Nathalie Mangelinck-Noël

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1710800/publications.pdf

Version: 2024-02-01

143 papers

3,085 citations

28 h-index 214800 47 g-index

148 all docs 148 does citations

148 times ranked 1601 citing authors

#	Article	IF	CITATIONS
1	Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys. Journal of Alloys and Compounds, 2013, 572, 97-106.	5.5	164
2	The Samson phase, β-Mg2Al3, revisited. Zeitschrift Fýr Kristallographie, 2007, 222, .	1.1	118
3	Analysis by synchrotron X-ray radiography of convection effects on the dynamic evolution of the solid–liquid interface and on solute distribution during the initial transient of solidification. Acta Materialia, 2011, 59, 4356-4365.	7.9	100
4	Investigation of columnar–equiaxed transition and equiaxed growth of aluminium based alloys by X-ray radiography. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 413-414, 384-388.	5.6	98
5	In-Situ and Real-Time Analysis of the Formation of Strains and Microstructure Defects during Solidification of Al-3.5ÂWt Pct Ni Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 865-874.	2.2	93
6	Application of synchrotron X-ray imaging to the study of directional solidification of aluminium-based alloys. Journal of Crystal Growth, 2005, 275, 201-208.	1.5	90
7	In-Situ and Real-Time Investigation of Columnar-to-Equiaxed Transition in Metallic Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1458-1464.	2.2	81
8	In situ and real-time analysis of TGZM phenomena by synchrotron X-ray radiography. Journal of Crystal Growth, 2008, 310, 2906-2914.	1.5	81
9	Microstructural development during transient directional solidification of hypermonotectic Al–Bi alloys. Materials & Design, 2010, 31, 4584-4591.	5.1	67
10	Effect of a weak transverse magnetic field on solidification structure during directional solidification. Acta Materialia, 2014, 64, 367-381.	7.9	67
11	Influence of Forced/Natural Convection on Segregation During the Directional Solidification of Al-Based Binary Alloys. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2010, 41, 193-208.	2.1	65
12	In situ and real-time observation of the formation and dynamics of a cellular interface in a succinonitrile-0.5 wt% acetone alloy directionally solidified in a cylinder. Journal of Crystal Growth, 1997, 181, 117-132.	1.5	61
13	In situ investigation of the structural defect generation and evolution during the directional solidification of ã€^110〉 seeded growth Si. Acta Materialia, 2016, 115, 210-223.	7.9	54
14	Microstructural development and mechanical properties of a near-eutectic directionally solidified Sn–Bi solder alloy. Materials Characterization, 2015, 107, 43-53.	4.4	53
15	Cooling thermal parameters, microstructure, segregation and hardness in directionally solidified Al–Sn-(Si;Cu) alloys. Materials & Design, 2015, 72, 31-42.	5.1	50
16	In situanalysis of equiaxed growth of aluminium–nickel alloys by x-ray radiography at ESRF. Journal Physics D: Applied Physics, 2005, 38, A28-A32.	2.8	49
17	High cooling rate cells, dendrites, microstructural spacings and microhardness in a directionally solidified Al–Mg–Si alloy. Journal of Alloys and Compounds, 2015, 636, 145-149.	5.5	48
18	Recent Advances in Boron―and Nitrogenâ€Doped Carbonâ€Based Materials and Their Various Applications. Advanced Materials Interfaces, 2022, 9, .	3.7	48

#	Article	IF	Citations
19	Influence of natural convection during upward directional solidification: A comparison between in situ X-ray radiography and direct simulation of the grain structure. Acta Materialia, 2013, 61, 4765-4777.	7.9	46
20	Impact of solute flow during directional solidification of a Ni-based alloy: In-situ and real-time X-radiography. Acta Materialia, 2020, 194, 68-79.	7.9	45
21	Thermoelectric magnetic force acting on the solid during directional solidification under a static magnetic field. Applied Physics Letters, 2012, 101, .	3.3	41
22	Structures in directionally solidified Al–7wt.% Si alloys: Benchmark experiments under microgravity. Acta Materialia, 2014, 64, 253-265.	7.9	41
23	In Situ Investigation of Dendrite Deformation During Upward Solidification of Al-7wt.%Si. Jom, 2014, 66, 1408-1414.	1.9	38
24	Measurement of Solute Profiles by Means of Synchrotron X-Ray Radiography during Directional Solidification of Al-4 wt% Cu Alloys. Materials Science Forum, 0, 649, 331-336.	0.3	37
25	Investigation of grain boundary grooves at the solid–liquid interface during directional solidification of multi-crystalline silicon: in situ characterization by X-ray imaging. Journal of Crystal Growth, 2013, 377, 203-211.	1.5	36
26	Columnar to equiaxed transition during directional solidification in refined Al-based alloys. Journal of Alloys and Compounds, 2009, 484, 739-746.	5.5	34
27	Twinning occurrence and grain competition in multi-crystalline silicon during solidification. Comptes Rendus Physique, 2013, 14, 141-148.	0.9	30
28	Thermoelectric magnetic flows in melt during directional solidification. Applied Physics Letters, 2014, 104, .	3.3	29
29	On the impact of twinning on the formation of the grain structure of multi-crystalline silicon for photovoltaic applications during directional solidification. Journal of Crystal Growth, 2015, 418, 38-44.	1.5	29
30	On the Deformation of Dendrites During Directional Solidification of a Nickel-Based Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5234-5241.	2.2	29
31	Influence of grain boundaries and natural convection on microstructure formation in cellular directional solidification of dilute succinonitrile alloys in a cylinder. Journal of Crystal Growth, 1998, 187, 516-526.	1.5	28
32	Control of melt convection by a travelling magnetic field during the directional solidification of Al–Ni alloys. Comptes Rendus - Mecanique, 2007, 335, 330-335.	2.1	28
33	Fragmentation in an Al–7 wt-%Si alloy studied in real time by X-ray synchrotron techniques. International Journal of Cast Metals Research, 2009, 22, 208-211.	1.0	28
34	Application of synchrotron X-ray radiography to the study of dendritic equiaxed microstructure formation in Al–Cu alloys. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 394-398.	1.4	27
35	Modification of liquid/solid interface shape in directionally solidifying Al–Cu alloys by a transverse magnetic field. Journal of Materials Science, 2013, 48, 213-219.	3.7	27
36	$\{1\ 1\ 1\}$ facet growth laws and grain competition during silicon crystallization. Journal of Crystal Growth, 2017, 479, 1-8.	1.5	27

#	Article	IF	Citations
37	Substrate Developments for the Chemical Vapor Deposition Synthesis of Graphene. Advanced Materials Interfaces, 2020, 7, 1902024.	3.7	27
38	In Situ Fabrication of Freestanding Singleâ€Atomâ€Thick 2D Metal/Metallene and 2D Metal/ Metallene Oxide Membranes: Recent Developments. Advanced Science, 2021, 8, e2100619.	11.2	27
39	Modelling of the transition from a planar faceted front to equiaxed growth: Application to photovoltaic polycrystalline silicon. Journal of Crystal Growth, 2008, 311, 20-25.	1.5	26
40	Real Time Observation of the Directional Solidification of Multicrystalline Silicon: X-ray Imaging Characterization. Energy Procedia, 2012, 27, 82-87.	1.8	26
41	Revealing the Various Electrochemical Behaviors of Sn ₄ P ₃ Binary Alloy Anodes in Alkali Metal Ion Batteries. Advanced Functional Materials, 2021, 31, 2102047.	14.9	25
42	Determination of the average nucleation undercooling of primary Al-phase on refining particles from Al–5.0wt% Ti–1.0wt% B in Al-based alloys using DSC. Journal of Alloys and Compounds, 2009, 477, 622-627.	5.5	24
43	Comparative study of directional solidification of Al-7â€wt% Si alloys in Space and on Earth: Effects of gravity on dendrite growth and Columnar-to-equiaxed transition. Journal of Crystal Growth, 2019, 513, 20-29.	1.5	24
44	Realâ€time and ⟨i⟩in situ⟨/i⟩ solidification of Alâ€based alloys investigated by synchrotron radiation: a unique experimental setâ€up combining radiography and topography techniques. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2721-2727.	1.8	23
45	Al–Fe hypoeutectic alloys directionally solidified under steady-state and unsteady-state conditions. Journal of Alloys and Compounds, 2010, 504, 205-210.	5. 5	23
46	Necessity of investigating microstructure formation during directional solidification of transparent alloys in 3D. Advances in Space Research, 2005, 36, 80-85.	2.6	22
47	In situ analysis of dendritic equiaxed microstructure formation in Al-Cu alloys by synchrotron X-ray radiography. Transactions of the Indian Institute of Metals, 2009, 62, 427-431.	1.5	22
48	Simulation of directional solidification of refined Al–7 wt.%Si alloys – Comparison with benchmark microgravity experiments. Acta Materialia, 2015, 93, 24-37.	7.9	22
49	In Situ Formation of Free-Standing Single-Atom-Thick Antiferromagnetic Chromium Membranes. Nano Letters, 2020, 20, 4354-4361.	9.1	22
50	Numerical Investigation of the Influence of Material Property of a Crucible on Interface Shape in a Unidirectional Solidification Process. Crystal Growth and Design, 2009, 9, 267-272.	3.0	20
51	Cellular structures in three-dimensional directional solidification: Simulation and analysis. Physical Review E, 1998, 57, 2849-2861.	2.1	19
52	Comparative study of the influence of natural convection on directional solidification of Al–3.5wt% Ni and Al–7wt% Si alloys. Advances in Space Research, 2008, 41, 2112-2117.	2.6	19
53	Movable partition designed for the seedâ€assisted silicon ingot casting in directional solidification process. Crystal Research and Technology, 2014, 49, 405-413.	1.3	19
54	Distribution and propagation of dislocation defects in quasi-single crystalline silicon ingots cast by the directional solidification method. Solar Energy Materials and Solar Cells, 2015, 132, 1-5.	6.2	19

#	Article	IF	Citations
55	<i>In Situ</i> Synchrotron X-ray Characterization of Microstructure Formation in Solidification Processing of Al-based Metallic Alloys. ISIJ International, 2010, 50, 1929-1935.	1.4	18
56	Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene family. Nano Research, 2022, 15, 1310-1318.	10.4	18
57	Modification of the microstructure by rotating magnetic field during the solidification of Al-7 wt.% Si alloy under microgravity. Journal of Alloys and Compounds, 2020, 836, 155458.	5.5	18
58	Effects of the interface curvature on cellular and dendritic microstructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 413-414, 296-301.	5.6	17
59	In situand real-time probing of quasicrystal solidification dynamics by synchrotron imaging. Physical Review E, 2006, 74, 031605.	2.1	17
60	Investigation of columnar-to-equiaxed transition in solidification processing of AlSi alloys in microgravity – The CETSOL project. Journal of Physics: Conference Series, 2011, 327, 012003.	0.4	17
61	In situ analysis of the influence of convection during the initial transient of planar solidification. Journal of Crystal Growth, 2011, 318, 1134-1138.	1.5	17
62	Columnar and Equiaxed Solidification of Al-7Âwt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project. Jom, 2017, 69, 1269-1279.	1.9	17
63	Effect of solidification conditions and surface pores on the microstructure and columnar-to-equiaxed transition in solidification under microgravity. Journal of Alloys and Compounds, 2018, 749, 344-354.	5.5	17
64	Directional solidification of refined Al–3.5wt% Ni under natural convection and under a forced flow driven by a travelling magnetic field. Journal of Crystal Growth, 2005, 275, e1501-e1505.	1.5	16
65	Growth undercooling in multi-crystalline pure silicon and in silicon containing light impurities (C) Tj ETQq1 1 0.784	1.5 rgBT	/Overlock 1
66	Cellular pattern dynamics on a concave interface in three-dimensional alloy solidification. Physical Review E, 2009, 79, 011605.	2.1	14
67	Origins of misorientation defects in single crystal castings: A time resolved in situ synchrotron X-ray radiography study. MATEC Web of Conferences, 2014, 14, 05003.	0.2	14
68	Motion of equiaxed grains during directional solidification under static magnetic field. Journal of Crystal Growth, 2015, 417, 25-30.	1.5	14
69	Dynamic observation of dislocation evolution and interaction with twin boundaries in silicon crystal growth using in $\hat{a} \in \text{``situ synchrotron X-ray diffraction imaging. Acta Materialia, 2021, 210, 116819.}$	7.9	14
70	Interferometric method for the analysis of dendrite growth and shape in 3D extended patterns in transparent alloys. Transactions of the Indian Institute of Metals, 2009, 62, 455-460.	1.5	13
71	In-situ observations of novel single-atom thick 2D tin membranes embedded in graphene. Nano Research, 2021, 14, 747-753.	10.4	13
72	Advanced red phosphorus/carbon composites with practical application potential for sodium ion batteries. Energy Storage Materials, 2022, 46, 20-28.	18.0	13

#	Article	IF	CITATIONS
73	Optical device dedicated to the non-destructive observation and characterization of the solidification of bulk transparent alloysin situand in real time. Measurement Science and Technology, 2000, 11, 66-73.	2.6	12
74	Direct simulation of a directional solidification experiment observedin situand real-time using X-ray imaging. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012077.	0.6	12
75	Coupled Cellular Automaton (CA) – Finite Element (FE) Modeling of Directional Solidification of Al-3.5 wt% Ni Alloy: A Comparison with X-ray Synchrotron Observations. ISIJ International, 2014, 54, 392-400.	1.4	12
76	Control of the Gas Flow in an Industrial Directional Solidification Furnace for Production of High Purity Multicrystalline Silicon Ingots. International Journal of Photoenergy, 2015, 2015, 1-10.	2.5	12
77	Strain building and correlation with grain nucleation during silicon growth. Acta Materialia, 2019, 177, 141-150.	7.9	12
78	Cellular-to-Dendritic and Dendritic-to-Cellular Morphological Transitions in a Ternary Al-Mg-Si Alloy. IOP Conference Series: Materials Science and Engineering, 2019, 529, 012018.	0.6	11
79	Effect of Argon Flow on Oxygen and Carbon Coupled Transport in an Industrial Directional Solidification Furnace for Crystalline Silicon Ingots. Crystals, 2021, 11, 421.	2.2	11
80	Iron contamination in cast quasi-single crystalline silicon ingots. Journal of Applied Physics, 2014, 115, 174903.	2.5	10
81	Columnar-to-Equiaxed Transition in Solidification Processing of AlSi7 Alloys in Microgravity the CETSOL Project. Materials Science Forum, 2014, 790-791, 12-21.	0.3	10
82	Atomistic simulations of carbon diffusion and segregation in liquid silicon. Journal of Applied Physics, 2017, 122, .	2.5	10
83	Real-time prediction of crystal/melt interface shape during Czochralski crystal growth. CrystEngComm, 2018, 20, 6925-6931.	2.6	10
84	Simultaneous X-ray radiography and diffraction topography imaging applied to silicon for defect analysis during melting and crystallization. Journal of Applied Crystallography, 2019, 52, 1312-1320.	4.5	10
85	 <i>In situ</i> study of quasicrystal growth by synchrotron X-ray imaging. Philosophical Magazine, 2007, 87, 3079-3087.	1.6	9
86	Modeling of Heat and Solute Interactions upon Grain Structure Solidification. Materials Science Forum, 0, 649, 189-198.	0.3	9
87	Effect of Crucible Location on Heat Transfer in Sapphire Crystal Growth by Heat Exchanger Method. Heat Transfer Engineering, 2016, 37, 332-340.	1.9	9
88	Control of Melt Flow and Oxygen Distribution Using Traveling Magnetic Field during Directional Solidification of Silicon Ingots. Silicon, 2020, 12, 2395-2404.	3.3	9
89	Three-dimensional cellular automaton modeling of silicon crystallization with grains in twin relationships. Acta Materialia, 2020, 191, 230-244.	7.9	9
90	Dualâ€Salt Electrolyte Additives Enabled Stable Lithium Metal Anode/Lithium–Manganeseâ€Rich Cathode Batteries. Advanced Energy and Sustainability Research, 2022, 3, 2100140.	5.8	9

#	Article	IF	CITATIONS
91	In situobservation of pore evolution during melting and solidification of Al–Pd–Mn quasicrystals by synchrotron X-ray radiography. Philosophical Magazine, 2006, 86, 335-340.	1.6	8
92	Numerical modelling of columnar to equiaxed transition – application to microgravity experiments. International Journal of Cast Metals Research, 2009, 22, 34-38.	1.0	8
93	A method to determine the active particle nucleation undercooling distribution in a refined alloy. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012090.	0.6	8
94	Fast growth of thin multiâ€crystalline silicon ribbons by the RST method. Crystal Research and Technology, 2015, 50, 101-114.	1.3	8
95	CET during the solidification of refined Al-3.5wt%Ni alloys and characterization of the subsequent grain structure. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012011.	0.6	7
96	Carbon solubility in liquid silicon: A computational analysis across empirical potentials. Journal of Chemical Physics, 2019, 150, 144503.	3.0	7
97	X-ray Based in Situ Investigation of Silicon Growth Mechanism Dynamics—Application to Grain and Defect Formation. Crystals, 2020, 10, 555.	2.2	7
98	Dendrite Bending during Directional Solidification., 2012,,.		7
99	Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL): A Project of the European Space Agency (ESA) - Microgravity Applications Promotion (MAP) Programme. Materials Science Forum, 2006, 508, 393-404.	0.3	6
100	CET by Fragmentation during the Solidification under Natural and Forced Convection of Non-Refined Al-Based Alloys. Materials Science Forum, 0, 649, 343-348.	0.3	6
101	Distributions of structures and solute in directionally solidified Al – 7 wt % Si. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012017.	0.6	6
102	In situand real-time analysis of the growth and interaction of equiaxed grains by synchrotron X- ray radiography. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012089.	0.6	6
103	A nucleation-growth model of nanowires produced by the vapor-liquid-solid process. Journal of Applied Physics, 2013, 114, 064302.	2.5	6
104	Role of Impurities in Silicon Solidification and Electrical Properties Studied by Complementary In Situ and Ex Situ Methods. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900298.	1.8	6
105	Random angle grain boundary formation and evolution dynamics during Si directional solidification. Acta Materialia, 2019, 171, 253-260.	7.9	6
106	Investigation of subgrains in directionally solidified cast mono-seeded silicon and their interactions with twin boundaries. Solar Energy Materials and Solar Cells, 2020, 218, 110817.	6.2	6
107	Concurrent model for sharp and progressive columnar to equiaxed transitions validated by directional solidification experiments processed in microgravity conditions. Computational Materials Science, 2022, 210, 111436.	3.0	6
108	Directional solidification processing on CET in Al-based alloys. Metals and Materials International, 2009, 15, 21-26.	3.4	5

#	Article	IF	Citations
109	In Situ Imaging of Dislocation Expansion in FZ‧i Seeds During Temperature Ramp Heating Process. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700758.	1.8	5
110	Heterogeneous twinning during directional solidification of multi-crystalline silicon. Journal of Crystal Growth, 2019, 508, 42-49.	1.5	5
111	Numerical simulation of particle growth process in a polysilicon fluidized bed reactor. Particulate Science and Technology, 2020, 38, 261-270.	2.1	5
112	Analysis of gravity effects during binary alloy directional solidification by comparison of microgravity and Earth experiments with in situ observation. European Physical Journal E, 2021, 44, 98.	1.6	5
113	Observation of the initiation and propagation of solidification cracks by means ofin situsynchrotron X-ray radiography. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012040.	0.6	4
114	Morphotropic phase boundary-like properties in a ferroelectric-paraelectric nanocomposite. Journal of Applied Physics, 2019, 126, .	2.5	4
115	Combined growth of α-Al and Bi in a Al-Bi-Cu monotectic alloy analyzed by in situ X-ray radiography. Journal of Crystal Growth, 2020, 536, 125592.	1.5	4
116	A general approach for calculating melt–solid impurity segregation coefficients based on thermodynamic integration. Journal of Applied Physics, 2021, 130, .	2.5	4
117	On the Catalytic Activity of Sn Monomers and Dimers at Graphene Edges and the Synchronized Edge Dependence of Diffusing Atoms in Sn Dimers. Advanced Functional Materials, 2021, 31, 2104340.	14.9	4
118	Quasistatic Equilibrium Chemical Vapor Deposition of Graphene. Advanced Materials Interfaces, 2022, 9, 2101500.	3.7	4
119	Diffusion coefficients of carbon, oxygen and nitrogen in silicon melt. Journal of Crystal Growth, 2022, 580, 126476.	1.5	4
120	Influence of Solidification Parameters on the Amount of Eutectic and Secondary Arm Spacing of Al–7wt% Si Alloy Solidified under Microgravity. Crystals, 2022, 12, 414.	2.2	4
121	In situ characterization of interface-microstructure dynamics in 3D-Directional Solidification of model transparent alloys. Microgravity Science and Technology, 2005, 16, 133-137.	1.4	3
122	Effects of the Interface Curvature and Dendrite Orientation in Directional Solidification of Bulk Transparent Alloys. Materials Science Forum, 2006, 508, 337-342.	0.3	3
123	In Situ and Real Time Investigation of Directional Solidification of Al - Ni Alloys by Synchrotron Imaging. Materials Science Forum, 2006, 508, 75-80.	0.3	3
124	Effect of Travelling Magnetic Field on the Directional Solidification of Refined Al-3.5 wt%Ni Alloys. Materials Science Forum, 2006, 508, 221-226.	0.3	3
125	SEM Characterization of Al ₃ Ni Intermetallics and its Influence on Mechanical Properties of Directionally Solidified Hypoeutectic Al-Ni Alloys. Materials Science Forum, 0, 636-637, 465-470.	0.3	3
126	Influence of Crucible Thermal Conductivity on Crystal Growth in an Industrial Directional Solidification Process for Silicon Ingots. International Journal of Photoenergy, 2016, 2016, 1-9.	2.5	3

#	Article	IF	CITATIONS
127	Numerical simulation of bubbling fluidization using a local bubbleâ€structureâ€dependent drag model. Canadian Journal of Chemical Engineering, 2019, 97, 1741-1755.	1.7	3
128	Grain size reduction by electromagnetic stirring inside gold alloys. EPJ Applied Physics, 2005, 30, 215-222.	0.7	2
129	A piecewise lookup table for calculating nonbonded pairwise atomic interactions. Journal of Molecular Modeling, 2015, 21, 288.	1.8	2
130	Optimisation of data locality in energy calculations for large-scale molecular dynamics simulations. Molecular Simulation, 2017, 43, 284-290.	2.0	2
131	Simulation of grain evolution in solidification of silicon on meso-scopic scale. Computational Materials Science, 2019, 159, 432-439.	3.0	2
132	Enhanced performance of Si-based Li-ion batteries through elastic cushioning with hollow graphene shells. Science China Materials, 2022, 65, 2343-2353.	6.3	2
133	Studies by In Situ and Real-Time Synchrotron Imaging of Interface Dynamics and Defect Formation in Solidification Processing. Advances in Science and Technology, 2006, 46, 1.	0.2	1
134	Publisher's Note:In situand real-time probing of quasicrystal solidification dynamics by synchrotron imaging [Phys. Rev. E74, 031605 (2006)]. Physical Review E, 2006, 74, .	2.1	1
135	Modeling and simulation of Si crystal growth from melt. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 645-652.	0.8	1
136	CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity. IOP Conference Series: Materials Science and Engineering, 2016, 117, 012009.	0.6	1
137	Impact of the initial growth interface on the grain structure in HPMC-Si ingot. , 2017, , .		1
138	3D cellular automaton modelling of silicon crystallization including grains in twin relationship. IOP Conference Series: Materials Science and Engineering, 2020, 861, 012052.	0.6	1
139	A bubble structure dependent drag model for CFD simulation of biâ€disperse gasâ€solid flow in bubbling fluidizations. Canadian Journal of Chemical Engineering, 0, , .	1.7	1
140	Dislocation dynamics in monocrystalline Si near the melting point studied in situ by Xâ€ray Bragg diffraction imaging. Physica Status Solidi (B): Basic Research, O, , .	1.5	1
141	Computer modeling of crystal growth of silicon for solar cells. Frontiers in Energy, 2011, 5, 305.	2.3	O
142	The effect of initial growth interface on the grain structure in HPMC-Si ingot. , 2017, , .		0
143	DECLIC Scientific Program - Directional Solidification. , 2006, , .		0