Jing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1709942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of GaN-based photonic crystal surface emitting lasers with top TiO2 photonic crystals. Results in Physics, 2022, 33, 105164.	4.1	2
2	The Light Absorption Enhancement in Graphene Monolayer Resulting from the Diffraction Coupling of Surface Plasmon Polariton Resonance. Nanomaterials, 2022, 12, 216.	4.1	17
3	Simultaneously achieving narrowband and broadband light absorption enhancement in monolayer graphene. Diamond and Related Materials, 2022, 126, 109122.	3.9	21
4	Optical sensing based on classical analogy of double Electromagnetically induced transparencies. Results in Physics, 2022, 39, 105732.	4.1	15
5	High Sensing Properties of Magnetic Plasmon Resonance by Strong Coupling in Three-Dimensional Metamaterials. Journal of Lightwave Technology, 2021, 39, 562-565.	4.6	47
6	Ultralarge Rabi splitting and broadband strong coupling in a spherical hyperbolic metamaterial cavity. Photonics Research, 2021, 9, 829.	7.0	6
7	Independently tunable double Fano-like resonances arising from the interference coupling of localized surface plasmons with waveguide modes. Results in Physics, 2021, 25, 104218.	4.1	7
8	Strong Magnetic Plasmon Resonance in a Simple Metasurface for High-Quality Sensing. Journal of Lightwave Technology, 2021, 39, 4525-4528.	4.6	45
9	Ultranarrow and Tunable Fano Resonance in Ag Nanoshells and a Simple Ag Nanomatryushka. Nanomaterials, 2021, 11, 2039.	4.1	6
10	Ultraviolet graphene ultranarrow absorption engineered by lattice plasmon resonance. Nanotechnology, 2021, 32, 465202.	2.6	53
11	Multiple Sharp Fano Resonances in a Deep-Subwavelength Spherical Hyperbolic Metamaterial Cavity. Nanomaterials, 2021, 11, 2301.	4.1	5
12	Perfect Absorption and Refractive-Index Sensing by Metasurfaces Composed of Cross-Shaped Hole Arrays in Metal Substrate. Nanomaterials, 2021, 11, 63.	4.1	26
13	Theoretical Study on Metasurfaces for Transverse Magneto-Optical Kerr Effect Enhancement of Ultra-Thin Magnetic Dielectric Films. Nanomaterials, 2021, 11, 2825.	4.1	2
14	Synthesis and anodic performance of TiO2-carbonized PAN electrode for lithium ion batteries. Chemical Physics, 2020, 530, 110639.	1.9	5
15	Rapid fabrication of high-quality bare silica monolayer and multilayers at the water/air interface. Results in Physics, 2020, 19, 103404.	4.1	2
16	Graphene Multiple Fano Resonances Based on Asymmetric Hybrid Metamaterial. Nanomaterials, 2020, 10, 2408.	4.1	8
17	Narrowband Light Reflection Resonances from Waveguide Modes for High-Quality Sensors. Nanomaterials, 2020, 10, 1966.	4.1	9
18	Broadband, wide-angle, and polarization-insensitive enhancement of light absorption in monolayer graphene over whole visible spectrum. Results in Physics, 2020, 18, 103134.	4.1	20

JING CHEN

#	Article	IF	CITATIONS
19	Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials. Carbon, 2020, 162, 187-194.	10.3	82
20	Graphene hybridized ultrahigh-Q high-order Fano resonance for nanoscale optical sensing. Applied Physics Express, 2020, 13, 022013.	2.4	8
21	High-Q plasmonic graphene absorbers for electrical switching and optical detection. Carbon, 2020, 166, 256-264.	10.3	35
22	Ultra-narrowband light absorption enhancement of monolayer graphene from waveguide mode. Optics Express, 2020, 28, 24908.	3.4	16
23	Ultra-high quality graphene perfect absorbers for high performance switching manipulation. Optics Express, 2020, 28, 37294.	3.4	18
24	Huge local magnetic field enhancement at optical frequencies in metamaterials through coupling with photonic band gap. Results in Physics, 2019, 15, 102693.	4.1	0
25	Highly sensitive 3D metamaterial sensor based on diffraction coupling of magnetic plasmon resonances. Results in Physics, 2019, 15, 102791.	4.1	37
26	Pore-ridge nanostructures on the surface of trichoid sensilla of the male silkmoth Bombyx mori: Aerodynamic trapping and transporting of the pheromone molecules. Arthropod Structure and Development, 2019, 52, 100875.	1.4	7
27	Enhanced Microwave Absorption Properties of Absorbing Materials Induced by Complex Coupling Agents. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	3
28	High-performance metamaterial sensors based on strong coupling between surface plasmon polaritons and magnetic plasmon resonances. Results in Physics, 2019, 14, 102397.	4.1	32
29	Highly sensitive refractive-index sensor based on strong magnetic resonance in metamaterials. Applied Physics Express, 2019, 12, 052015.	2.4	92
30	Photonic Microcavity-Enhanced Magnetic Plasmon Resonance of Metamaterials for Sensing Applications. IEEE Photonics Technology Letters, 2019, 31, 113-116.	2.5	42
31	Efficient Optical Reflection Modulation by Coupling Interband Transition of Graphene to Magnetic Resonance in Metamaterials. Nanoscale Research Letters, 2019, 14, 391.	5.7	2
32	Optical Cavity-Enhanced Localized Surface Plasmon Resonance for High-Quality Sensing. IEEE Photonics Technology Letters, 2018, 30, 728-731.	2.5	50
33	Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials. Nanoscale Research Letters, 2018, 13, 153.	5.7	52
34	Tri-band absorption enhancement in monolayer graphene in visible spectrum due to multiple plasmon resonances in metal–insulator–metal nanostructure. Applied Physics Express, 2018, 11, 072201.	2.4	14
35	Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing. Optical Materials Express, 2018, 8, 342.	3.0	61
36	Metal-substrate-enhanced magnetic dipole resonance in metamaterials for high-performance refractive index sensing. Optical Materials Express, 2018, 8, 2008.	3.0	17

JING CHEN

#	Article	IF	CITATIONS
37	Optical Magnetic Field Enhancement by Strong Coupling in Metamaterials. Journal of Lightwave Technology, 2018, 36, 2791-2795.	4.6	44
38	Enhancing the Magnetic Plasmon Resonance of Three-Dimensional Optical Metamaterials via Strong Coupling for High-Sensitivity Sensing. Journal of Lightwave Technology, 2018, 36, 3481-3485.	4.6	98
39	Tailoring Plasmon Lifetime in Suspended Nanoantenna Arrays for High-Performance Plasmon Sensing. Plasmonics, 2017, 12, 529-534.	3.4	40
40	Multi-Band Ultra-Sharp Transmission Response in All-Dielectric Resonant Structures Containing Kerr Nonlinear Media. Plasmonics, 2017, 12, 577-582.	3.4	2
41	Enhanced Magnetic Fields at Optical Frequency by Diffraction Coupling of Magnetic Resonances in Lifted Metamaterials. Journal of Lightwave Technology, 2017, 35, 71-74.	4.6	46
42	Engineering the Complex-Valued Constitutive Parameters of Metamaterials for Perfect Absorption. Nanoscale Research Letters, 2017, 12, 276.	5.7	7
43	Toroidal Dipolar Excitation in Metamaterials Consisting of Metal nanodisks and a Dielectrc Spacer on Metal Substrate. Scientific Reports, 2017, 7, 582.	3.3	18
44	Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials. Scientific Reports, 2017, 7, 17117.	3.3	16
45	The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials. Nanoscale Research Letters, 2017, 12, 586.	5.7	14
46	Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Optics Express, 2017, 25, 3675.	3.4	107
47	Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials. Optics Express, 2017, 25, 12061.	3.4	50
48	Silicon Nanocrystals with pH-Sensitive Tunable Light Emission from Violet to Blue-Green. Sensors, 2017, 17, 2396.	3.8	7
49	Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes. IEEE Photonics Technology Letters, 2016, 28, 1529-1532.	2.5	49
50	Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials. IEEE Photonics Journal, 2016, 8, 1-7.	2.0	20
51	Graphene-based Superlens for Subwavelength Optical Imaging by Graphene Plasmon Resonances. Plasmonics, 2016, 11, 515-522.	3.4	6
52	Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation. ACS Applied Materials & Interfaces, 2015, 7, 4962-4968.	8.0	229
53	Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers. RSC Advances, 2015, 5, 81866-81874.	3.6	22
54	Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials. Optics Express, 2015, 23, 16238.	3.4	63

JING CHEN

#	Article	IF	CITATIONS
55	Realization of Fanolike Resonance Due to Diffraction Coupling of Localized Surface Plasmon Resonances in Embedded Nanoantenna Arrays. Plasmonics, 2015, 10, 341-346.	3.4	32
56	Independently tunable double Fano resonances in asymmetric MIM waveguide structure. Optics Express, 2014, 22, 14688.	3.4	139
57	Fanolike resonance in light transmission through a planar array of silver circular disks. Materials Letters, 2014, 136, 205-208.	2.6	13
58	Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties. Applied Physics A: Materials Science and Processing, 2014, 117, 1067-1073.	2.3	15
59	Tunable extraordinary optical transmission of dielectric film-coupled metallo-dielectric crystals. Materials Letters, 2014, 126, 224-227.	2.6	6
60	Fanolike resonance in light transmission through a silver film perforated with an array of SRR-shaped apertures. Optics Communications, 2014, 322, 175-178.	2.1	0
61	Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy. Optics Communications, 2013, 307, 73-75.	2.1	16
62	Fabrication and infrared-transmission properties of monolayer hexagonal-close-packed metallic nanoshells. Optics Communications, 2013, 297, 194-197.	2.1	9
63	Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells. Journal of Chemical Physics, 2012, 136, 214703.	3.0	24
64	Confined Mie Plasmons in Monolayer Hexagonal-Close-Packed Metallic Nanoshells. Chinese Physics Letters, 2012, 29, 097303.	3.3	3
65	Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells. Optics Express, 2011, 19, 23889.	3.4	17