Daniel Cook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1709583/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioactive alkaloids in vertically transmitted fungal endophytes. Functional Ecology, 2014, 28, 299-314.	3.6	154
2	Swainsonine-Containing Plants and Their Relationship to Endophytic Fungi. Journal of Agricultural and Food Chemistry, 2014, 62, 7326-7334.	5.2	103
3	Alkylresorcinol Synthases Expressed in <i>Sorghum bicolor</i> Root Hairs Play an Essential Role in the Biosynthesis of the Allelopathic Benzoquinone Sorgoleone Â. Plant Cell, 2010, 22, 867-887.	6.6	97
4	Detection of monofluoroacetate in Palicourea and Amorimia species. Toxicon, 2012, 60, 791-796.	1.6	70
5	Production of the Alkaloid Swainsonine by a Fungal Endosymbiont of the Ascomycete Order Chaetothyriales in the Host <i>Ipomoea carnea</i> . Journal of Agricultural and Food Chemistry, 2013, 61, 3797-3803.	5.2	66
6	Locoweed Poisoning in Livestock. Rangelands, 2009, 31, 16-21.	1.9	62
7	Swainsoninine Concentrations and Endophyte Amounts of Undifilum oxytropis in Different Plant Parts of Oxytropis sericea. Journal of Chemical Ecology, 2009, 35, 1272-1278.	1.8	61
8	Swainsonine Biosynthesis Genes in Diverse Symbiotic and Pathogenic Fungi. G3: Genes, Genomes, Genetics, 2017, 7, 1791-1797.	1.8	60
9	Production of the Alkaloid Swainsonine by a Fungal Endophyte in the Host <i>Swainsona canescens</i> . Journal of Natural Products, 2013, 76, 1984-1988.	3.0	55
10	Swainsonine and Endophyte Relationships in Astragalus mollissimus and Astragalus lentiginosus. Journal of Agricultural and Food Chemistry, 2011, 59, 1281-1287.	5.2	48
11	Monofluoroacetate-Containing Plants That Are Potentially Toxic to Livestock. Journal of Agricultural and Food Chemistry, 2014, 62, 7345-7354.	5.2	39
12	A comparison of alternative sample preparation procedures for the analysis of swainsonine using LC-MS/MS. Phytochemical Analysis, 2011, 22, 124-127.	2.4	38
13	The Alkaloid Profiles of <i>Lupinus sulphureus</i> . Journal of Agricultural and Food Chemistry, 2009, 57, 1646-1653.	5.2	37
14	The Biogeographical Distribution of Duncecap Larkspur (Delphinium occidentale) Chemotypes and Their Potential Toxicity. Journal of Chemical Ecology, 2009, 35, 643-652.	1.8	34
15	Lupine Induced "Crooked Calf Disease―in Washington and Oregon: Identification of the Alkaloid Profiles inLupinus sulfureus, Lupinus leucophyllus,andLupinus sericeus. Journal of Agricultural and Food Chemistry, 2007, 55, 10649-10655.	5.2	33
16	Influence of 7,8-methylenedioxylycoctonine–type alkaloids on the toxic effects associated with ingestion of tall larkspur (Delphinium spp) in cattle. American Journal of Veterinary Research, 2010, 71, 487-492.	0.6	33
17	Detection of toxic monofluoroacetate in Palicourea species. Toxicon, 2014, 80, 9-16.	1.6	33
18	Tremetone and Structurally Related Compounds in White Snakeroot (Ageratina altissima): A Plant Associated with Trembles and Milk Sickness. Journal of Agricultural and Food Chemistry, 2010, 58, 8560-8565.	5.2	32

#	Article	IF	CITATIONS
19	Comparison of the toxic effects of two duncecap larkspur (Delphinium occidentale) chemotypes in mice and cattle. American Journal of Veterinary Research, 2011, 72, 706-714.	0.6	31
20	Influence of Phenological Stage on Swainsonine and Endophyte Concentrations in Oxytropis sericea. Journal of Chemical Ecology, 2012, 38, 195-203.	1.8	31
21	Inâ€field volatile analysis employing a handâ€held portable GCâ€MS: emission profiles differentiate damaged and undamaged yellow starthistle flower heads. Phytochemical Analysis, 2015, 26, 395-403.	2.4	29
22	Quantitative PCR Method To Measure the Fungal Endophyte in Locoweeds. Journal of Agricultural and Food Chemistry, 2009, 57, 6050-6054.	5.2	28
23	Identification of Indole Diterpenes in <i>Ipomoea asarifolia</i> and <i>Ipomoea muelleri</i> , Plants Tremorgenic to Livestock. Journal of Agricultural and Food Chemistry, 2017, 65, 5266-5277.	5.2	25
24	Influence of endophyte genotype on swainsonine concentrations in Oxytropis sericea. Toxicon, 2013, 61, 105-111.	1.6	24
25	A swainsonine survey of North American Astragalus and Oxytropis taxa implicated as locoweeds. Toxicon, 2016, 118, 104-111.	1.6	23
26	Detection of swainsonine and isolation of the endophyte Undifilum from the major locoweeds in Inner Mongolia. Biochemical Systematics and Ecology, 2012, 45, 79-85.	1.3	21
27	A heritable symbiont and hostâ€associated factors shape fungal endophyte communities across spatial scales. Journal of Ecology, 2018, 106, 2274-2286.	4.0	19
28	A suite of rare microbes interacts with a dominant, heritable, fungal endophyte to influence plant trait expression. ISME Journal, 2021, 15, 2763-2778.	9.8	19
29	Tremorgenic Indole Diterpenes from <i>Ipomoea asarifolia</i> and <i>Ipomoea muelleri</i> and the Identification of 6,7-Dehydro-11-hydroxy-12,13-epoxyterpendole A. Journal of Natural Products, 2018, 81, 1682-1686.	3.0	16
30	Detection and localization of the endophyte <i>Undifilum oxytropis</i> in locoweed tissues. Botany, 2012, 90, 1229-1236.	1.0	15
31	Screening for swainsonine among South American Astragalus species. Toxicon, 2017, 139, 54-57.	1.6	15
32	Larkspur Poison Weed: 100 Years of Delphinium Research. Rangelands, 2009, 31, 22-27.	1.9	14
33	The relative toxicity of Delphinium stachydeum in mice and cattle. Toxicon, 2015, 99, 36-43.	1.6	14
34	Differences in Ponderosa Pine Isocupressic Acid Concentrations Across Space and Time. Rangelands, 2010, 32, 14-17.	1.9	13
35	Anagyrine desensitization of peripheral nicotinic acetylcholine receptors. A potential biomarker of quinolizidine alkaloid teratogenesis in cattle. Research in Veterinary Science, 2017, 115, 195-200.	1.9	13
36	RNAi-mediated down-regulation of a melanin polyketide synthase (pks1) gene in the fungus Slafractonia leguminicola. World Journal of Microbiology and Biotechnology, 2017, 33, 179.	3.6	13

#	Article	IF	CITATIONS
37	The alkaloid profiles of Sophora nuttalliana and Sophora stenophylla. Biochemical Systematics and Ecology, 2013, 48, 58-64.	1.3	12
38	Poisoning by Ipomoea asarifolia in lambs by the ingestion ofÂmilk from ewes that ingest the plant. Toxicon, 2014, 92, 129-132.	1.6	12
39	Molecular Characterization of a Fungal Ketide Synthase Gene Among Swainsonine-Producing Alternaria Species in the USA. Current Microbiology, 2020, 77, 2554-2563.	2.2	12
40	Determination of toxicity in rabbits and corresponding detection of monofluoroacetate in four Palicourea (Rubiaceae) species from the Amazonas state, Brazil. Toxicon, 2016, 109, 42-44.	1.6	11
41	A Gas Chromatography–Mass Spectrometry Method for the Detection and Quantitation of Monofluoroacetate in Plants Toxic to Livestock. Journal of Agricultural and Food Chemistry, 2017, 65, 1428-1433.	5.2	11
42	Chemical Analysis of Plants that Poison Livestock: Successes, Challenges, and Opportunities. Journal of Agricultural and Food Chemistry, 2018, 66, 3308-3314.	5.2	11
43	Detection of swainsonine and calystegines in Convolvulaceae species from the semiarid region of Pernambuco. Pesquisa Veterinaria Brasileira, 2018, 38, 2044-2051.	0.5	11
44	Biodiversity of Convolvulaceous species that contain ergot alkaloids, indole diterpene alkaloids, and swainsonine. Biochemical Systematics and Ecology, 2019, 86, 103921.	1.3	10
45	Detection of swainsonine-producing endophytes in Patagonian Astragalus species. Toxicon, 2019, 171, 1-6.	1.6	10
46	Evaluation of noninvasive specimens to diagnose livestock exposure to toxic larkspur (Delphinium) Tj ETQq0 0 0	rgBT /Ove 1.6	erlock 10 Tf 5 10
47	Elimination of the tremorgenic toxin of Ipomoea asarifolia by milk. Pesquisa Veterinaria Brasileira, 2014, 34, 1085-1088.	0.5	9
48	A Survey of Tremetone, Dehydrotremetone, and Structurally Related Compounds in <i>Isocoma</i> spp. (Goldenbush) in the Southwestern United States. Journal of Agricultural and Food Chemistry, 2015, 63, 872-879.	5.2	9
49	Comparison of the volatile emission profiles of ground almond and pistachio mummies: Part 2 – Critical changes in emission profiles as a result of increasing the water activity. Phytochemistry Letters, 2014, 8, 220-225.	1.2	8
50	Changes in swainsonine, calystegine, and nitrogen concentrations on an annual basis in Ipomoea carnea. Toxicon, 2015, 95, 62-66.	1.6	8
51	Biópsia hepática como método diagnóstico para intoxicação por plantas que contém swainsonina. Pesquisa Veterinaria Brasileira. 2016. 36. 373-377.	0.5	8

52 Studies in regard to the classification and putative toxicity of Fridericia japurensis (Arrabidaea) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 142

53	A Screen for Swainsonine in Select North American <i>Astragalus</i> Species. Chemistry and Biodiversity, 2017, 14, e1600364.	2.1	8
54	Two Delphinium ramosum chemotypes, their biogeographical distribution and potential toxicity. Biochemical Systematics and Ecology, 2017, 75, 1-9.	1.3	8

#	Article	IF	CITATIONS
55	A survey of swainsonine content in Swainsona species. Rangeland Journal, 2017, 39, 213.	0.9	8
56	Animal and plant factors which affect larkspur toxicosis in cattle: Sex, age, breed, and plant chemotype. Toxicon, 2019, 165, 31-39.	1.6	8
57	Localization of the Swainsonine-Producing Chaetothyriales Symbiont in the Seed and Shoot Apical Meristem in Its Host Ipomoea carnea. Microorganisms, 2022, 10, 545.	3.6	8
58	A Functional Genomics Approach for the Identification of Genes Involved in the Biosynthesis of the Allelochemical Sorgoleone. ACS Symposium Series, 2006, , 265-276.	0.5	7
59	Alkaloid Profiling as an Approach to Differentiate <i>Lupinus garfieldensis</i> , <i>Lupinus sabinianus</i> and <i>Lupinus sericeus</i> . Phytochemical Analysis, 2012, 23, 278-284.	2.4	7
60	Alkaloid profiles of Dermatophyllum arizonicum, Dermatophyllum gypsophilum, Dermatophyllum secundiflorum, Styphnolobium affine, and Styphnolobium japonicum previously classified as Sophora species. Biochemical Systematics and Ecology, 2013, 49, 87-93.	1.3	7
61	Conditioned food aversion to control poisoning by Ipomoea carnea subsp. fistulosa in goats. Ciencia Rural, 2014, 44, 1240-1245.	0.5	7
62	Adverse Effects of Larkspur (Delphinium spp.) on Cattle. Agriculture (Switzerland), 2015, 5, 456-474.	3.1	7
63	Pollen and vegetative secondary chemistry of three pollenâ€rewarding lupines. American Journal of Botany, 2019, 106, 643-655.	1.7	7
64	Analysis of rumen contents and ocular fluid for toxic alkaloids from goats and cows dosed larkspur (Delphinium barbeyi), lupine (Lupinus leucophyllus), and death camas (Zigadenus paniculatus). Toxicon, 2020, 176, 21-29.	1.6	7
65	Experimental poisoning by Niedenzuella stannea in cattle and corresponding detection of monofluoroacetate. Ciencia Rural, 2017, 47, .	0.5	7
66	Identification of the quinolizidine alkaloids in Sophora leachiana. Biochemical Systematics and Ecology, 2014, 54, 1-4.	1.3	6
67	An Evaluation of Hair, Oral Fluid, Earwax, and Nasal Mucus as Noninvasive Specimens to Determine Livestock Exposure to Teratogenic Lupine Species. Journal of Agricultural and Food Chemistry, 2019, 67, 43-49.	5.2	6
68	Genetic Relationships in the Toxin-Producing Fungal Endophyte, AlternariaÂoxytropis Using Polyketide Synthase and Non-Ribosomal Peptide Synthase Genes. Journal of Fungi (Basel, Switzerland), 2021, 7, 538.	3.5	6
69	Phylogenetic Comparison of Swainsonine Biosynthetic Gene Clusters among Fungi. Journal of Fungi (Basel, Switzerland), 2022, 8, 359.	3.5	6
70	Development of a PCR-Based Method for Detection of <i>Delphinium</i> Species in Poisoned Cattle. Journal of Agricultural and Food Chemistry, 2015, 63, 1220-1225.	5.2	5
71	Activation and Desensitization of Peripheral Muscle and Neuronal Nicotinic Acetylcholine Receptors by Selected, Naturally-Occurring Pyridine Alkaloids. Toxins, 2016, 8, 204.	3.4	5
72	Analysis of Swainsonine and Swainsonine <i>N</i> -Oxide as Trimethylsilyl Derivatives by Liquid Chromatography–Mass Spectrometry and Their Relative Occurrence in Plants Toxic to Livestock. Journal of Agricultural and Food Chemistry, 2016, 64, 6156-6162.	5.2	5

#	Article	IF	CITATIONS
73	Phylogenetic examination of two chemotypes of Lupinus leucophyllus. Biochemical Systematics and Ecology, 2016, 65, 57-65.	1.3	5
74	Poisoning in goats by the monofluoracetate-containing plant Palicourea aeneofusca (Rubiaceae). Toxicon, 2017, 135, 12-16.	1.6	5
75	Clinical and pathological comparison of Astragalus lentiginosus and Ipomoea carnea poisoning in goats. Toxicon, 2019, 171, 20-28.	1.6	5
76	Use of Herbarium Voucher Specimens To Investigate Phytochemical Composition in Poisonous Plant Research. Journal of Agricultural and Food Chemistry, 2021, 69, 4037-4047.	5.2	5
77	Ectopic growth of the Chaetothyriales fungal symbiont on Ipomoea carnea. Botany, 0, , 1-9.	1.0	5
78	Effects of Elevated CO2 on the Swainsonine Chemotypes of Astragalus lentiginosus and Astragalus mollissimus. Journal of Chemical Ecology, 2017, 43, 307-316.	1.8	4
79	Genetic Relationships among Different Chemotypes of <i>Lupinus sulphureus</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 1773-1783.	5.2	4
80	Fatal stagger poisoning by consumption of Festuca argentina (Speg.) Parodi in goats from Argentine Patagonia. Toxicon, 2020, 186, 191-197.	1.6	4
81	Feeding preferences of experienced and naÃ⁻ve goats and sheep for the toxic plant <italic>Ipomoea carnea</italic> subsp. <italic>fistulosa</italic> . Ciencia Rural, 2015, 45, 1634-1640.	0.5	3
82	Phylogenetic Patterns of Swainsonine Presence in Morning Glories. Frontiers in Microbiology, 2022, 13, 871148.	3.5	3
83	Evaluation of diazepam as a drug treatment for water hemlock (Cicuta species) poisoning in Spanish goats. Toxicon, 2022, 205, 79-83.	1.6	2
84	Molecular and Biochemical Characterization of Novel Polyketide Synthases Likely to Be Involved in the Biosynthesis of Sorgoleone. ACS Symposium Series, 2007, , 141-151.	0.5	1
85	Intoxicação experimental por Niedenzuella stannea (Malpighiaceae) em ovinos. Pesquisa Veterinaria Brasileira, 2017, 37, 681-685.	0.5	1
86	Toxicity of the swainsonine-containing plant Ipomoea carnea subsp. fistulosa for goats and sheep. Toxicon, 2021, 197, 40-47.	1.6	1
87	Herbaspirillum seropedicae as a degrading bacterium of monofluoroacetate: effects of its inoculation in goats by ingesting Amorimia septentrionalis and the concentrations of this compound in plants sprayed with the bacterium. Pesquisa Veterinaria Brasileira, 2019, 39, 802-806.	0.5	1
88	Mineral-salt supplementation to ameliorate larkspur poisoning in cattle. Journal of Animal Science, 2022, , .	0.5	1