation of aryl allylic sulfides. Tetrahedron Letters, 2012, 53, 967-972.	0.7	20
99	Highly efficient chemoselective N-TBS protection of anilines under exceptional mild conditions in the eco-friendly solvent 2-methyltetrahydrofuran. Green Chemistry, 2011, 13, 1986.	4.6	37
100	Reactions and Tautomeric Behavior of 1-(2-Pyridinyl)-1H-pyrazol-5-ols. Heterocycles, 2011, 83, 1567.	0.4	3
101	Sonogashira Coupling Offers a New Synthetic Route to Thieno[2,3- <i>c</i>]pyrazoles. Synthetic Communications, 2011, 41, 541-547.	1.1	15
102	Synthesis and reactions of 1-hydroxy-9,9a-dihydro-1H-imidazo[1,2-a]indol-2-(3H)-ones. Tetrahedron, 2011, 67, 3945-3953.	1.0	4
103	Ethyl 3―and 5â€Triflyloxyâ€1 <i>H</i> â€pyrazoleâ€4â€carboxylates in the Synthesis of Condensed Pyrazoles by Pdâ€Catalysed Crossâ€Coupling Reactions. European Journal of Organic Chemistry, 2011, 2011, 1880-1890.	1.2	21
104	Sonogashiraâ€Type Reactions with 5â€Chloroâ€1â€phenylâ€1 <i>H</i> â€pyrazoleâ€4â€carbaldehydes: A Straight Approach to Pyrazolo[4,3â€ <i>c</i>]pyridines. European Journal of Organic Chemistry, 2011, 2011, 5123-5133.	tforward 1.2	22
105	Synthesis and antiproliferative activity of new cytotoxic azanaphthoquinone pyrrolo-annelated derivatives: Part II. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3117-3121.	1.0	6
106	Highly Regioselective and Efficient Synthesis of Aminoepoxides by Ring Closure of Aminohalohydrins Mediated by KF-Celite. Synlett, 2011, 2011, 1831-1834.	1.0	11
107	Synthesis of 3-substituted 1-phenyl-1H-pyrazole-4-carbaldehydes and the corresponding ethanones by Pd-catalysed cross-coupling reactions. Arkivoc, 2011, 2011, 1-21.	0.3	31
108	Heterocyclic Analogues of Xanthone and Xanthione. 1H-Pyrano[2,3-c:6,5-c]dipyrazol-4(7H)-ones and Thiones: Synthesis and NMR Data. Molecules, 2010, 15, 6106-6126.	1.7	19

#	Article	IF	CITATIONS
109	Synthesis and biological evaluation of new cytotoxic azanaphthoquinone pyrrolo-annelated derivatives. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3950-3952.	1.0	12
110	Heterocyclic analogs of xanthiones: 5,6â€fused 3â€methylâ€1â€phenylpyrano[2,3â€ <i>c</i>]pyrazolâ€4(1 <i>H< thiones—synthesis and NMR (¹H, ¹³C, ¹⁵N) data. Magnetic Resonance in Chemistry, 2010, 48, 476-482.</i>	/i>) 1.1	4
111	Novel fluoro-substituted benzo- and benzothieno fused pyrano[2,3-c]pyrazol-4(1H)-ones. Journal of Fluorine Chemistry, 2010, 131, 1013-1024.	0.9	17
112	Acridone based Cu2+–Fâ^'/Fâ^'–Cu2+ responsive ON/OFF key pad. Sensors and Actuators B: Chemical, 2010, 150, 50-56.	4.0	26
113	Synthesis and evaluation of indole, pyrazole, chromone and pyrimidine based conjugates for tumor growth inhibitory activities – Development of highly efficacious cytotoxic agents. European Journal of Medicinal Chemistry, 2010, 45, 4968-4982.	2.6	67
114	(2-Chlorophenyl)-3-methylchromeno[2,3-c]pyrazol-4(1H)-one. MolBank, 2010, 2010, M661.	0.2	2
115	1-Phenylpyrazolo[4',3':5,6]pyrano[3,2-c]pyridine-4(1H)-thione. MolBank, 2010, 2010, M678.	0.2	1
116	5-Dimethylamino-1-phenylchromeno[2,3-c]pyrazol-4(1H)-one. MolBank, 2010, 2010, M706.	0.2	0
117	4,4'-[(2-Chlorophenyl)methylene]bis[1-phenyl-3-(trifluoromethyl)-1H-pyrazol-5-ol]. MolBank, 2009, 2009, M605.	0.2	2
118	3-Methyl-1-phenyl-1H-pyrazol-5-yl 2-Bromo-3-furan-carboxylate. MolBank, 2009, 2009, M603.	0.2	3
119	5-Chloro-4-iodo-1,3-dimethyl-1H-pyrazole. MolBank, 2009, 2009, M620.	0.2	2
120	4-Bromo-3-methoxy-1-phenyl-1H-pyrazole. MolBank, 2009, 2009, M639.	0.2	3
121	(2E)-3-(3-Methoxy-1-phenyl-1H-pyrazol-4-yl)-2-propenal. MolBank, 2009, 2009, M644.	0.2	3
122	Synthesis and Ring Opening of Alkaloid-Type Compounds with a Novel Indolo[2,3-c][2]benzazepine Skeleton. Synlett, 2009, 2009, 3119-3122.	1.0	1
123	Derivatives of pyrazinecarboxylic acid: ¹ H, ¹³ C and ¹⁵ N NMR spectroscopic investigations. Magnetic Resonance in Chemistry, 2009, 47, 617-624.	1.1	9
124	Synthesis of anticancer compounds, III (Bioorg Med Chem Lett 17, 6091, 2007), carbinol derivatives of azanaphthoquinone annelated pyrroles. Monatshefte Für Chemie, 2009, 140, 309-313.	0.9	10
125	Pd-catalyzed cross-coupling reactions of halogenated 1-phenylpyrazol-3-ols and related triflates. Tetrahedron, 2009, 65, 7817-7824.	1.0	45
126	Heterocyclic Analogs of Thioflavones: Synthesis and NMR Spectroscopic Investigations. Molecules, 2009, 14, 3814-3832.	1.7	34

#	Article	IF	CITATIONS
127	Synthesis and reactions of 1-amino-1,5,6,10b-tetrahydroimidazo[2,1-a]isoquinolin-2(3H)-ones. Arkivoc, 2009, 2009, 48-62.	0.3	0
128	A study in desmotropy. Solid State Nuclear Magnetic Resonance, 2008, 34, 68-76.	1.5	29
129	Synthesis of in vivo Metabolites of the New Adenosine A3 Receptor PET-Radiotracer [18F]FE@SUPPY. Heterocycles, 2008, 75, 339.	0.4	8
130	2, 3-Diaryl-5-ethylsulfanylmethyltetrahydrofurans as a new class of COX-2 inhibitors and cytotoxic agents. Organic and Biomolecular Chemistry, 2008, 6, 2706.	1.5	14
131	On the Tautomerism of Cinnolin-4-ol, Cinnolin-4-thiol, and Cinnolin-4-amine. Heterocycles, 2008, 75, 77.	0.4	14
132	Synthesis of 4,4'-(Cyclohexane-1,1-diyl)bis(1-methyl- 1H-pyrazol-5-ol). MolBank, 2008, 2008, M569.	0.2	1
133	On the Synthesis and Reactivity of 4-(Oxiran-2-ylmethoxy)cinnoline: Targeting a Cinnoline Analogue of Propranolol. Scientia Pharmaceutica, 2008, 76, 19-32.	0.7	3
134	2-Pyrazolin-5-ones Bearing a Basic Dialkylaminoalkyl Substituent at the N1-Position: Preparation and NMR Spectroscopic Investigations. Heterocycles, 2008, 75, 2035.	0.4	4
135	Tri- and Tetracyclic Heteroaromatic Systems: Synthesis of Novel Benzo-, Benzothieno- and Thieno-Fused Pyrano[2,3-c]pyrazol-4(1H)-ones. Heterocycles, 2007, 71, 87.	0.4	22
136	Synthesis of Mono- and Dibromo-Derivatives of 1-Phenylpyrazol-3-ol. MolBank, 2007, 2007, M551.	0.2	4
137	A Convenient Approach to Heterocyclic Building Blocks: Synthesis of Novel Ring Systems Containing a [5,6]Pyrano[2,3-c]pyrazol-4(1H)-one Moiety. Molecules, 2007, 12, 60-73.	1.7	20
138	Pyrazolo[4′,3′:5,6]pyrano[2,3â€ <i>b</i>]quinoxalinâ€4(1 <i>H</i>)â€one: Synthesis and characterization of novel tetracyclic ring system. Journal of Heterocyclic Chemistry, 2007, 44, 1139-1143.	¹ .4	29
139	Synthesis and biological evaluation of novel cytotoxic azanaphthoquinone annelated pyrrolo oximes. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6091-6095.	1.0	22
140	First Synthesis of 3-Acetyl-2-aminothiophenes Using the Gewald Reaction. Molecules, 2006, 11, 371-376.	1.7	29
141	A one-step synthesis of pyrazolone. MolBank, 2006, 2006, M464.	0.2	7
142	Synthesis and Detailed Spectroscopic Characterization of Two Novel N-(3-Acetyl-2-thienyl)acetamides. MolBank, 2006, 2006, M520.	0.2	0
143	Synthesis of pyrazole-based hybrid molecules: Search for potent multidrug resistance modulators. Bioorganic and Medicinal Chemistry, 2006, 14, 5061-5071.	1.4	82
144	Synthesis and ring transformations of 1-amino-1,2,3,9a-tetrahydroimidazo[1,2-a]indol-2(9H)-ones. Tetrahedron, 2006, 62, 3309-3319.	1.0	25

#	Article	IF	CITATIONS
145	4-Acyl-5-hydroxy-1-phenyl-3-trifluoromethylpyrazoles: Synthesis and NMR Spectral Investigations. Heterocycles, 2006, 68, 1825.	0.4	16
146	An Efficient Approach to Heterocyclic Analogues of Xanthone: A Short SynthesisÂ-of All Possible Pyrido[5,6]pyrano[2,3-c]pyrazol-4(1H)-ones. Synthesis, 2006, 2006, 4219-4229.	1.2	17
147	A Simple Synthesis of 6-Phenylpyrano[2,3-c]pyrazol-4(1H)-ones. Synthesis, 2005, 2005, 2583-2589.	1.2	4
148	Synthesis of 5-acyl-6-[2-hydroxy-3-(amino)propylamino]-1,3-dialkyl-1H-pyrimidine-2,4-diones. Organic and Biomolecular Chemistry, 2005, 3, 3958.	1.5	4
149	N-(3,4-Dichlorobenzyl)azoles—Investigations Regarding Synthesis, NMR-Spectroscopy and Affinity Towards Sisma-1 and Sigma-2 Receptors. Scientia Pharmaceutica, 2004, 72, 197-211.	0.7	1
150	Synthesis and NMR Spectroscopic Investigations with 3-Amino-, 3-Hydroxy-, and 3-Methoxy-4-acyl-1-phenyl-2-pyrazolin-5-ones. Heterocycles, 2004, 63, 1311.	0.4	20
151	2-Amino-4-aryl-1-arylideneaminoimidazoles and Acylation Products: A Multinuclear (1 H, 13 C, 15 N) NMR Study. Monatshefte Für Chemie, 2004, 135, 173-184.	0.9	6
152	New 1-Substituted 4-Cinnamoyl-5-hydroxypyrazoles and Precursors Thereof: Synthesis, Ring Closure Reactions and NMR-Spectroscopic Investigations ChemInform, 2004, 35, no.	0.1	0
153	Spiro-Fused (C2)-Azirino-(C4)-pyrazolones, a New Heterocyclic System. Synthesis, Spectroscopic Studies and X-Ray Structure Analysis ChemInform, 2004, 35, no.	0.1	0
154	On the tautomerism of pyrazolones: the geminal 2J[pyrazole C-4,H-3(5)] spin coupling constant as a diagnostic tool. Tetrahedron, 2004, 60, 6791-6805.	1.0	49
155	The 4-Methoxybenzyl (PMB) Function as a Versatile Protecting Group in the Synthesis of N-Unsubstituted Pyrazolones. Heterocycles, 2004, 63, 2537.	0.4	25
156	The Structure of 4-Benzoyl-5-methyl-2-phenylpyrazol-3-one Oxime and Its Methyl Derivatives. European Journal of Organic Chemistry, 2003, 2003, 1209-1219.	1.2	18
157	Synthesis of substituted 3â€phenylâ€6 <i>h</i> â€pyrazolo[4,3â€d]isoxazoles from corresponding 4â€benzoylâ€5â€hydroxypyrazoles. Journal of Heterocyclic Chemistry, 2003, 40, 303-308.	1.4	30
158	Synthesis of Substituted 3-Phenyl-6H-pyrazolo[4,3-d]isoxazoles (V) from Corresponding 4-Benzoyl-5-hydroxypyrazoles (I) ChemInform, 2003, 34, no.	0.1	0
159	Spiro-Fused (C2)-Azirino-(C4)-pyrazolones, a New Heterocyclic System. Synthesis, Spectroscopic Studies and X-ray Structure Analysis1. Journal of Organic Chemistry, 2003, 68, 7943-7950.	1.7	32
160	New 1-Substituted 4-Cinnamoyl-5- hydroxypyrazoles and Precursors thereof: Synthesis, Ring Closure Reactions and NMR-Spectroscopic Investigations. Heterocycles, 2003, 60, 2323.	0.4	22
161	Identification of Ligand-Binding Regions of P-Glycoprotein by Activated-Pharmacophore Photoaffinity Labeling and Matrix-Assisted Laser Desorption/Ionization–Time-of-Flight Mass Spectrometry. Molecular Pharmacology, 2002, 61, 637-648.	1.0	53
162	A ring-fission/C–C bond cleavage reaction with an N -alkyl- N -methyl- N -[(5-phenyl-1,2,4-oxadiazol-3-yl)methyl]amine. Tetrahedron, 2002, 58, 10417-10422.	1.0	1

#	Article	IF	CITATIONS
163	Synthesis, Cytotoxicity, and Antitumor Activity of Copper(II) and Iron(II) Complexes of4N-Azabicyclo[3.2.2]nonane Thiosemicarbazones Derived from Acyl Diazines. Journal of Medicinal Chemistry, 2001, 44, 2164-2171.	2.9	233
164	Unambiguous Assignment of the 1H- and 13C-NMR Spectra of Propafenone and a Thiophene Analogue. Molecules, 2001, 6, 796-802.	1.7	7
165	An easy access to anomeric glycosyl amides and imines(Schiff bases) via transformation of glycopyranosyl trimethylphosphinimides. Tetrahedron, 2001, 57, 4609-4621.	1.0	57
166	Synthesis of Azanaphthoquinone Annelated Pyrroles. Heterocycles, 2001, 54, 111.	0.4	9
167	A Method for the Synthesis of 2,3-Disubstituted 2,3-Dihydrobenzofurans. Monatshefte Für Chemie, 2000, 131, 0375-0382.	0.9	3
168	4-Acyl-5-methyl-2-phenylpyrazolones: NMR and X-Ray Structure Investigations. Heterocycles, 1999, 50, 799.	0.4	49
169	Guanylhydrazones of (Hetero)Aryl Methyl Ketones: Structure and Reaction with Acetic Anhydride. Monatshefte Für Chemie, 1999, 130, 899-913.	0.9	7
170	Synthesis and characterization of 4,5-dihydro-1H-pyrazolo[3,4b][1,4]azaphosphinines. Heteroatom Chemistry, 1999, 10, 391-398.	0.4	27
171	Synthesis and odor of chiral partial structures of ?-vetivone. I Chirality, 1999, 11, 14-20.	1.3	7
172	Synthesis and odor of chiral partial structures of ?-vetivone, Part 2. Chirality, 1999, 11, 133-138.	1.3	5
173	Imidazoquinazolinodiones — New Results. Heterocycles, 1999, 51, 1597.	0.4	0
174	Synthesis and Odor of Chiral Partial Structures of Khusimone. Part 3. Short communication. Helvetica Chimica Acta, 1998, 81, 40-45.	1.0	10
175	Structure/Odor Relationships of (&sminus 0;)- and (&splus 0;)-β-Vetivone, and Their Demethyl Derivatives. Helvetica Chimica Acta, 1998, 81, 2292-2299.	1.0	17
176	Substituted 4-Acylpyrazoles and 4-Acylpyrazolones:  Synthesis and Multidrug Resistance-Modulating Activity. Journal of Medicinal Chemistry, 1998, 41, 4001-4011.	2.9	83
177	Alkylation of Pyrazolones via the Mitsunobu Reaction. Heterocycles, 1997, 45, 309.	0.4	23
178	Synthesis and NMR-Investigation of Annelated Pyrrole Derivatives. Heterocycles, 1997, 45, 1989.	0.4	15
179	Studies on ring opening reactions of \hat{I}^2 -lactams. Tetrahedron, 1997, 53, 8439-8446.	1.0	4
180	Synthesis and Odor of Chiral Partial Structures of Khusimone. Part 1. Helvetica Chimica Acta, 1997, 80, 139-145.	1.0	14

#	Article	IF	CITATIONS
181	Synthesis and Odor of Chiral Partial Structures of Khusimone. Part 2. Helvetica Chimica Acta, 1997, 80, 1857-1864.	1.0	9
182	Cyclization reactions of N1-(glycopyranosylamino) guanidines. Carbohydrate Research, 1997, 302, 229-235.	1.1	8
183	On the Bioisosteric Potential of Diazines:Â Diazine Analogues of the Combined Thromboxane A2Receptor Antagonist and Synthetase Inhibitor Ridogrelâ€. Journal of Medicinal Chemistry, 1996, 39, 4058-4064.	2.9	15
184	NMR spectroscopic investigations with isatin guanylhydrazones. Journal of Heterocyclic Chemistry, 1996, 33, 675-680.	1.4	12
185	Aryl Diazinyl Ketoximes: Synthesis and Configurational Assignment. Heterocycles, 1996, 43, 151.	0.4	13
186	N-Substituted 5,5-Dimethyl-2,5-dihydro-4H-isoindol-4-ones: Synthesis and NMR-Investigation. Heterocycles, 1996, 43, 1911.	0.4	5
187	Pyridazines, LXXII: On the Synthesis of Azinium and Diazinium Compounds Structurally Related to Pyridazomycin. Archiv Der Pharmazie, 1995, 328, 307-312.	2.1	4
188	Preparation of Amino- and Carboxy-ProtectedL-α-Amino-ω-iodocarboxylic Acids. Archiv Der Pharmazie, 1995, 328, 367-370.	2.1	1
189	Synthesis and ¹³ C NMR study of some <i>N</i> â€substituted 4â€iodo―and 3,4â€diiodopyrazoles. Journal of Heterocyclic Chemistry, 1995, 32, 189-194.	1.4	14
190	NMR spectroscopic investigations with ethyl 1â€(hetero)arylâ€5â€hydroxyâ€1 <i>H</i> â€pyrazoleâ€4â€carboxyla Journal of Heterocyclic Chemistry, 1995, 32, 1341-1349.	ites. 1.4	16
191	<i>N</i> 1â€substituted 3,5â€dimethoxyâ€4â€halogenoâ€1 <i>H</i> â€pyrazoles: Synthesis and NMR study. Journ Heterocyclic Chemistry, 1995, 32, 1351-1354.	al of	13
192	N-Substituted Bromopyrazoles: Synthesis and 13C Nmr Study. Heterocycles, 1994, 38, 2433.	0.4	8
193	Configurational assignments of oximes derived from 5â€formyl and 5â€acylâ€1,2,4â€triazines. Journal of Heterocyclic Chemistry, 1993, 30, 413-418.	1.4	18
194	Nâ€I Substituted ethyl 4â€pyrazolecarboxylates: Synthesis and spectroscopic investigations. Journal of Heterocyclic Chemistry, 1993, 30, 865-872.	1.4	22
195	On the structure of guanylhydrazones derived from aromatic aldehydes. Monatshefte Für Chemie, 1992, 123, 1163-1173.	0.9	14
196	On the discrimination of tetrazole regioisomers by NOE difference spectroscopy. Monatshefte Für Chemie, 1992, 123, 1027-1036.	0.9	19
197	Pyridazines. 63. Novel thiosemicarbazones derived from formyl- and acyldiazines: synthesis, effects on cell proliferation, and synergism with antiviral agents. Journal of Medicinal Chemistry, 1992, 35, 3288-3296.	2.9	59
198	Functionalisation of 1,2,3â€ŧriazole <i>via</i> lithiation of 1â€[2â€(trimethylsilyl)ethoxy]methylâ€1 <i>H</i> â€1,2,3â€ŧriazole. Journal of Heterocyclic Chemistry, 1992, 29, 1203-1207.	1.4	19

#	Article	IF	CITATIONS
199	Determination of the Stereochemistry of Chemotherapeutics Derived from 5-Nitrofurfural: NOE Difference Spectroscopy as a Simple and Reliable Method. Archiv Der Pharmazie, 1992, 325, 769-772.	2.1	9
200	The [2-(Trimethylsilyl)ethoxy]methyl Function as a Suitable N-1 Protecting Group in Lithiation Reactions with Pyrazoles and 1,2,4-Triazoles. Heterocycles, 1992, 34, 303.	0.4	28
201	13C nuclear magnetic resonance spectra of 3,6-disubstituted pyridazines. Canadian Journal of Chemistry, 1991, 69, 972-977.	0.6	14
202	Pyrazoles. 5 . Novel pyrazole analogues of flavanone, flavone and flavane. Journal of Heterocyclic Chemistry, 1991, 28, 1047-1050.	1.4	18
203	Pyrazoles. 6. Synthesis of novel heteroaryl 4â€pyrazolyl ketones. Journal of Heterocyclic Chemistry, 1991, 28, 1189-1192.	1.4	17
204	On the application of NOE difference spectroscopy for spectral and structural assignments with substituted 1,2,3-triazoles. Tetrahedron, 1991, 47, 9783-9792.	1.0	24
205	Spectral and structural assignments with various N-substituted 1,2,4-triazoles: Noe difference spectroscopy as a powerful tool. Tetrahedron, 1991, 47, 5471-5480.	1.0	18
206	NOE difference spectroscopy as a versatile tool for spectral and structural assignment in various N-1 substituted pyrazoles. Tetrahedron, 1991, 47, 1393-1398.	1.0	25
207	Pyridazines, LVIII: 1-Phenyl-1-pyridazinyl-2-substituted ethenes, synthesis and configuration. Monatshefte Für Chemie, 1991, 122, 1055-1061.	0.9	5
208	Configurational assignment of aryl heteroaryl ketoximes by means of homonuclear NOE difference spectroscopy. Collection of Czechoslovak Chemical Communications, 1991, 56, 2251-2257.	1.0	9
209	Pyridazines. LI. On the Reactivity of Pyridazineâ€carbaldehydes towards Selected Activeâ€Hydrogen Compounds. Journal of Heterocyclic Chemistry, 1990, 27, 1313-1321.	1.4	9
210	On the application of homonuclear NOE difference spectroscopy as a convenient tool for configurational assignment of compounds with a C=N bond. Monatshefte Für Chemie, 1990, 121, 837-846.	0.9	16
211	Convenient and rapid determination of the configuration of aldoximes and ketoximes by means of noe difference spectroscopy. Tetrahedron Letters, 1990, 31, 3109-3112.	0.7	28
212	Pyridazines 47. The Configuration of Novel Thiosemicarboazone Derivatives of Pyridazinecarbaldehydes and Alkyl Pyridazinyl Ketones. Heterocycles, 1989, 29, 1399.	0.4	28
213	Pyrazoles 3. N-1 Protected 4-Substituted Pyrazoles — Synthesis and Nmr Investigation. Heterocycles, 1988, 27, 2443.	0.4	19
214	BeitrÃge zur Chemie des Pyrazolsystems, 1. Mitt.: Ein effizienter Zugang zu Aryl―oder Benzylâ€4â€pyrazolylketonen und â€carbinolen. Archiv Der Pharmazie, 1987, 320, 1267-1272.	2.1	12
215	Pyridazines. XXVI. A novel synthesis of pyrano[2,3â€ <i>d</i>]pyridazines. Journal of Heterocyclic Chemistry, 1986, 23, 93-96.	1.4	14
216	Thiophen als Strukturelement physiologisch aktiver Substanzen, 12. Mitt. Thiophenanaloga antiviraler Chalkone. Archiv Der Pharmazie, 1985, 318, 48-59.	2.1	22

#	Article	IF	CITATIONS
217	Consecutive and Selective Double Methylene Insertion of Lithium Carbenoids to Isothiocyanates: A Direct Assembly of Fourâ€membered Sulfur ontaining Cycles. Angewandte Chemie, 0, , .	1.6	0