Leonardo Chelazzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1708634/publications.pdf

Version: 2024-02-01

77 papers 10,173 citations

34 h-index 91712 69 g-index

80 all docs 80 docs citations

80 times ranked 5752 citing authors

#	Article	IF	CITATIONS
1	Neural Mechanisms of Spatial Selective Attention in Areas V1, V2, and V4 of Macaque Visual Cortex. Journal of Neurophysiology, 1997, 77, 24-42.	0.9	1,507
2	A neural basis for visual search in inferior temporal cortex. Nature, 1993, 363, 345-347.	13.7	1,257
3	Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4. Journal of Neuroscience, 1999, 19, 1736-1753.	1.7	1,177
4	ATTENTIONAL MODULATION OF VISUAL PROCESSING. Annual Review of Neuroscience, 2004, 27, 611-647.	5.0	969
5	Responses of Neurons in Inferior Temporal Cortex During Memory-Guided Visual Search. Journal of Neurophysiology, 1998, 80, 2918-2940.	0.9	630
6	Reward Changes Salience in Human Vision via the Anterior Cingulate. Journal of Neuroscience, 2010, 30, 11096-11103.	1.7	518
7	Visual Selective Attention and the Effects of Monetary Rewards. Psychological Science, 2006, 17, 222-227.	1.8	338
8	Rewards teach visual selective attention. Vision Research, 2013, 85, 58-72.	0.7	321
9	Learning to Attend and to Ignore Is a Matter of Gains and Losses. Psychological Science, 2009, 20, 778-784.	1.8	293
10	Toward a Unified Theory of Visual Area V4. Neuron, 2012, 74, 12-29.	3.8	291
11	Associative knowledge controls deployment of visual selective attention. Nature Neuroscience, 2003, 6, 182-189.	7.1	248
12	Distribution in the visual field of the costs of voluntarily allocated attention and of the inhibitory after-effects of covert orienting. Neuropsychologia, 1987, 25, 55-71.	0.7	173
13	My eyes want to look where your eyes are looking: Exploring the tendency to imitate another individual??s gaze. NeuroReport, 2002, 13, 2259-2264.	0.6	156
14	Altering Spatial Priority Maps via Reward-Based Learning. Journal of Neuroscience, 2014, 34, 8594-8604.	1.7	150
15	Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 2018, 102, 67-95.	1.1	148
16	Reward Guides Vision when It's Your Thing: Trait Reward-Seeking in Reward-Mediated Visual Priming. PLoS ONE, 2010, 5, e14087.	1.1	136
17	Do peripheral non-informative cues induce early facilitation of target detection?. Vision Research, 1994, 34, 179-189.	0.7	127
18	Laws of concatenated perception: Vision goes for novelty, decisions for perseverance. PLoS Biology, 2019, 17, e3000144.	2.6	113

#	Article	IF	CITATIONS
19	Sluggish engagement and disengagement of non-spatial attention in dyslexic children. Cortex, 2008, 44, 1221-1233.	1.1	111
20	Serial attention mechanisms in visual search: A critical look at the evidence. Psychological Research, 1999, 62, 195-219.	1.0	107
21	Neurons in Area V4 of the Macaque Translate Attended Visual Features into Behaviorally Relevant Categories. Neuron, 2007, 54, 303-318.	3.8	105
22	Getting rid of visual distractors: the why, when, how, and where. Current Opinion in Psychology, 2019, 29, 135-147.	2.5	104
23	Volitional Covert Orienting to a Peripheral Cue Does Not Suppress Cue-induced Inhibition of Return. Journal of Cognitive Neuroscience, 2000, 12, 648-663.	1.1	87
24	Reward has a residual impact on target selection in visual search, but not on the suppression of distractors. Visual Cognition, 2011, 19, 117-128.	0.9	81
25	Learning Increases Stimulus Salience in Anterior Inferior Temporal Cortex of the Macaque. Journal of Neurophysiology, 2001, 86, 290-303.	0.9	78
26	Oculomotor activity and visual spatial attention. Behavioural Brain Research, 1995, 71, 81-88.	1.2	67
27	Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study. Journal of Neuroscience, 2016, 36, 988-1000.	1.7	60
28	Selective Attention to Specific Features within Objects: Behavioral and Electrophysiological Evidence. Journal of Cognitive Neuroscience, 2006, 18, 539-561.	1.1	56
29	The urgency to look: Prompt saccades to the benefit of perception. Vision Research, 2005, 45, 3391-3401.	0.7	55
30	Serial Attention Mechanisms in Visual Search: A Direct Behavioral Demonstration. Journal of Cognitive Neuroscience, 2002, 14, 980-993.	1.1	51
31	Dissociable Effects of Reward on Attentional Learning: From Passive Associations to Active Monitoring. PLoS ONE, 2011, 6, e19460.	1.1	51
32	Reward-Priming of Location in Visual Search. PLoS ONE, 2014, 9, e103372.	1.1	47
33	The costly filtering of potential distraction: Evidence for a supramodal mechanism Journal of Experimental Psychology: General, 2013, 142, 906-922.	1.5	42
34	Desensitizing the attention system to distraction while idling: A new latent learning phenomenon in the visual attention domain Journal of Experimental Psychology: General, 2018, 147, 1827-1850.	1.5	40
35	Saccadic Eye Movements and Gaze Holding in the Head-Restrained Pigmented Rat. European Journal of Neuroscience, 1989, 1, 639-646.	1.2	34
36	Spontaneous Saccades and Gaze-Holding Ability in the Pigmented Rat. II. Effects of Localized Cerebellar Lesions. European Journal of Neuroscience, 1990, 2, 1085-1094.	1.2	33

#	Article	IF	CITATIONS
37	Neural basis of visual selective attention. Wiley Interdisciplinary Reviews: Cognitive Science, 2011, 2, 392-407.	1.4	33
38	Disentangling the Role of Cortico-Basal Ganglia Loops in Top–Down and Bottom–Up Visual Attention: An Investigation of Attention Deficits in Parkinson Disease. Journal of Cognitive Neuroscience, 2015, 27, 1215-1237.	1.1	25
39	Neural structures involved in visual search guidance by reward-enhanced contextual cueing of the target location. Neurolmage, 2016, 124, 887-897.	2.1	25
40	Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS. Journal of Neuroscience, 2019, 39, 7591-7603.	1.7	25
41	The cerebellum and visual perceptual learning: Evidence from a motion extrapolation task. Cortex, 2014, 58, 52-71.	1.1	24
42	Selective Tuning for Contrast in Macaque Area V4. Journal of Neuroscience, 2013, 33, 18583-18596.	1.7	23
43	Neural mechanisms for stimulus selection in cortical areas of the macaque subserving object vision. Behavioural Brain Research, 1995, 71, 125-134.	1.2	22
44	Selecting and ignoring the component features of a visual object: A negative priming paradigm. Visual Cognition, 2006, 14, 584-618.	0.9	22
45	Does the Macaque Monkey Provide a Good Model for Studying Human Executive Control? A Comparative Behavioral Study of Task Switching. PLoS ONE, 2011, 6, e21489.	1.1	21
46	Temporally evolving gain mechanisms of attention in macaque area V4. Journal of Neurophysiology, 2017, 118, 964-985.	0.9	16
47	Effects of ethanol and imidazobenzodiazepine Ro 15-4513 on spontaneous saccades of the pigmented rat. Experimental Brain Research, 1989, 76, 1-11.	0.7	12
48	Dynamic interaction between "Go―and "Stop―signals in the saccadic eye movement system: New evidence against the functional independence of the underlying neural mechanisms. Vision Research, 2009, 49, 1316-1328.	0.7	12
49	Spontaneous Saccades and Gaze-Holding Ability in the Pigmented Rat. I. Effects of Inferior Olive Lesion. European Journal of Neuroscience, 1990, 2, 1074-1084.	1.2	11
50	On the time course of exogenous cueing effects: a response to Lupi $\tilde{A}_i\tilde{A}\pm ez$ and Weaver. Vision Research, 1998, 38, 1625-1628.	0.7	11
51	Reward-based plasticity of spatial priority maps: Exploiting inter-subject variability to probe the underlying neurobiology. Cognitive Neuroscience, 2017, 8, 85-101.	0.6	11
52	Cooperative and Opposing Effects of Strategic and Involuntary Attention. Journal of Cognitive Neuroscience, 2011, 23, 2838-2851.	1.1	10
53	Predictive brain: Addressing the level of representation by reviewing perceptual hysteresis. Cortex, 2021, 141, 535-540.	1.1	10
54	The Time Constant of Attentional Control: Short, Medium and Long (Infinite?). Journal of Cognition, 2018, 1, 27.	1.0	9

#	Article	IF	Citations
55	Dynamic causal interactions between occipital and parietal cortex explain how endogenous spatial attention and stimulus-driven salience jointly shape the distribution of processing priorities in 2D visual space. Neurolmage, 2022, 255, 119206.	2.1	9
56	An EEG study of the combined effects of topâ€down and bottomâ€up attentional selection under varying task difficulty. Psychophysiology, 2022, 59, e14002.	1.2	8
57	Biases of attention in chronic smokers: Men and women are not alike. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 742-755.	1.0	7
58	Revealing Dissociable Attention Biases in Chronic Smokers Through an Individual-Differences Approach. Scientific Reports, 2019, 9, 4930.	1.6	7
59	Modulating the influence of recent trial history on attentional capture via transcranial magnetic stimulation (TMS) of right TPJ. Cortex, 2020, 133, 149-160.	1.1	7
60	Local (focussed) and global (distributed) visual processing in hemispatial neglect. Experimental Brain Research, 2008, 187, 447-457.	0.7	6
61	Two Distinct Systems Represent Contralateral and Ipsilateral Sensorimotor Processes in the Human Premotor Cortex: A Dense TMS Mapping Study. Cerebral Cortex, 2020, 30, 2250-2266.	1.6	5
62	How feature context alters attentional template switching Journal of Experimental Psychology: Human Perception and Performance, 2021, 47, 1431-1444.	0.7	5
63	Augmenting distractor filtering via transcranial magnetic stimulation of the lateral occipital cortex. Cortex, 2016, 84, 63-79.	1.1	4
64	The Topography of Visually Guided Grasping in the Premotor Cortex: A Dense-Transcranial Magnetic Stimulation (TMS) Mapping Study. Journal of Neuroscience, 2020, 40, 6790-6800.	1.7	4
65	The role of the vestibular system in value attribution to positive and negative reinforcers. Cortex, 2020, 133, 215-235.	1.1	4
66	The unconscious guidance of attention. Cortex, 2018, 102, 1-5.	1.1	3
67	Antagonist action of imidazobenzodiazepine Ro $15\hat{a}\in$ "4513 on ethanol-induced alterations of saccadic eye movements in the pigmented rat. Neuroscience Letters, 1988, 89, 69-73.	1.0	2
68	High-Acuity Information Is Retained through the Cortical Visual Hierarchy of Primates. Neuron, 2018, 98, 240-242.	3.8	2
69	Statistical learning of distractor suppression. Journal of Vision, 2017, 17, 674.	0.1	2
70	Optic Nerve Degeneration and Reduced Contrast Sensitivity Due to Folic Acid Deficiency: A Behavioral and Electrophysiological Study in Rhesus Monkeys., 2018, 59, 6045.		1
71	Compound statistical learning of target selection and distractor suppression. Journal of Vision, 2018, 18, 284.	0.1	1
72	Voluntary allocation of visual attention to foveal and extrafoveal sites. Behavioural Brain Research, 1987, 26, 240-241.	1.2	0

#	Article	IF	CITATIONS
73	Memory-guided attentional systems. Spatial Vision, 1993, 7, 85.	1.4	O
74	Integrating top-down and bottom-up attention control factors: an EEG study. Journal of Vision, 2021, 21, 2565.	0.1	0
75	Investigating the role of the Frontal Eye Field (FEF) and of the Intraparietal Sulcus (IPS) in attentional capture: A TMS study. Journal of Vision, 2018, 18, 451.	0.1	0
76	Laws of concatenated perception: Vision goes for novelty, Decisions for perseverance. Journal of Vision, 2018, 18, 1049.	0.1	0
77	Modulating attentional capture via Transcranial Magnetic Stimulation (TMS) of right TPJ. Journal of Vision, 2019, 19, 141c.	0.1	0