
Gerard H Koppelman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1709235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. American Journal of Human Genetics, 2016, 98, 680-696.	6.2	717
2	Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nature Genetics, 2009, 41, 342-347.	21.4	709
3	A cellular census of human lungs identifies novel cell states in health and in asthma. Nature Medicine, 2019, 25, 1153-1163.	30.7	631
4	Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nature Genetics, 2015, 47, 1449-1456.	21.4	529
5	Allergic Rhinitis and its Impact on Asthma (ARIA): Achievements in 10 years and future needs. Journal of Allergy and Clinical Immunology, 2012, 130, 1049-1062.	2.9	486
6	Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma. New England Journal of Medicine, 2016, 374, 1842-1852.	27.0	456
7	Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nature Genetics, 2017, 49, 1752-1757.	21.4	432
8	Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nature Genetics, 2018, 50, 42-53.	21.4	426
9	Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. Journal of Allergy and Clinical Immunology, 2011, 128, 948-955.e3.	2.9	406
10	Gene-Gene Interaction in Asthma: IL4RA and IL13 in a Dutch Population with Asthma. American Journal of Human Genetics, 2002, 70, 230-236.	6.2	313
11	Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nature Genetics, 2012, 44, 187-192.	21.4	311
12	Comparison of childhood wheezing phenotypes in 2 birth cohorts: ALSPAC and PIAMA. Journal of Allergy and Clinical Immunology, 2011, 127, 1505-1512.e14.	2.9	306
13	New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nature Genetics, 2013, 45, 76-82.	21.4	293
14	Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Human Molecular Genetics, 2016, 25, 389-403.	2.9	275
15	Biologic Therapies for Severe Asthma. New England Journal of Medicine, 2022, 386, 157-171.	27.0	268
16	Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma. PLoS Genetics, 2012, 8, e1003029.	3.5	261
17	Comorbidity of eczema, rhinitis, and asthma in IgE-sensitised and non-IgE-sensitised children in MeDALL: a population-based cohort study. Lancet Respiratory Medicine,the, 2014, 2, 131-140.	10.7	250
18	Fine Mapping and Positional Candidate Studies Identify HLA-G as an Asthma Susceptibility Gene on Chromosome 6p21. American Journal of Human Genetics, 2005, 76, 349-357	6.2	238

#	Article	IF	CITATIONS
19	Association of a Promoter Polymorphism of the CD14 Gene and Atopy. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 965-969.	5.6	235
20	Identification and Association of Polymorphisms in the Interleukin-13 Gene with Asthma and Atopy in a Dutch Population. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 377-384.	2.9	229
21	Air Pollution and Respiratory Infections during Early Childhood: An Analysis of 10 European Birth Cohorts within the ESCAPE Project. Environmental Health Perspectives, 2014, 122, 107-113.	6.0	224
22	Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nature Genetics, 2010, 42, 430-435.	21.4	223
23	Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nature Genetics, 2013, 45, 902-906.	21.4	221
24	Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nature Genetics, 2021, 53, 1311-1321.	21.4	218
25	Rectal Organoids Enable Personalized Treatment of Cystic Fibrosis. Cell Reports, 2019, 26, 1701-1708.e3.	6.4	214
26	Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Human Molecular Genetics, 2017, 26, 4067-4085.	2.9	211
27	Association of a disintegrin and metalloprotease 33 (ADAM33) gene with asthma in ethnically diverse populations. Journal of Allergy and Clinical Immunology, 2003, 112, 717-722.	2.9	190
28	Polymorphisms of the <i>ADAM33</i> gene are associated with accelerated lung function decline in asthma. Clinical and Experimental Allergy, 2004, 34, 757-760.	2.9	189
29	Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity. Human Molecular Genetics, 2013, 22, 2735-2747.	2.9	188
30	Exposure to air pollution and development of asthma and rhinoconjunctivitis throughout childhood and adolescence: a population-based birth cohort study. Lancet Respiratory Medicine,the, 2015, 3, 933-942.	10.7	187
31	Genetic Architectures of Childhood- and Adult-Onset Asthma Are Partly Distinct. American Journal of Human Genetics, 2019, 104, 665-684.	6.2	183
32	The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 31-41.	2.9	178
33	Epigenome-Wide Meta-Analysis of Methylation in Children Related to Prenatal NO ₂ Air Pollution Exposure. Environmental Health Perspectives, 2017, 125, 104-110.	6.0	176
34	Genome-wide search for atopy susceptibility genes in Dutch families with asthma. Journal of Allergy and Clinical Immunology, 2002, 109, 498-506.	2.9	173
35	Decoding asthma: Translating genetic variation in IL33 and IL1RL1 into disease pathophysiology. Journal of Allergy and Clinical Immunology, 2013, 131, 856-865.e9.	2.9	171
36	DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respiratory Medicine,the, 2018, 6, 379-388.	10.7	170

#	Article	IF	CITATIONS
37	Lung function decline in asthma: association with inhaled corticosteroids, smoking and sex. Thorax, 2006, 61, 105-110.	5.6	169
38	Predicting the long-term prognosis of children with symptoms suggestive of asthma at preschool age. Journal of Allergy and Clinical Immunology, 2009, 124, 903-910.e7.	2.9	162
39	Association of IL33–IL-1 receptor–like 1 (IL1RL1) pathway polymorphisms with wheezing phenotypes and asthma in childhood. Journal of Allergy and Clinical Immunology, 2014, 134, 170-177.	2.9	162
40	MACVIA-ARIA Sentinel NetworK for allergic rhinitis (MASK-rhinitis): the new generation guideline implementation. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1372-1392.	5.7	160
41	Major Genes Regulating Total Serum Immunoglobulin E Levels in Families with Asthma. American Journal of Human Genetics, 2000, 67, 1163-1173.	6.2	156
42	Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nature Communications, 2015, 6, 8804.	12.8	148
43	Epigenome-wide meta-analysis of DNA methylation and childhood asthma. Journal of Allergy and Clinical Immunology, 2019, 143, 2062-2074.	2.9	147
44	DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. Lancet Respiratory Medicine,the, 2019, 7, 336-346.	10.7	147
45	MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 596-604.	5.7	146
46	Mechanisms of the Development of Allergy (MeDALL): Introducing novel concepts in allergy phenotypes. Journal of Allergy and Clinical Immunology, 2017, 139, 388-399.	2.9	145
47	Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nature Communications, 2019, 10, 1893.	12.8	140
48	Identification of atopic dermatitis subgroups in children from 2 longitudinal birth cohorts. Journal of Allergy and Clinical Immunology, 2018, 141, 964-971.	2.9	136
49	Common variants at 12q15 and 12q24 are associated with infant head circumference. Nature Genetics, 2012, 44, 532-538.	21.4	130
50	Cohort profile: The Prevention and Incidence of Asthma and Mite Allergy (PIAMA) birth cohort. International Journal of Epidemiology, 2014, 43, 527-535.	1.9	129
51	MACVIA clinical decision algorithm in adolescents and adults with allergic rhinitis. Journal of Allergy and Clinical Immunology, 2016, 138, 367-374.e2.	2.9	128
52	Filaggrin mutations in the onset of eczema, sensitization, asthma, hay fever and the interaction with cat exposure. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 1758-1765.	5.7	127
53	A sequence variant on 17q21 is associated with age at onset and severity of asthma. European Journal of Human Genetics, 2010, 18, 902-908.	2.8	126
54	A rare IL33 loss-of-function mutation reduces blood eosinophil counts and protects from asthma. PLoS Genetics, 2017, 13, e1006659.	3.5	126

#	Article	IF	CITATIONS
55	ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle. Clinical and Translational Allergy, 2016, 6, 47.	3.2	121
56	Identification of <i>PCDH1</i> as a Novel Susceptibility Gene for Bronchial Hyperresponsiveness. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 929-935.	5.6	120
57	Genome screen for asthma and bronchial hyperresponsiveness: Interactions with passive smoke exposure. Journal of Allergy and Clinical Immunology, 2005, 115, 1169-1175.	2.9	118
58	Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related air pollution on childhood asthma. Thorax, 2010, 65, 690-697.	5.6	116
59	Traffic-related air pollution, preterm birth and term birth weight in the PIAMA birth cohort study. Environmental Research, 2011, 111, 125-135.	7.5	115
60	Particulate Matter Composition and Respiratory Health. Epidemiology, 2015, 26, 300-309.	2.7	113
61	Predicting who will have asthma at school age among preschool children. Journal of Allergy and Clinical Immunology, 2012, 130, 325-331.	2.9	112
62	Prenatal Particulate Air Pollution and DNA Methylation in Newborns: An Epigenome-Wide Meta-Analysis. Environmental Health Perspectives, 2019, 127, 57012.	6.0	111
63	A novel common variant in DCST2 is associated with length in early life and height in adulthood. Human Molecular Genetics, 2015, 24, 1155-1168.	2.9	109
64	Genome-Wide Association Analysis in Asthma Subjects Identifies SPATS2L as a Novel Bronchodilator Response Gene. PLoS Genetics, 2012, 8, e1002824.	3.5	107
65	Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1373-1383.	5.6	107
66	Residential greenness is differentially associated with childhood allergic rhinitis and aeroallergen sensitization in seven birth cohorts. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1461-1471.	5.7	106
67	Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. International Journal of Epidemiology, 2018, 47, 22-23u.	1.9	105
68	Fine mapping of an IgE-controlling gene on chromosome 2q: Analysis of CTLA4 and CD28. Journal of Allergy and Clinical Immunology, 2002, 110, 743-751.	2.9	98
69	The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respiratory Medicine,the, 2020, 8, 1045-1056.	10.7	98
70	Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits. PLoS Genetics, 2020, 16, e1008718.	3.5	95
71	Genome-wide association study of lung function decline in adults with and without asthma. Journal of Allergy and Clinical Immunology, 2012, 129, 1218-1228.	2.9	94
72	Traffic-related air pollution and noise and children's blood pressure: Results from the PIAMA birth cohort study. European Journal of Preventive Cardiology, 2015, 22, 4-12.	1.8	91

#	Article	IF	CITATIONS
73	Asthma and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1588-1594.	5.6	90
74	Are allergic multimorbidities and IgE polysensitization associated with the persistence or reâ€occurrence of foetal type 2 signalling? The <scp>M</scp> e <scp>DALL</scp> hypothesis. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1062-1078.	5.7	88
75	Communication of biobanks' research results: What do (potential) participants want?. American Journal of Medical Genetics, Part A, 2010, 152A, 2482-2492.	1.2	86
76	Prediction of asthma in symptomatic preschool children using exhaled nitric oxide, Rint and specific IgE. Thorax, 2010, 65, 801-807.	5.6	83
77	Severe Chronic Allergic (and Related) Diseases: A Uniform Approach – A MeDALL – GA ² LEN – ARIA Position Paper. International Archives of Allergy and Immunology, 2012, 158, 216-231.	2.1	83
78	The importance of genetic influences in asthma. European Respiratory Journal, 1999, 14, 1210-1227.	6.7	82
79	Interleukin 13 and Interleukin 4 Receptor-α Polymorphisms in Rhinitis and Asthma. International Archives of Allergy and Immunology, 2010, 153, 259-267.	2.1	81
80	Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age. Genome Medicine, 2020, 12, 25.	8.2	81
81	Phenotyping asthma, rhinitis and eczema in <scp>M</scp> e <scp>DALL</scp> populationâ€based birth cohorts: an allergic comorbidity cluster. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 973-984.	5.7	79
82	Maternal use of folic acid supplements during pregnancy, and childhood respiratory health and atopy. European Respiratory Journal, 2012, 39, 1468-1474.	6.7	78
83	Paving the way of systems biology and precision medicine in allergic diseases: the Me <scp>DALL</scp> success story. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1513-1525.	5.7	77
84	Meta-analysis of air pollution exposure association withÂallergic sensitization in European birth cohorts. Journal of Allergy and Clinical Immunology, 2014, 133, 767-776.e7.	2.9	76
85	Association of IL1RL1, IL18R1, and IL18RAP gene cluster polymorphisms with asthma and atopy. Journal of Allergy and Clinical Immunology, 2008, 122, 651-654.e8.	2.9	75
86	PLAUR polymorphisms are associated with asthma, PLAUR levels, and lung function decline. Journal of Allergy and Clinical Immunology, 2009, 123, 1391-1400.e17.	2.9	75
87	Arginase 1 and arginase 2 variations associate with asthma, asthma severity and β2 agonist and steroid response. Pharmacogenetics and Genomics, 2010, 20, 179-186.	1.5	75
88	TLRâ€related pathway analysis: novel gene–gene interactions in the development of asthma and atopy. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 199-207.	5.7	75
89	Understanding the complexity of IgE-related phenotypes from childhood to young adulthood: A Mechanisms of the Development of Allergy (MeDALL) Seminar. Journal of Allergy and Clinical Immunology, 2012, 129, 943-954.e4.	2.9	68
90	Genomeâ€wide association study of body mass index in 23Â000 individuals with and without asthma. Clinical and Experimental Allergy, 2013, 43, 463-474.	2.9	68

#	Article	IF	CITATIONS
91	<i>GSTP1</i> and <i>TNF</i> Gene Variants and Associations between Air Pollution and Incident Childhood Asthma: The Traffic, Asthma and Genetics (TAG) Study. Environmental Health Perspectives, 2014, 122, 418-424.	6.0	67
92	Interleukin 13, CD14, pet and tobacco smoke influence atopy in three Dutch cohorts: the allergenic study. European Respiratory Journal, 2008, 32, 593-602.	6.7	66
93	Variants of the FADS1 FADS2 Gene Cluster, Blood Levels of Polyunsaturated Fatty Acids and Eczema in Children within the First 2 Years of Life. PLoS ONE, 2010, 5, e13261.	2.5	65
94	Genomewide Screen for Pulmonary Function in 200 Families Ascertained for Asthma. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 446-452.	5.6	64
95	Meta-analysis of genome-wide linkage studies of asthma and related traits. Respiratory Research, 2008, 9, 38.	3.6	64
96	Serum micronutrient concentrations and childhood asthma: the PIAMA birth cohort study. Pediatric Allergy and Immunology, 2011, 22, 784-793.	2.6	64
97	Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking. Epigenomics, 2019, 11, 1487-1500.	2.1	64
98	The associations of air pollution, traffic noise and green space with overweight throughout childhood: The PIAMA birth cohort study. Environmental Research, 2019, 169, 348-356.	7.5	64
99	The central role of IL-33/IL-1RL1 pathway in asthma: From pathogenesis to intervention. , 2021, 225, 107847.		64
100	Major Recessive Gene(s) with Considerable Residual Polygenic Effect Regulating Adult Height: Confirmation of Genomewide Scan Results for Chromosomes 6, 9, and 12. American Journal of Human Genetics, 2002, 71, 646-650.	6.2	63
101	Interleukin-1 receptor–like 1 polymorphisms are associated with serum IL1RL1-a, eosinophils, and asthma in childhood. Journal of Allergy and Clinical Immunology, 2011, 127, 750-756.e5.	2.9	63
102	Shared genetic variants suggest common pathways in allergy and autoimmune diseases. Journal of Allergy and Clinical Immunology, 2017, 140, 771-781.	2.9	63
103	Prediction of the severity of allergic reactions to foods. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1532-1540.	5.7	63
104	Revisiting the Dutch hypothesis. Journal of Allergy and Clinical Immunology, 2015, 136, 521-529.	2.9	62
105	Association of season of birth with <scp>DNA</scp> methylation and allergic disease. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1314-1324.	5.7	61
106	Gene by environment interaction in asthma. Current Allergy and Asthma Reports, 2006, 6, 103-111.	5.3	59
107	The development of socio-economic health differences in childhood: results of the Dutch longitudinal PIAMA birth cohort. BMC Public Health, 2011, 11, 225.	2.9	59
108	Elemental Composition of Particulate Matter and the Association with Lung Function. Epidemiology, 2014, 25, 648-657.	2.7	59

#	Article	IF	CITATIONS
109	Transient early wheeze and lung function in early childhood associated with chronic obstructive pulmonary disease genes. Journal of Allergy and Clinical Immunology, 2014, 133, 68-76.e4.	2.9	59
110	Air pollution exposure and lung function until age 16 years: the PIAMA birth cohort study. European Respiratory Journal, 2018, 52, 1800218.	6.7	59
111	Nuclear Receptor Nur77 Attenuates Airway Inflammation in Mice by Suppressing NF-κB Activity in Lung Epithelial Cells. Journal of Immunology, 2015, 195, 1388-1398.	0.8	58
112	Genome-wide association study and meta-analysis in multiple populations identifies new loci for peanut allergy and establishes C11orf30/EMSY as a genetic risk factor for food allergy. Journal of Allergy and Clinical Immunology, 2018, 141, 991-1001.	2.9	57
113	The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Developmental Cell, 2019, 49, 10-29.	7.0	57
114	Nasal DNA methylation profiling of asthma and rhinitis. Journal of Allergy and Clinical Immunology, 2020, 145, 1655-1663.	2.9	56
115	A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3248-3260.	5.7	55
116	Meta-analysis of 20 genome-wide linkage studies evidenced new regions linked to asthma and atopy. European Journal of Human Genetics, 2010, 18, 700-706.	2.8	54
117	Perinatal risk factors for wheezing phenotypes in the first 8Âyears of life. Clinical and Experimental Allergy, 2013, 43, 1395-1405.	2.9	54
118	Predicting asthma in preschool children with asthma-like symptoms: Validating and updating the PIAMA risk score. Journal of Allergy and Clinical Immunology, 2013, 132, 1303-1310.e6.	2.9	53
119	beta2 adrenoceptor promoter polymorphisms: extended haplotypes and functional effects in peripheral blood mononuclear cells. Thorax, 2002, 57, 61-66.	5.6	49
120	Smoke exposure interacts with <i>ADAM33</i> polymorphisms in the development of lung function and hyperresponsiveness. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 898-904.	5.7	49
121	Gene-gene interaction in regulatory T–cell function in atopy and asthma development in childhood. Journal of Allergy and Clinical Immunology, 2010, 126, 338-346.e10.	2.9	49
122	Common genes underlying asthma and COPD? Genome-wide analysis on the Dutch hypothesis. European Respiratory Journal, 2014, 44, 860-872.	6.7	49
123	The emerging landscape of dynamic DNA methylation in early childhood. BMC Genomics, 2017, 18, 25.	2.8	49
124	Eleven loci with new reproducible genetic associations with allergic disease risk. Journal of Allergy and Clinical Immunology, 2019, 143, 691-699.	2.9	49
125	Polymorphisms in SPINK5 are not associated with asthma in a Dutch population. Journal of Allergy and Clinical Immunology, 2005, 115, 486-492.	2.9	48
126	Arg16 <i>ADRB2</i> genotype increases the risk of asthma exacerbation in children with a reported use of long-acting β ₂ -agonists: results of the pacman cohort. Pharmacogenomics, 2013, 14, 1965-1971.	1.3	48

#	Article	IF	CITATIONS
127	Associations between particulate matter composition and childhood blood pressure — The PIAMA study. Environment International, 2015, 84, 1-6.	10.0	48
128	Associations of sugar-containing beverages with asthma prevalence in 11-year-old children: the PIAMA birth cohort. European Journal of Clinical Nutrition, 2015, 69, 303-308.	2.9	48
129	Maternal Smoking during Pregnancy and Early Childhood and Development of Asthma and Rhinoconjunctivitis – a MeDALL Project. Environmental Health Perspectives, 2018, 126, 047005.	6.0	48
130	Air pollution and the development of asthma from birth until young adulthood. European Respiratory Journal, 2020, 56, 2000147.	6.7	48
131	Association of Interacting Genes in the Toll-Like Receptor Signaling Pathway and the Antibody Response to Pertussis Vaccination. PLoS ONE, 2008, 3, e3665.	2.5	47
132	Novel childhood asthma genes interact with in utero and early-life tobacco smoke exposure. Journal of Allergy and Clinical Immunology, 2014, 133, 885-888.	2.9	47
133	Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5). Clinical and Translational Allergy, 2016, 6, 29.	3.2	47
134	Combining genomewide association study and lung <scp>eQTL</scp> analysis provides evidence for novel genes associated with asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1712-1720.	5.7	47
135	Building bridges for innovation in ageing: Synergies between action groups of the EIP on AHA. Journal of Nutrition, Health and Aging, 2017, 21, 92-104.	3.3	47
136	Developmental determinants in non-communicable chronic diseases and ageing. Thorax, 2015, 70, 595-597.	5.6	45
137	Uncontrolled asthma at age 8: The importance of parental perception towards medication. Pediatric Allergy and Immunology, 2011, 22, 462-468.	2.6	43
138	Time in bed, sleep quality and associations with cardiometabolic markers in children: the Prevention and Incidence of Asthma and Mite Allergy birth cohort study. Journal of Sleep Research, 2014, 23, 3-12.	3.2	41
139	<i><scp>TRPA</scp>1</i> gene polymorphisms and childhood asthma. Pediatric Allergy and Immunology, 2017, 28, 191-198.	2.6	41
140	DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies. Genome Medicine, 2020, 12, 105.	8.2	41
141	Genetics of onset of asthma. Current Opinion in Allergy and Clinical Immunology, 2013, 13, 193-202.	2.3	40
142	Early introduction of complementary foods and childhood overweight in breastfed and formula-fed infants in the Netherlands: the PIAMA birth cohort study. European Journal of Nutrition, 2018, 57, 1985-1993.	3.9	40
143	Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study. European Respiratory Journal, 2020, 56, 2000217.	6.7	40
144	Xâ€chromosome <i>Forkhead Box P3</i> polymorphisms associate with atopy in girls in three Dutch birth cohorts. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 865-874.	5.7	39

#	Article	IF	CITATIONS
145	Interaction of a 17q12 variant with both fetal and infant smoke exposure in the development of childhood asthmaâ€kike symptoms. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 767-774.	5.7	39
146	Difference in the Breast Milk Proteome between Allergic and Non-Allergic Mothers. PLoS ONE, 2015, 10, e0122234.	2.5	39
147	The role of epigenetics in the development of childhood asthma. Expert Review of Clinical Immunology, 2019, 15, 1287-1302.	3.0	39
148	Identifying novel genes contributing to asthma pathogenesis. Current Opinion in Allergy and Clinical Immunology, 2007, 7, 69-74.	2.3	37
149	Recent advances in the epigenetics and genomics of asthma. Current Opinion in Allergy and Clinical Immunology, 2011, 11, 414-419.	2.3	35
150	E-cadherin gene polymorphisms in asthma patients using inhaled corticosteroids. European Respiratory Journal, 2011, 38, 1044-1052.	6.7	35
151	Polymorphisms in the TLR6 gene associated with the inverse association between childhood acute lymphoblastic leukemia and atopic disease. Leukemia, 2012, 26, 1203-1210.	7.2	35
152	Childhood wheezing phenotypes and <scp><scp>FeNO</scp></scp> in atopic children at ageÂ8. Clinical and Experimental Allergy, 2012, 42, 1329-1336.	2.9	35
153	IL1RL1 Gene Variants and Nasopharyngeal IL1RL-a Levels Are Associated with Severe RSV Bronchiolitis: A Multicenter Cohort Study. PLoS ONE, 2012, 7, e34364.	2.5	35
154	Identification of Polymorphisms in the Human Glucocorticoid Receptor Gene (NR3C1) in a Multi-racial Asthma Case and Control Screening Panel. DNA Sequence, 2004, 15, 167-173.	0.7	34
155	Characterization of protocadherinâ€1 expression in primary bronchial epithelial cells: association with epithelial cell differentiation. FASEB Journal, 2012, 26, 439-448.	0.5	34
156	Pharmacogenetics of inhaled longâ€acting beta2â€agonists in asthma: A systematic review. Pediatric Allergy and Immunology, 2018, 29, 705-714.	2.6	34
157	The pharmacokinetics of antibiotics in cystic fibrosis. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 53-68.	3.3	34
158	Pharmacogenetics of anti-inflammatory treatment in children with asthma: rationale and design of the PACMAN cohort. Pharmacogenomics, 2009, 10, 1351-1361.	1.3	33
159	Fraction of exhaled nitric oxide values in childhood are associated with 17q11.2-q12 and 17q12-q21 variants. Journal of Allergy and Clinical Immunology, 2014, 134, 46-55.	2.9	33
160	Computational analysis of multimorbidity between asthma, eczema and rhinitis. PLoS ONE, 2017, 12, e0179125.	2.5	33
161	Atopic dermatitis: Interaction between genetic variants of <i><scp>GSTP</scp>1</i> , <i><scp>TNF</scp></i> , <i><scp>TLR</scp>2</i> , and <i><scp>TLR</scp>4</i> and air pollution in early life. Pediatric Allergy and Immunology, 2018, 29, 596-605.	2.6	33
162	Intestinal lactobacilli and the DC-SIGN gene for their recognition by dendritic cells play a role in the aetiology of allergic manifestations. Microbiology (United Kingdom), 2010, 156, 3298-3305.	1.8	32

#	Article	IF	CITATIONS
163	Host-microbial interactions in childhood atopy: Toll-like receptor 4 (TLR4), CD14, and fecal Escherichia coli. Journal of Allergy and Clinical Immunology, 2010, 125, 231-236.e5.	2.9	32
164	Nasal epithelium as a proxy for bronchial epithelium for smoking-induced gene expression and expression Quantitative Trait Loci. Journal of Allergy and Clinical Immunology, 2018, 142, 314-317.e15.	2.9	32
165	Early-life antibiotic use and risk of asthma and eczema: results of a discordant twin study. European Respiratory Journal, 2020, 55, 1902021.	6.7	32
166	Pharmacogenomics and outcome of asthma: No clinical application for long-term steroid effects by CRHR1 polymorphisms. Journal of Allergy and Clinical Immunology, 2008, 121, 1510-1513.	2.9	31
167	Breast milk fatty acid composition has a long-term effect on the risk of asthma, eczema, and sensitization. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1468-1476.	5.7	31
168	The challenge of measuring <scp>IL</scp> â€33 in serum using commercial <scp>ELISA</scp> : lessons from asthma. Clinical and Experimental Allergy, 2016, 46, 884-887.	2.9	31
169	Contact dermatitis in the construction industry: the role of filaggrin loss-of-function mutations. British Journal of Dermatology, 2016, 174, 348-355.	1.5	30
170	Rationale and design of the multiethnic Pharmacogenomics in Childhood Asthma consortium. Pharmacogenomics, 2017, 18, 931-943.	1.3	30
171	Air pollution and IgE sensitization in 4 European birth cohorts—the MeDALL project. Journal of Allergy and Clinical Immunology, 2021, 147, 713-722.	2.9	30
172	Asthma symptoms and medication in the PIAMA birth cohort: Evidence for under and overtreatment. Pediatric Allergy and Immunology, 2011, 22, 652-659.	2.6	29
173	Genomeâ€wide protein QTL mapping identifies human plasma kallikrein as a postâ€translational regulator of serum uPAR levels. FASEB Journal, 2014, 28, 923-934.	0.5	29
174	Effect of long-term corticosteroid treatment on microRNA and gene-expression profiles in COPD. European Respiratory Journal, 2019, 53, 1801202.	6.7	29
175	Differential DNA methylation in bronchial biopsies between persistent asthma and asthma in remission. European Respiratory Journal, 2020, 55, 1901280.	6.7	29
176	Phenotypic and functional translation of IL33 genetics in asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 144-157.	2.9	29
177	Integration of Mouse and Human Genome-Wide Association Data Identifies KCNIP4 as an Asthma Gene. PLoS ONE, 2013, 8, e56179.	2.5	28
178	Pharmacogenetic analysis of <i>GLCCI1</i> in three north European pediatric asthma populations with a reported use of inhaled corticosteroids. Pharmacogenomics, 2014, 15, 799-806.	1.3	28
179	Asthma, bronchial hyperresponsiveness, allergy and lung function development until early adulthood: A systematic literature review. Pediatric Allergy and Immunology, 2021, 32, 1238-1254.	2.6	28
180	Eosinophil Count Is a Common Factor for Complex Metabolic and Pulmonary Traits and Diseases: The LifeLines Cohort Study. PLoS ONE, 2016, 11, e0168480.	2.5	28

#	Article	IF	CITATIONS
181	Exploring the role of polymorphisms in ficolin genes in respiratory tract infections in children. Clinical and Experimental Immunology, 2009, 155, 433-440.	2.6	27
182	Evidence of a genetic contribution to lung function decline in asthma. Journal of Allergy and Clinical Immunology, 2011, 128, 479-484.	2.9	27
183	Loss-of-function variants of the filaggrin gene are associated with clinical reactivity to foods. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 461-464.	5.7	27
184	Pharmacogenetics of asthma. Current Opinion in Pulmonary Medicine, 2017, 23, 12-20.	2.6	27
185	Cenetic and epigenetic regulation of YKL-40 in childhood. Journal of Allergy and Clinical Immunology, 2018, 141, 1105-1114.	2.9	27
186	Age-of-onset information helps identify 76 genetic variants associated with allergic disease. PLoS Genetics, 2020, 16, e1008725.	3.5	27
187	Phenotype Definition, Age, and Gender in the Genetics of Asthma and Atopy. Immunology and Allergy Clinics of North America, 2005, 25, 621-639.	1.9	26
188	Drugs during pregnancy and breast feeding in women diagnosed with Cystic Fibrosis - An update. Journal of Cystic Fibrosis, 2018, 17, 17-25.	0.7	26
189	Phenotypic and functional translation of IL1RL1 locus polymorphisms in lung tissue and asthmatic airway epithelium. JCI Insight, 2020, 5, .	5.0	26
190	Deletion of Late Cornified Envelope 3B and 3C Genes Is Not Associated with Atopic Dermatitis. Journal of Investigative Dermatology, 2010, 130, 2057-2061.	0.7	25
191	Endotoxin exposure, CD14 and wheeze among farmers: a gene-environment interaction. Occupational and Environmental Medicine, 2011, 68, 826-831.	2.8	25
192	TGF-β1 polymorphisms and asthma severity, airway inflammation, and remodeling. Journal of Allergy and Clinical Immunology, 2013, 131, 582-585.	2.9	25
193	Adult onset asthma and interaction between genes and active tobacco smoking: The GABRIEL consortium. PLoS ONE, 2017, 12, e0172716.	2.5	25
194	Susceptibility to Chronic Mucus Hypersecretion, a Genome Wide Association Study. PLoS ONE, 2014, 9, e91621.	2.5	25
195	Genetic testing for asthma. European Respiratory Journal, 2008, 32, 775-782.	6.7	24
196	SERPINE1 -675 4G/5G polymorphism is associated with asthma severity and inhaled corticosteroid response. European Respiratory Journal, 2011, 38, 1036-1043.	6.7	24
197	Exhaled NO is a poor marker of asthma control in children with a reported use of asthma medication: a pharmacyâ€based study. Pediatric Allergy and Immunology, 2012, 23, 529-536.	2.6	24
198	Association of <i>STAT6</i> gene variants with food allergy diagnosed by doubleâ€blind placeboâ€controlled food challenges. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1337-1341.	5.7	24

#	Article	IF	CITATIONS
199	Genetic regulation of <i>IL1RL1</i> methylation and IL1RL1-a protein levels in asthma. European Respiratory Journal, 2018, 51, 1701377.	6.7	24
200	Shared DNA methylation signatures in childhood allergy: The MeDALL study. Journal of Allergy and Clinical Immunology, 2021, 147, 1031-1040.	2.9	24
201	Functional Restoration of CFTR Nonsense Mutations in Intestinal Organoids. Journal of Cystic Fibrosis, 2022, 21, 246-253.	0.7	24
202	Association of polymorphisms in the TLR4 gene with the risk of developing neutropenia in children with leukemia. Leukemia, 2011, 25, 995-1000.	7.2	23
203	BMI and Waist Circumference; Cross-Sectional and Prospective Associations with Blood Pressure and Cholesterol in 12-Year-Olds. PLoS ONE, 2012, 7, e51801.	2.5	22
204	BMI, waist circumference at 8 and 12Âyears of age and FVC and FEV1 at 12Âyears of age; the PIAMA birth cohort study. BMC Pulmonary Medicine, 2015, 15, 39.	2.0	22
205	What do we need to transfer pharmacogenetics findings into the clinic?. Pharmacogenomics, 2018, 19, 589-592.	1.3	22
206	Exposure to violence, chronic stress, nasal DNA methylation, and atopic asthma in children. Pediatric Pulmonology, 2021, 56, 1896-1905.	2.0	22
207	Gene expression analysis predicts insect venom anaphylaxis in indolent systemic mastocytosis. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 648-657.	5.7	21
208	Protocadherin-1 binds to SMAD3 and suppresses TGF-β1-induced gene transcription. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L725-L735.	2.9	21
209	Doublesex and mab-3 related transcription factor 1 (DMRT1) is a sex-specific genetic determinant of childhood-onset asthma and is expressed in testis and macrophages. Journal of Allergy and Clinical Immunology, 2016, 138, 421-431.	2.9	21
210	A Canadian genome-wide association study and meta-analysis confirm HLA as a risk factor for peanut allergy independent of asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1513-1516.	2.9	21
211	BMI Development of Normal Weight and Overweight Children in the PIAMA Study. PLoS ONE, 2012, 7, e39517.	2.5	21
212	Successful grant writing. Paediatric Respiratory Reviews, 2012, 13, 63-66.	1.8	20
213	Integrative genomic analysis identifies a role for intercellular adhesion molecule 1 in childhood asthma. Pediatric Allergy and Immunology, 2014, 25, 166-172.	2.6	20
214	Genetics and Genomics of Longitudinal Lung Function Patterns in Individuals with Asthma. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1465-1474.	5.6	20
215	Integration of gene expression and DNA methylation identifies epigenetically controlled modules related to PM2.5 exposure. Environment International, 2021, 146, 106248.	10.0	20
216	Early-life antibiotic use and risk of attention-deficit hyperactivity disorder and autism spectrumÂdisorder: results of a discordant twinÂstudy. International Journal of Epidemiology, 2021, 50, 475-484.	1.9	20

#	Article	IF	CITATIONS
217	Epigenome-Wide DNA Methylation and Pesticide Use in the Agricultural Lung Health Study. Environmental Health Perspectives, 2021, 129, 97008.	6.0	20
218	Toll-Like Receptor 4 Polymorphism Associated with the Response to Whole-Cell Pertussis Vaccination in Children from the KOALA Study. Vaccine Journal, 2007, 14, 1377-1380.	3.1	19
219	Toll-like receptors and microbial exposure: gene-gene and gene-environment interaction in the development of atopy. European Respiratory Journal, 2011, 38, 833-840.	6.7	19
220	Blood Pressure in 12-Year–Old Children Is Associated With Fatty Acid Composition of Human Milk. Hypertension, 2012, 60, 1055-1060.	2.7	19
221	<i>ST13</i> polymorphisms and their effect on exacerbations in steroidâ€ŧreated asthmatic children and young adults. Clinical and Experimental Allergy, 2015, 45, 1051-1059.	2.9	19
222	The need for precision medicine clinical trials in childhood asthma: rationale and design of the PUFFIN trial. Pharmacogenomics, 2017, 18, 393-401.	1.3	19
223	Childhood factors associated with complete and clinical asthma remissionÂat 25 and 49â€years. European Respiratory Journal, 2017, 49, 1601974.	6.7	19
224	Associations of residential exposure to agricultural pesticides with asthma prevalence in adolescence: The PIAMA birth cohort. Environment International, 2018, 121, 435-442.	10.0	19
225	Early-Life Determinants of Total and HDL Cholesterol Concentrations in 8-Year-Old Children; The PIAMA Birth Cohort Study. PLoS ONE, 2011, 6, e25533.	2.5	19
226	The genetics of CD14 in allergic disease. Current Opinion in Allergy and Clinical Immunology, 2003, 3, 347-352.	2.3	18
227	Genetics of Asthma: Where Are We and Where Do We Go?. Proceedings of the American Thoracic Society, 2009, 6, 283-287.	3.5	18
228	Diet, Screen Time, Physical Activity, and Childhood Overweight in the General Population and in High Risk Subgroups: Prospective Analyses in the PIAMA Birth Cohort. Journal of Obesity, 2010, 2010, 1-9.	2.7	18
229	Overweight and School Performance Among Primary School Children: The PIAMA Birth Cohort Study. Obesity, 2012, 20, 590-596.	3.0	18
230	Maternal Gestational and Postdelivery Weight Gain and Child Weight. Pediatrics, 2015, 136, e1294-e1301.	2.1	18
231	Airway and peripheral urokinase plasminogen activator receptor is elevated in asthma, and identifies a severe, nonatopic subset of patients. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 473-482.	5.7	18
232	DNA Methylation Levels in Mononuclear Leukocytes from the Mother and Her Child Are Associated with IgE Sensitization to Allergens in Early Life. International Journal of Molecular Sciences, 2021, 22, 801.	4.1	18
233	An ADAM33 Polymorphism Associates with Progression of Preschool Wheeze into Childhood Asthma: A Prospective Case-Control Study with Replication in a Birth Cohort Study. PLoS ONE, 2015, 10, e0119349.	2.5	18
234	Novel genes and insights in complete asthma remission: A genomeâ€wide association study on clinical and complete asthma remission. Clinical and Experimental Allergy, 2018, 48, 1286-1296.	2.9	17

#	Article	IF	CITATIONS
235	Cholinergic neuroplasticity in asthma driven by TrkB signaling. FASEB Journal, 2020, 34, 7703-7717.	0.5	17
236	Rare variant analysis in eczema identifies exonic variants in DUSP1, NOTCH4 and SLC9A4. Nature Communications, 2021, 12, 6618.	12.8	17
237	High agreement between parental reported inhaled corticosteroid use and pharmacy prescription data. Pharmacoepidemiology and Drug Safety, 2010, 19, 1199-1203.	1.9	16
238	Interaction of T-cell and antigen presenting cell co-stimulatory genes in childhood IgE. European Respiratory Journal, 2010, 35, 54-63.	6.7	16
239	Limited agreement between current and longâ€ŧerm asthma control in children: the PACMAN cohort study. Pediatric Allergy and Immunology, 2011, 22, 776-783.	2.6	16
240	Evidence of association between interferon regulatory factor 5 gene polymorphisms and asthma. Gene, 2012, 504, 220-225.	2.2	16
241	VEGFA variants are associated with pre-school lung function, but not neonatal lung function. Clinical and Experimental Allergy, 2013, 43, 1236-1245.	2.9	16
242	Genetic variation in uncontrolled childhood asthma despite ICS treatment. Pharmacogenomics Journal, 2016, 16, 158-163.	2.0	16
243	Protocadherin-1 Localization and Cell-Adhesion Function in Airway Epithelial Cells in Asthma. PLoS ONE, 2016, 11, e0163967.	2.5	16
244	Sibling effect on atopy in children of patients with asthma. Clinical and Experimental Allergy, 2003, 33, 170-175.	2.9	15
245	ITGB5 and AGFG1 variants are associated with severity of airway responsiveness. BMC Medical Genetics, 2013, 14, 86.	2.1	15
246	Traffic-related air pollution is related to interrupter resistance in 4-year-old children. European Respiratory Journal, 2013, 41, 1257-1263.	6.7	15
247	Genetic Variation in FADS Genes and Plasma Cholesterol Levels in 2-Year-Old Infants: KOALA Birth Cohort Study. PLoS ONE, 2013, 8, e61671.	2.5	15
248	Associations between the 17q21 region and allergic rhinitis in 5 birth cohorts. Journal of Allergy and Clinical Immunology, 2015, 135, 573-576.e5.	2.9	15
249	Genetic risk scores do not improve asthma prediction in childhood. Journal of Allergy and Clinical Immunology, 2019, 144, 857-860.e7.	2.9	15
250	Lifelines NEXT: a prospective birth cohort adding the next generation to the three-generation Lifelines cohort study. European Journal of Epidemiology, 2020, 35, 157-168.	5.7	15
251	A genome-wide association study of severe asthma exacerbations in Latino children and adolescents. European Respiratory Journal, 2021, 57, 2002693.	6.7	15
252	Determinants of expression of SARSâ€CoVâ€2 entryâ€related genes in upper and lower airways. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 690-694.	5.7	15

#	Article	IF	CITATIONS
253	The discovAIR project: a roadmap towards the Human Lung Cell Atlas. European Respiratory Journal, 2022, 60, 2102057.	6.7	15
254	Pulmonary Function and Blood DNA Methylation: A Multiancestry Epigenome-Wide Association Meta-analysis. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 321-336.	5.6	15
255	Protocadherinâ€1 polymorphisms are associated with eczema in two Dutch birth cohorts. Pediatric Allergy and Immunology, 2012, 23, 270-277.	2.6	14
256	Hen's egg, not cow's milk, sensitization in infancy is associated with asthma: 10-year follow-up of the PIAMA birth cohort. Journal of Allergy and Clinical Immunology, 2013, 132, 1427-1428.	2.9	14
257	Deficiency of <scp>FHL</scp> 2 attenuates airway inflammation in mice and genetic variation associates with human bronchial hyperâ€responsiveness. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1531-1544.	5.7	14
258	<i>IL1RL1</i> gene variations are associated with asthma exacerbations in children and adolescents using inhaled corticosteroids. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 984-989.	5.7	14
259	Smooth-muscle-derived WNT5A augments allergen-induced airway remodelling and Th2 type inflammation. Scientific Reports, 2020, 10, 6754.	3.3	14
260	Forskolin-induced organoid swelling is associated with long-term cystic fibrosis disease progression. European Respiratory Journal, 2022, 60, 2100508.	6.7	14
261	Definition of asthma: possible approaches in genetic studies. Clinical and Experimental Allergy, 1998, 28, 62-64.	2.9	13
262	Respiratory function after esophageal replacement in children. Journal of Pediatric Surgery, 2017, 52, 1736-1741.	1.6	13
263	Considerations in the use of different spirometers in epidemiological studies. Environmental Health, 2019, 18, 39.	4.0	13
264	Pathway analysis of a genome-wide gene by air pollution interaction study in asthmatic children. Journal of Exposure Science and Environmental Epidemiology, 2019, 29, 539-547.	3.9	13
265	Precision medicine in childhood asthma. Current Opinion in Allergy and Clinical Immunology, 2019, 19, 141-147.	2.3	13
266	A Novel Role for Bronchial MicroRNAs and Long Noncoding RNAs in Asthma Remission. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 614-618.	5.6	13
267	Genomeâ€wide association studies of exacerbations in children using longâ€acting beta2â€agonists. Pediatric Allergy and Immunology, 2021, 32, 1197-1207.	2.6	13
268	Spirometric phenotypes from early childhood to young adulthood: a Chronic Airway Disease Early Stratification study. ERJ Open Research, 2021, 7, 00457-2021.	2.6	13
269	Protocadherin-1: epithelial barrier dysfunction in asthma and eczema. European Respiratory Journal, 2014, 43, 671-674.	6.7	12
270	Fatty acid composition in breastfeeding and school performance in children aged 12Âyears. European Journal of Nutrition, 2016, 55, 2199-2207.	3.9	12

#	Article	IF	CITATIONS
271	Lifetime secondhand smoke exposure and childhood and adolescent asthma: findings from the PIAMA cohort. Environmental Health, 2017, 16, 14.	4.0	12
272	<i><scp>PTTG</scp>1<scp>IP</scp></i> and <i><scp>MAML</scp>3</i> , novel genomewide association study genes for severity of hyperresponsiveness in adult asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 792-801.	5.7	12
273	Retrospective observational cohort study regarding the effect of breastfeeding on challenge-proven food allergy. European Journal of Clinical Nutrition, 2018, 72, 557-563.	2.9	12
274	Understanding allergic multimorbidity within the non-eosinophilic interactome. PLoS ONE, 2019, 14, e0224448.	2.5	12
275	Epigenome-wide association study identifies DNA methylation markers for asthma remission in whole blood and nasal epithelium. Clinical and Translational Allergy, 2020, 10, 60.	3.2	12
276	Clinical effects of the three CFTR potentiator treatments curcumin, genistein and ivacaftor in patients with the CFTR-S1251N gating mutation. Journal of Cystic Fibrosis, 2020, 19, 955-961.	0.7	12
277	Grandmaternal smoking, asthma and lung function in the offspring: the Lifelines cohort study. Thorax, 2021, 76, 441-447.	5.6	12
278	Gene-environment interaction in allergic disease: More questions, more answers?. Journal of Allergy and Clinical Immunology, 2007, 120, 1266-1268.	2.9	11
279	HbA _{1c} levels in nonâ€diabetic Dutch children aged 8–9Âyears: the PIAMA birth cohort study. Diabetic Medicine, 2009, 26, 122-127.	2.3	11
280	Asthma Therapy During the First 8 Years of Life: A PIAMA Cohort Study. Journal of Asthma, 2010, 47, 209-213.	1.7	11
281	Nocturnal dry cough in the first 7 years of life is associated with asthma at school age. Pediatric Pulmonology, 2015, 50, 848-855.	2.0	11
282	Overweight patterns throughout childhood and cardiometabolic markers in early adolescence. International Journal of Obesity, 2016, 40, 58-64.	3.4	11
283	Blood Eosinophil Count and Metabolic, Cardiac and Pulmonary Outcomes: A Mendelian Randomization Study. Twin Research and Human Genetics, 2018, 21, 89-100.	0.6	11
284	Colistin dry powder inhalation with the Twincerâ,,¢: An effective and more patient friendly alternative to nebulization. PLoS ONE, 2020, 15, e0239658.	2.5	11
285	Green space, air pollution, traffic noise and saliva cortisol in children. Environmental Epidemiology, 2021, 5, e141.	3.0	11
286	Mouse Protocadherin-1 Gene Expression Is Regulated by Cigarette Smoke Exposure In Vivo. PLoS ONE, 2014, 9, e98197.	2.5	11
287	Role of timing of exposure to pets and dampness or mould on asthma and sensitization in adolescence. Clinical and Experimental Allergy, 2019, 49, 1352-1361.	2.9	10
288	Use of cleaning agents at home and respiratory and allergic symptoms in adolescents: The PIAMA birth cohort study. Environment International, 2019, 128, 63-69.	10.0	10

#	Article	IF	CITATIONS
289	Breastfeeding and cardiometabolic markers at age 12: a population-based birth cohort study. International Journal of Obesity, 2019, 43, 1568-1577.	3.4	10
290	Dynamic prediction model to identify young children at high risk of future overweight: Development and internal validation in a cohort study. Pediatric Obesity, 2020, 15, e12647.	2.8	10
291	Maternal Allergy and the Presence of Nonhuman Proteinaceous Molecules in Human Milk. Nutrients, 2020, 12, 1169.	4.1	10
292	Residential PM2.5 exposure and the nasal methylome in children. Environment International, 2021, 153, 106505.	10.0	10
293	Current Smoking Alters Gene Expression and DNA Methylation in the Nasal Epithelium of Patients with Asthma. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 366-377.	2.9	10
294	<i>CD14</i> polymorphisms in mother and infant, soluble CD14 in breast milk and atopy development in the infant (KOALA Study). Pediatric Allergy and Immunology, 2010, 21, 541-549.	2.6	9
295	The candidate gene approach in asthma: what happens with the neighbours?. European Journal of Human Genetics, 2010, 18, 17-17.	2.8	9
296	Opposite effects of allergy prevention depending on CD14 rs2569190 genotype in 3 intervention studies. Journal of Allergy and Clinical Immunology, 2012, 129, 256-259.	2.9	9
297	Maternal fish consumption during pregnancy and BMI in children from birth up to age 14Âyears: the PIAMA cohort study. European Journal of Nutrition, 2016, 55, 799-808.	3.9	9
298	High-Throughput Sequencing in Respiratory, Critical Care, and Sleep Medicine Research. An Official American Thoracic Society Workshop Report. Annals of the American Thoracic Society, 2019, 16, 1-16.	3.2	9
299	House dust endotoxin, asthma and allergic sensitization through childhood into adolescence. Clinical and Experimental Allergy, 2020, 50, 1055-1064.	2.9	9
300	Likely questionnaire-diagnosed food allergy in 78, 890 adults from the northern Netherlands. PLoS ONE, 2020, 15, e0231818.	2.5	9
301	Timing of secondhand smoke, pet, dampness or mould exposure and lung function in adolescence. Thorax, 2020, 75, 153-163.	5.6	9
302	A widening gap between boys and girls in musculoskeletal complaints, while growing up from age 11 to age 20 ―the PIAMA birth Cohort study. European Journal of Pain, 2021, 25, 902-912.	2.8	9
303	Biologicals in childhood severe asthma: the European PERMEABLE survey on the <i>status quo</i> . ERJ Open Research, 2021, 7, 00143-2021.	2.6	9
304	Ultrafine particles, particle components and lung function at age 16Âyears: The PIAMA birth cohort study. Environment International, 2021, 157, 106792.	10.0	9
305	Predicting the course of asthma from childhood until early adulthood. Current Opinion in Allergy and Clinical Immunology, 2022, 22, 115-122.	2.3	9
306	Polymorphisms in the Mannanâ€Binding Lectin Gene Are Not Associated with Questionnaireâ€Reported Respiratory Tract Infections in Children. Journal of Infectious Diseases, 2008, 198, 1707-1713.	4.0	8

#	Article	IF	CITATIONS
307	17q21 Variants and Asthma — Questions and Answers. New England Journal of Medicine, 2008, 359, 2043-2045.	27.0	8
308	Pulmonary medium vessel vasculitis in an 11 year old boy: Hughes Stovin syndrome as a variant of polyarteritis nodosa?. Pediatric Rheumatology, 2011, 9, 19.	2.1	8
309	Guidelineâ€recommended use of asthma medication by children is associated with parental information and knowledge: the PIAMA birth cohort. Pharmacoepidemiology and Drug Safety, 2014, 23, 406-410.	1.9	8
310	Family history of myocardial infarction, stroke and diabetes and cardiometabolic markers in children. Diabetologia, 2016, 59, 1666-1674.	6.3	8
311	Concerns with beta2-agonists in pediatric asthma - a clinical perspective. Paediatric Respiratory Reviews, 2017, 21, 80-85.	1.8	8
312	An update on the epigenetics of asthma. Current Opinion in Allergy and Clinical Immunology, 2021, 21, 175-181.	2.3	8
313	Infant RSV immunoprophylaxis changes nasal epithelial DNA methylation at 6 years of age. Pediatric Pulmonology, 2021, 56, 3822-3831.	2.0	8
314	Eradication of Pseudomonas aeruginosa in cystic fibrosis patients with inhalation of dry powder tobramycin. Therapeutic Advances in Respiratory Disease, 2020, 14, 175346662090527.	2.6	8
315	Urokinase plasminogen activator receptor polymorphisms and airway remodelling in asthma. European Respiratory Journal, 2016, 47, 1568-1571.	6.7	7
316	Predictive value of serum sST2 in preschool wheezers for development of asthma with high FeNO. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1811-1815.	5.7	7
317	Promoting respiratory public health through epigenetics research: an ERS Environment Health Committee workshop report. European Respiratory Journal, 2018, 51, 1702410.	6.7	7
318	Blood eosinophils associate with reduced lung function growth in adolescent asthmatics. Clinical and Experimental Allergy, 2021, 51, 556-563.	2.9	7
319	Differences in lung clearance index and functional residual capacity between two commercial multiple-breath nitrogen washout devices in healthy children and adults. ERJ Open Research, 2020, 6, 00247-2019.	2.6	7
320	Patterns of asthma medication use: early asthma therapy initiation and asthma outcomes at age 8â€. Pharmacoepidemiology and Drug Safety, 2010, 19, 991-999.	1.9	6
321	Change in HbA1c Levels between the Age of 8 Years and the Age of 12 Years in Dutch Children without Diabetes: The PIAMA Birth Cohort Study. PLoS ONE, 2015, 10, e0119615.	2.5	6
322	Increased risk of asthma in overweight children born large for gestational age. Clinical and Experimental Allergy, 2017, 47, 1050-1056.	2.9	6
323	Air pollution and airway resistance at age 8Âyears – the PIAMA birth cohort study. Environmental Health, 2018, 17, 61.	4.0	6
324	The dilemma of open or doubleâ€blind food challenges in diagnosing food allergy in children: Design of the ALDORADO trial. Pediatric Allergy and Immunology, 2022, 33, .	2.6	6

#	Article	IF	CITATIONS
325	Confirmation of GPRA. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 1323-1324.	5.6	5
326	Parental Eczema Increases the Risk of Double-Blind, Placebo-Controlled Reactions to Milk but Not to Egg, Peanut or Hazelnut. International Archives of Allergy and Immunology, 2012, 158, 77-83.	2.1	5
327	Greater severity of peanut challenge reactions using a highâ€fat vs lowâ€fat matrix vehicle. Clinical and Experimental Allergy, 2018, 48, 1364-1367.	2.9	5
328	Does breast milk adiponectin affect BMI and cardio-metabolic markers in childhood?. British Journal of Nutrition, 2019, 121, 905-913.	2.3	5
329	Eliciting dose is associated with tolerance development in peanut and cow's milk allergic children. Clinical and Translational Allergy, 2019, 9, 58.	3.2	5
330	Phenotype consensus is required to enable largeâ€scale genetic consortium studies of food allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2383-2387.	5.7	5
331	ILâ€∎RL1a serum levels and <i>IL1RL1</i> SNPs in the prediction of food allergy. Clinical and Experimental Allergy, 2021, 51, 614-619.	2.9	5
332	A comparison of associations with childhood lung function between air pollution exposure assessment methods with and without accounting for time-activity patterns. Environmental Research, 2021, 202, 111710.	7.5	5
333	Persistence of parentalâ€reported asthma at early ages: AÂlongitudinal twin study. Pediatric Allergy and Immunology, 2022, 33, e13762.	2.6	5
334	<i>MBL2</i> and fever during neutropenia in children with acute lymphoblastic leukaemia. British Journal of Haematology, 2012, 157, 132-135.	2.5	4
335	The association between indoor temperature and body mass index in children: the PIAMA birth cohort study. BMC Public Health, 2013, 13, 1119.	2.9	4
336	Genetic variants of inducible costimulator are associated with allergic asthma susceptibility. Journal of Allergy and Clinical Immunology, 2015, 135, 556-558.e13.	2.9	4
337	Health-Related Factors Associated with Discrepancies between Children's Potential and Attained Secondary School Level: A Longitudinal Study. PLoS ONE, 2016, 11, e0168110.	2.5	4
338	Asthma diagnosis in a child and cessation of smoking in the child's home: the PIAMA birth cohort. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 521-525.	3.9	4
339	Asthma in 9-year-old children of subfertile couples is not associated with in vitro fertilization procedures. European Journal of Pediatrics, 2019, 178, 1493-1499.	2.7	4
340	Childhood infections and common carotid intima media thickness in adolescence. Epidemiology and Infection, 2019, 147, e37.	2.1	4
341	On Genetics, Lung Developmental Biology, and Adult Lung Function. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 791-793.	5.6	4
342	Understanding How Asthma Starts: Longitudinal Patterns of Wheeze and the Chromosome 17q Locus. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 793-795.	5.6	4

#	Article	IF	CITATIONS
343	Confounding effect of atopy on functional effects of the CD14/-159 promoter polymorphism. Journal of Allergy and Clinical Immunology, 2006, 117, 219-219.	2.9	3
344	No associations of the mineralocorticoid and glucocorticoid receptor genes with asthma: Table 1–. European Respiratory Journal, 2012, 40, 1572-1574.	6.7	3
345	Apolipoprotein B: a possible new biomarker for anaphylaxis. Annals of Allergy, Asthma and Immunology, 2017, 118, 515-516.	1.0	3
346	Joint Association of Long-term Exposure to Both O3 and NO2 with Children's Respiratory Health. Epidemiology, 2017, 28, e7-e9.	2.7	3
347	Applying the CAMP trial asthma remission prediction model to the Dutch asthma remission studies. Journal of Allergy and Clinical Immunology, 2019, 143, 1973-1975.	2.9	3
348	Early childhood infections and body mass index in adolescence. International Journal of Obesity, 2021, 45, 1143-1151.	3.4	3
349	Medical algorithm: Periâ€operative management of mastocytosis patients. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3233-3235.	5.7	3
350	The long-term safety of chronic azithromycin use in adult patients with cystic fibrosis, evaluating biomarkers for renal function, hepatic function and electrical properties of the heart. Expert Opinion on Drug Safety, 2021, 20, 959-963.	2.4	3
351	Towards diversity in asthma pharmacogenetics. The Lancet Child and Adolescent Health, 2021, 5, 838-839.	5.6	3
352	Headache in girls and boys growing up from age 11 to 20 years: the Prevention and Incidence of Asthma and Mite Allergy birth cohort study. Pain, 2021, 162, 1449-1456.	4.2	3
353	The Child Is Father of the Man?. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 358-359.	5.6	2
354	Data-driven Asthma Phenotypes in Childhood. Does the Environment Hold the Clue?. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 545-546.	5.6	2
355	Identifying a nasal gene expression signature associated with hyperinflation and treatment response in severe COPD. Scientific Reports, 2020, 10, 17415.	3.3	2
356	Detection of Salivary Tryptase Levels in Children following Oral Food Challenges. International Archives of Allergy and Immunology, 2022, 183, 322-325.	2.1	2
357	Low healthâ€related quality of life is associated with declining home introduction of suspected food allergens. Clinical and Experimental Allergy, 2022, 52, 201-204.	2.9	2
358	Genetics of early-life head circumference and genetic correlations with neurological, psychiatric and cognitive outcomes. BMC Medical Genomics, 2022, 15, .	1.5	2
359	Ambient ultrafine particles and asthma onset until age 20: The PIAMA birth cohort. Environmental Research, 2022, 214, 113770.	7.5	2
360	Skin-blanching is associated with FEV1, allergy, age and gender in asthma families. Respiratory Medicine, 2012, 106, 1376-1382.	2.9	1

#	Article	IF	CITATIONS
361	Improvements in air quality: whose lungs benefit?. European Respiratory Journal, 2019, 53, 1900365.	6.7	1
362	Genetics and epigenetics of childhood asthma. , 2012, , 97-114.		1
363	The association of pure fruit juice, sugar-sweetened beverages and fruit consumption with asthma prevalence in adolescents growing up from 11 to 20Âyears: The PIAMA birth cohort study. Preventive Medicine Reports, 2022, 28, 101877.	1.8	1
364	Preventie van astma. Tijdschrift Voor Kindergeneeskunde, 2009, 77, 227-231.	0.0	0
365	Response to Children's Home Blood Pressure and Growth Environment. Hypertension, 2013, 61, e34-5.	2.7	0
366	Asthma genetics 2014: reaching for highâ€hanging fruit. Clinical and Experimental Allergy, 2014, 44, 1296-1298.	2.9	0
367	Response to letters to the editor regarding our paper "Early introduction of complementary foods and childhood overweight in breastfed and formula-fed infants in the Netherlands: the PIAMA birth cohort study― European Journal of Nutrition, 2018, 57, 1999-2000.	3.9	0
368	Genomics and Pharmacogenomics of Severe Childhood Asthma. , 2020, , 313-341.		0
369	Understanding allergic multimorbidity within the non-eosinophilic interactome. , 2019, 14, e0224448.		0
370	Understanding allergic multimorbidity within the non-eosinophilic interactome. , 2019, 14, e0224448.		0
371	Understanding allergic multimorbidity within the non-eosinophilic interactome. , 2019, 14, e0224448.		0
372	Understanding allergic multimorbidity within the non-eosinophilic interactome. , 2019, 14, e0224448.		0
373	Cellâ€type <scp>eQTL</scp> deconvolution of bronchial epithelium through integration of singleâ€cell and bulk <scp>RNA</scp> â€seq. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3663-3666.	5.7	0