
Di Lan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1710696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. Journal of Colloid and Interface Science, 2019, 533, 481-491.	9.4	194
2	Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chemical Engineering Journal, 2020, 382, 122797.	12.7	182
3	Progress in low-frequency microwave absorbing materials. Journal of Materials Science: Materials in Electronics, 2018, 29, 17122-17136.	2.2	150
4	Simultaneous Manipulation of Interfacial and Defects Polarization toward Zn/Co Phase and Ion Hybrids for Electromagnetic Wave Absorption. Advanced Functional Materials, 2021, 31, 2106677.	14.9	137
5	Synergistic Polarization Loss of MoS ₂ â€Based Multiphase Solid Solution for Electromagnetic Wave Absorption. Advanced Functional Materials, 2022, 32, .	14.9	116
6	Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects. Journal of Alloys and Compounds, 2022, 893, 162343.	5.5	115
7	A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. Journal of Materials Science: Materials in Electronics, 2019, 30, 10961-10984.	2.2	103
8	Sodium citrate assisted hydrothermal synthesis of nickel cobaltate absorbers with tunable morphology and complex dielectric parameters toward efficient electromagnetic wave absorption. Applied Surface Science, 2020, 504, 144480.	6.1	92
9	High-entropy alloy@air@Ni–NiO core-shell microspheres for electromagnetic absorption applications. Composites Part B: Engineering, 2019, 179, 107524.	12.0	84
10	Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chinese Physics B, 2018, 27, 117806.	1.4	77
11	Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption. Chemical Engineering Journal, 2021, 408, 127313.	12.7	72
12	Core-shell Ag@C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption. Journal of Colloid and Interface Science, 2022, 620, 263-272.	9.4	70
13	Strategies for electromagnetic wave absorbers derived from zeolite imidazole framework (ZIF-67) with ferrocene containing polymers. Polymer, 2020, 202, 122679.	3.8	56
14	Application progress of conductive conjugated polymers in electromagnetic wave absorbing composites. Composites Communications, 2021, 26, 100767.	6.3	54
15	A Flexible, Mechanically Strong, and Anti orrosion Electromagnetic Wave Absorption Composite Film with Periodic Electroconductive Patterns. Advanced Functional Materials, 2022, 32, .	14.9	54
16	Synthesis of Singleâ€Component Metal Oxides with Controllable Multiâ€Shelled Structure and their Morphologyâ€Related Applications. Chemical Record, 2020, 20, 102-119.	5.8	52
17	Synthesis, characterization and microwave transparent properties of Mn3O4 microspheres. Journal of Materials Science: Materials in Electronics, 2019, 30, 8771-8776.	2.2	48
18	Recent Advances in Synthesis and Properties of Nitrated-Pyrazoles Based Energetic Compounds. Molecules, 2020, 25, 3475.	3.8	47

Di Lan

#	Article	IF	CITATIONS
19	Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption. Journal of Materials Science and Technology, 2021, 92, 51-59.	10.7	45
20	Porous high entropy alloys for electromagnetic wave absorption. Journal of Magnetism and Magnetic Materials, 2020, 512, 167065.	2.3	39
21	Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal-organic frameworks. Journal of Colloid and Interface Science, 2021, 600, 288-298.	9.4	27
22	Accessory ligand strategies for hexacyanometallate networks deriving perovskite polycrystalline electromagnetic absorbents. Journal of Materials Science and Technology, 2021, 82, 69-79.	10.7	25
23	MOFs-derived hollow materials for electromagnetic wave absorption: prospects and challenges. Journal of Materials Science: Materials in Electronics, 2021, 32, 25631-25648.	2.2	10
24	Novel synthesis of poly(2-acryloyloxyethyl ferrocenecarboxylate) as quasi-reversible redox-active gel polymer electrolytes. Journal of Materials Science: Materials in Electronics, 2020, 31, 10437-10445.	2.2	3