
Ravi Koppolu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1709048/publications.pdf Version: 2024-02-01

PWI KODDOLLI

#	Article	IF	CITATIONS
1	A genetic playground for enhancing grain number in cereals. Trends in Plant Science, 2012, 17, 91-101.	8.8	194
2	Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5182-5187.	7.1	158
3	<i>Six-rowed spike4</i> (<i>Vrs4</i>) controls spikelet determinacy and row-type in barley. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13198-13203.	7.1	140
4	VRS2 regulates hormone-mediated inflorescence patterning in barley. Nature Genetics, 2017, 49, 157-161.	21.4	127
5	Genomeâ€wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytologist, 2017, 214, 257-270.	7.3	114
6	The Genetic Basis of Composite Spike Form in Barley and â€~Miracle-Wheat'. Genetics, 2015, 201, 155-165.	2.9	109
7	Genetic Dissection of Photoperiod Response Based on GWAS of Pre-Anthesis Phase Duration in Spring Barley. PLoS ONE, 2014, 9, e113120.	2.5	105
8	Variation of floret fertility in hexaploid wheat revealed by tiller removal. Journal of Experimental Botany, 2015, 66, 5945-5958.	4.8	94
9	Genotypic variation in spike fertility traits and ovary size as determinants of floret and grain survival rate in wheat. Journal of Experimental Botany, 2016, 67, 4221-4230.	4.8	88
10	The Genetic Architecture of Barley Plant Stature. Frontiers in Genetics, 2016, 7, 117.	2.3	86
11	Developmental pathways for shaping spike inflorescence architecture in barley and wheat. Journal of Integrative Plant Biology, 2019, 61, 278-295.	8.5	86
12	Genetic relationships among seven sections of genus Arachisstudied by using SSR markers. BMC Plant Biology, 2010, 10, 15.	3.6	72
13	Of floral fortune: tinkering with the grain yield potential of cereal crops. New Phytologist, 2020, 225, 1873-1882.	7.3	70
14	TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Scientific Reports, 2019, 9, 13853.	3.3	55
15	Awn primordium to tipping is the most decisive developmental phase for spikelet survival in barley. Functional Plant Biology, 2014, 41, 424.	2.1	54
16	Extreme Suppression of Lateral Floret Development by a Single Amino Acid Change in the VRS1 Transcription Factor. Plant Physiology, 2017, 175, 1720-1731.	4.8	49
17	Heading Date Is Not Flowering Time in Spring Barley. Frontiers in Plant Science, 2017, 8, 896.	3.6	46
18	Manipulation and prediction of spike morphology traits for the improvement of grain yield in wheat. Scientific Reports, 2018, 8, 14435.	3.3	44

Ravi Koppolu

#	Article	IF	CITATIONS
19	Natural variation and genetic make-up of leaf blade area in spring barley. Theoretical and Applied Genetics, 2018, 131, 873-886.	3.6	39
20	Genetic modification of spikelet arrangement in wheat increases grain number without significantly affecting grain weight. Molecular Genetics and Genomics, 2019, 294, 457-468.	2.1	38
21	Genetic insights into morphometric inflorescence traits of wheat. Theoretical and Applied Genetics, 2019, 132, 1661-1676.	3.6	37
22	COMPOSITUM 1 contributes to the architectural simplification of barley inflorescence via meristem identity signals. Nature Communications, 2020, 11, 5138.	12.8	37
23	Transcriptional landscapes of floral meristems in barley. Science Advances, 2021, 7, .	10.3	33
24	High-density mapping of the earliness per se-3Am (Eps-3A m) locus in diploid einkorn wheat and its relation to the syntenic regions in rice and Brachypodium distachyon L. Molecular Breeding, 2012, 30, 1097-1108.	2.1	32
25	Plant and Floret Growth at Distinct Developmental Stages During the Stem Elongation Phase in Wheat. Frontiers in Plant Science, 2018, 9, 330.	3.6	30
26	Genetic dissection of preâ€anthesis subâ€phase durations during the reproductive spike development of wheat. Plant Journal, 2018, 95, 909-918.	5.7	30
27	Leaf primordium size specifies leaf width and vein number among rowâ€ŧype classes in barley. Plant Journal, 2017, 91, 601-612.	5.7	25
28	Barley Leaf Area and Leaf Growth Rates Are Maximized during the Pre-Anthesis Phase. Agronomy, 2015, 5, 107-129.	3.0	22
29	Seeking Crops with Balanced Parts for the Ideal Whole. Trends in Plant Science, 2020, 25, 1189-1193.	8.8	18
30	Wheat and barley biology: Towards new frontiers. Journal of Integrative Plant Biology, 2019, 61, 198-203.	8.5	17
31	Evolution of inflorescence branch modifications in cereal crops. Current Opinion in Plant Biology, 2022, 65, 102168.	7.1	17
32	Natural diversity of inflorescence architecture traces cryptic domestication genes in barley (Hordeum vulgare L.). Genetic Resources and Crop Evolution, 2017, 64, 843-853.	1.6	11
33	â€~Spikelet stop' determines the maximum yield potential stage in barley. Journal of Experimental Botany, 2021, 72, 7743-7753.	4.8	11
34	Re-sequencing of vrs1 and int-c loci shows that labile barleys (Hordeum vulgare convar. labile) have a six-rowed genetic background. Genetic Resources and Crop Evolution, 2012, 59, 1319-1328.	1.6	10
35	Barley Inflorescence Architecture. Compendium of Plant Genomes, 2018, , 171-208.	0.5	10
36	Inferring vascular architecture of the wheat spikelet based on resource allocation in the branched headt (bht-A1) near isogenic lines. Functional Plant Biology, 2019, 46, 1023.	2.1	9

Ravi Koppolu

#	Article	IF	CITATIONS
37	Genome-wide identification of loci modifying spike-branching in tetraploid wheat. Theoretical and Applied Genetics, 2021, 134, 1925-1943.	3.6	9
38	Dissecting the Genetic Basis of Lateral and Central Spikelet Development and Grain Traits in Intermedium-Spike Barley (Hordeum vulgare Convar. Intermedium). Plants, 2020, 9, 1655.	3.5	7
39	Strategies of grain number determination differentiate barley row types. Journal of Experimental Botany, 2021, 72, 7754-7768.	4.8	7
40	The barley mutant multiflorus2.b reveals quantitative genetic variation for new spikelet architecture. Theoretical and Applied Genetics, 2022, 135, 571-590.	3.6	7
41	Spikelet abortion in six-rowed barley is mainly influenced by final spikelet number, with potential spikelet number acting as a suppressor trait. Journal of Experimental Botany, 2022, 73, 2005-2020.	4.8	6
42	Genetic mapping of the labile (lab) gene: a recessive locus causing irregular spikelet fertility in labile-barley (Hordeum vulgare convar. labile). Theoretical and Applied Genetics, 2014, 127, 1123-1131.	3.6	5