Marcel Dicke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1708561/publications.pdf

Version: 2024-02-01

506 papers 40,076 citations

106 h-index 172 g-index

523 all docs 523 docs citations

523 times ranked

18480 citing authors

#	Article	IF	CITATIONS
1	Ecology of Infochemical Use by Natural Enemies in a Tritrophic Context. Annual Review of Entomology, 1992, 37, 141-172.	11.8	1,573
2	The evolutionary context for herbivore-induced plant volatiles: beyond the †cry for helpâ€. Trends in Plant Science, 2010, 15, 167-175.	8.8	973
3	Signal Signature and Transcriptome Changes of Arabidopsis During Pathogen and Insect Attack. Molecular Plant-Microbe Interactions, 2005, 18, 923-937.	2.6	909
4	Plant strategies of manipulating predatorprey interactions through allelochemicals: Prospects for application in pest control. Journal of Chemical Ecology, 1990, 16, 3091-3118.	1.8	608
5	Isolation and identification of volatile kairomone that affects acarine predatorprey interactions Involvement of host plant in its production. Journal of Chemical Ecology, 1990, 16, 381-396.	1.8	582
6	Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science, 2010, 15, 507-514.	8.8	528
7	beta-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 2036-2040.	7.1	522
8	Genetic Engineering of Terpenoid Metabolism Attracts Bodyguards to Arabidopsis. Science, 2005, 309, 2070-2072.	12.6	482
9	A Conserved Transcript Pattern in Response to a Specialist and a Generalist Herbivorew $\hat{a}f$ ž. Plant Cell, 2004, 16, 3132-3147.	6.6	470
10	Plantâ€"carnivore mutualism through herbivore-induced carnivore attractants. Trends in Plant Science, 1996, 1, 109-113.	8.8	443
11	How Plants Obtain Predatory Mites as Bodyguards. Animal Biology, 1987, 38, 148-165.	0.4	442
12	Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomologia Experimentalis Et Applicata, 2000, 97, 237-249.	1.4	416
13	Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends in Plant Science, 2007, 12, 564-569.	8.8	399
14	Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed $\hat{a}\in$ a review. Journal of Insects As Food and Feed, 2017, 3, 105-120.	3.9	373
15	Chemical complexity of volatiles from plants induced by multiple attack. Nature Chemical Biology, 2009, 5, 317-324.	8.0	364
16	Plant Interactions with Multiple Insect Herbivores: From Community to Genes. Annual Review of Plant Biology, 2014, 65, 689-713.	18.7	361
17	Infochemical Terminology: Based on Cost-Benefit Analysis Rather than Origin of Compounds?. Functional Ecology, 1988, 2, 131.	3.6	354
18	Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. Journal of Chemical Ecology, 1994, 20, 1329-1354.	1.8	325

#	Article	IF	CITATIONS
19	Local and Systemic Production of Volatile Herbivore-induced Terpenoids: Their Role in Plant-carnivore Mutualism. Journal of Plant Physiology, 1994, 143, 465-472.	3.5	323
20	Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. Journal of Chemical Ecology, 2001, 27, 1911-1928.	1.8	310
21	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1907-1922.	1.8	292
22	Variation in natural plant products and the attraction of bodyguards involved in indirect plant defenseThe present review is one in the special series of reviews on animal–plant interactions Canadian Journal of Zoology, 2010, 88, 628-667.	1.0	275
23	Behavioural and community ecology of plants that cry for help. Plant, Cell and Environment, 2009, 32, 654-665.	5.7	274
24	Developmental stage of herbivorePseudaletia separata affects production of herbivore-induced synomone by corn plants. Journal of Chemical Ecology, 1995, 21, 273-287.	1.8	268
25	PHEROMONE-MEDIATED AGGREGATION IN NONSOCIAL ARTHROPODS: An Evolutionary Ecological Perspective. Annual Review of Entomology, 2005, 50, 321-346.	11.8	265
26	Are herbivoreâ€induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods?. Entomologia Experimentalis Et Applicata, 1999, 91, 131-142.	1.4	259
27	Insect symbionts as hidden players in insect–plant interactions. Trends in Ecology and Evolution, 2012, 27, 705-711.	8.7	257
28	Metabolic and Transcriptomic Changes Induced in Arabidopsis by the Rhizobacterium <i>Pseudomonas fluorescens</i> SS101. Plant Physiology, 2012, 160, 2173-2188.	4.8	254
29	Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21202-21207.	7.1	247
30	Inducible indirect defence of plants: from mechanisms to ecological functions. Basic and Applied Ecology, 2003, 4, 27-42.	2.7	243
31	Foraging behavior of egg parasitoids exploiting chemical information. Behavioral Ecology, 2008, 19, 677-689.	2.2	237
32	Attraction of Colorado Potato Beetle to Herbivore-Damaged Plants During Herbivory and After Its Termination. Journal of Chemical Ecology, 1997, 23, 1003-1023.	1.8	228
33	Direct and Indirect Effects of Resource Quality on Food Web Structure. Science, 2008, 319, 804-807.	12.6	227
34	Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance. Plant Cell, 2014, 26, 4991-5008.	6.6	224
35	Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: Relative influence of plant and herbivore. Chemoecology, 1991, 2, 1-6.	1.1	222
36	Chemical Detection of Natural Enemies by Arthropods: An Ecological Perspective. Annual Review of Ecology, Evolution, and Systematics, 2001, 32, 1-23.	6.7	221

#	Article	IF	CITATIONS
37	Induction of parasitoid attracting synomone in brussels sprouts plants by feeding ofPieris brassicae larvae: Role of mechanical damage and herbivore elicitor. Journal of Chemical Ecology, 1994, 20, 2229-2247.	1.8	218
38	Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Molecular Ecology, 2008, 17, 3352-3365.	3.9	214
39	Differential Effectiveness of Microbially Induced Resistance Against Herbivorous Insects in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2008, 21, 919-930.	2.6	213
40	Qualitative and Quantitative Variation Among Volatile Profiles Induced by Tetranychus urticae Feeding on Plants from Various Families. Journal of Chemical Ecology, 2004, 30, 69-89.	1.8	211
41	Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes. PLoS ONE, 2011, 6, e28991.	2.5	208
42	Herbivore-Induced Resistance against Microbial Pathogens in Arabidopsis. Plant Physiology, 2006, 142, 352-363.	4.8	207
43	Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Plant Journal, 2016, 86, 249-267.	5.7	200
44	Identification of Volatiles That Are Used in Discrimination Between Plants Infested with Prey or Nonprey Herbivores by a Predatory Mite. Journal of Chemical Ecology, 2004, 30, 2215-2230.	1.8	194
45	Chemical ecology of host-plant selection by herbivorous arthropods: a multitrophic perspective. Biochemical Systematics and Ecology, 2000, 28, 601-617.	1.3	193
46	Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecology Letters, 2002, 5, 764-774.	6.4	193
47	GENETIC VARIATION IN DEFENSE CHEMISTRY IN WILD CABBAGES AFFECTS HERBIVORES AND THEIR ENDOPARASITOIDS. Ecology, 2008, 89, 1616-1626.	3.2	193
48	Induced plant defences: from molecular biology to evolutionary ecology. Basic and Applied Ecology, 2003, 4, 3-14.	2.7	188
49	The Role of Methyl Salicylate in Prey Searching Behavior of the Predatory Mite Phytoseiulus persimilis. Journal of Chemical Ecology, 2004, 30, 255-271.	1.8	188
50	Parasitoid-plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomologia Experimentalis Et Applicata, 2000, 97, 219-227.	1.4	186
51	Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence. Functional Ecology, 2013, 27, 599-609.	3.6	178
52	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	7.8	176
53	Plant volatiles and the environment. Plant, Cell and Environment, 2014, 37, 1905-1908.	5.7	174
54	Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to the aphid Myzus persicae. Entomologia Experimentalis Et Applicata, 2006, 121, 145-157.	1.4	171

#	Article	IF	Citations
55	Beneficial microbes in a changing environment: are they always helping plants to deal with insects?. Functional Ecology, 2013, 27, 574-586.	3.6	171
56	Safety evaluation of neem (Azadirachta indica) derived pesticides. Journal of Ethnopharmacology, 2004, 94, 25-41.	4.1	169
57	Performance of Generalist and Specialist Herbivores and their Endoparasitoids Differs on Cultivated and Wild Brassica Populations. Journal of Chemical Ecology, 2008, 34, 132-143.	1.8	169
58	Hyperparasitoids Use Herbivore-Induced Plant Volatiles to Locate Their Parasitoid Host. PLoS Biology, 2012, 10, e1001435.	5.6	168
59	Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experientia, 1992, 48, 525-529.	1.2	166
60	Insect-resistant transgenic plants in a multi-trophic context. Plant Journal, 2002, 31, 387-406.	5.7	161
61	Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends in Plant Science, 2008, 13, 534-541.	8.8	160
62	Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoidCotesia glomerata. Journal of Chemical Ecology, 1993, 19, 47-59.	1.8	158
63	Comparative Analysis of Headspace Volatiles from Different Caterpillar-Infested or Uninfested Food Plants of Pieris Species. Journal of Chemical Ecology, 1997, 23, 2935-2954.	1.8	158
64	Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Frontiers in Plant Science, 2011, 2, 47.	3.6	155
65	The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry, 2011, 72, 1647-1654.	2.9	154
66	How To Hunt for Hiding Hosts: the Reliability-Detectability Problem in Foraging Parasitoids. Animal Biology, 1990, 41, 202-213.	0.4	152
67	Title is missing!. Experimental and Applied Acarology, 1998, 22, 311-333.	1.6	152
68	Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels. PLoS ONE, 2012, 7, e43607.	2.5	152
69	Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. Journal of Experimental Botany, 2009, 60, 2575-2587.	4.8	151
70	Chemical information transfer between plants:. Biochemical Systematics and Ecology, 2001, 29, 981-994.	1.3	150
71	Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. Journal of Experimental Botany, 2014, 65, 2203-2217.	4.8	150
72	Direct and indirect cues of predation risk influence behavior and reproduction of prey: a case for acarine interactions. Behavioral Ecology, 1999, 10, 422-427.	2.2	149

#	Article	IF	CITATIONS
73	Using fractal dimensions for characterizing tortuosity of animal trails. Physiological Entomology, 1988, 13, 393-398.	1.5	148
74	Herbivoreâ€induced plant volatiles and tritrophic interactions across spatial scales. New Phytologist, 2017, 216, 1054-1063.	7.3	147
75	Plantâ€mediated facilitation between a leafâ€feeding and a phloemâ€feeding insect in a brassicaceous plant: from insect performance to gene transcription. Functional Ecology, 2012, 26, 156-166.	3.6	146
76	Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomologia Experimentalis Et Applicata, 1992, 64, 187-193.	1.4	145
77	Indirect Defence of Plants against Herbivores: UsingArabidopsis thalianaas a Model Plant. Plant Biology, 2004, 6, 387-401.	3.8	145
78	Leaf age affects composition of herbivore-induced synomones and attraction of predatory mites. Journal of Chemical Ecology, 1994, 20, 373-386.	1.8	144
79	Genetic architecture of plant stress resistance: multiâ€trait genomeâ€wide association mapping. New Phytologist, 2017, 213, 1346-1362.	7.3	144
80	Response of the braconid parasitoid Cotesia (=Apanteles) glomerata to volatile infochemicals: effects of bioassay setâ€up, parasitoid age and experience and barometric flux. Entomologia Experimentalis Et Applicata, 1992, 63, 163-175.	1.4	142
81	Plants talk, but are they deaf?. Trends in Plant Science, 2003, 8, 403-405.	8.8	141
82	Combined Transcript and Metabolite Analysis Reveals Genes Involved in Spider Mite Induced Volatile Formation in Cucumber Plants. Plant Physiology, 2004, 135, 2012-2024.	4.8	140
83	Flower vs. Leaf Feeding by Pieris brassicae: Glucosinolate-Rich Flower Tissues are Preferred and Sustain Higher Growth Rate. Journal of Chemical Ecology, 2007, 33, 1831-1844.	1.8	135
84	Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (<i>Hermetia illucens</i>). Entomologia Experimentalis Et Applicata, 2018, 166, 761-770.	1.4	135
85	Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: Extraction of endogenous elicitor. Journal of Chemical Ecology, 1993, 19, 581-599.	1.8	132
86	Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant, Cell and Environment, 2008, 31, 575-585.	5.7	131
87	Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway. Journal of Experimental Botany, 2002, 53, 1793-1799.	4.8	130
88	Isoprene interferes with the attraction of bodyguards by herbaceous plants. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17430-17435.	7.1	129
89	Allee effect in larval resource exploitation inDrosophila: an interaction among density of adults, larvae, and micro-organisms. Ecological Entomology, 2002, 27, 608-617.	2.2	128
90	Innate responses of the parasitoidsCotesia glomerata andC. rubecula (Hymenoptera: Braconidae) to volatiles from different plant-herbivore complexes. Journal of Insect Behavior, 1996, 9, 525-538.	0.7	127

#	Article	IF	CITATIONS
91	Insects to feed the world. Journal of Insects As Food and Feed, 2015, 1, 3-5.	3.9	121
92	AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. Journal of Experimental Botany, 2016, 67, 3383-3396.	4.8	121
93	Chemical diversity in <i>Brassica oleracea (i) affects biodiversity of insect herbivores. Ecology, 2009, 90, 1863-1877.</i>	3.2	120
94	Natural variation in learning rate and memory dynamics in parasitoid wasps: opportunities for converging ecology and neuroscience. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 889-897.	2.6	120
95	Spider Mite-Induced (3S)-(E)-Nerolidol Synthase Activity in Cucumber and Lima Bean. The First Dedicated Step in Acyclic C11-Homoterpene Biosynthesis. Plant Physiology, 1999, 121, 173-180.	4.8	119
96	Volatiles from damaged plants as major cues in longâ€range hostâ€searching by the specialist parasitoid Cotesia rubecula. Entomologia Experimentalis Et Applicata, 1994, 73, 289-297.	1.4	118
97	Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore. Journal of Chemical Ecology, 2016, 42, 1212-1225.	1.8	118
98	Learning to discriminate between infochemicals from different plant-host complexes by the parasitoids Cotesia glomerata and C. rubecula. Entomologia Experimentalis Et Applicata, 1998, 86, 241-252.	1.4	116
99	Host microhabitat location by stem-borer parasitoidCotesia flavipes: the role of herbivore volatiles and locally and systemically induced plant volatiles. Journal of Chemical Ecology, 1995, 21, 525-539.	1.8	115
100	Formation of Simple Nitriles upon Glucosinolate Hydrolysis Affects Direct and Indirect Defense Against the Specialist Herbivore, Pieris rapae. Journal of Chemical Ecology, 2008, 34, 1311-1321.	1.8	115
101	Birds exploit herbivoreâ€induced plant volatiles to locate herbivorous prey. Ecology Letters, 2013, 16, 1348-1355.	6.4	114
102	Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Functional Ecology, 2013, 27, 587-598.	3.6	114
103	Plant pathogens structure arthropod communities across multiple spatial and temporal scales. Functional Ecology, 2013, 27, 633-645.	3.6	113
104	Induction of Direct and Indirect Plant Responses by Jasmonic Acid, Low Spider Mite Densities, or a Combination of Jasmonic Acid Treatment and Spider Mite Infestation. Journal of Chemical Ecology, 2003, 29, 2651-2666.	1.8	112
105	Volatile spider-mite pheromone and host-plant kairomone, involved in spaced-out gregariousness in the spider mite Tetranychus urticae. Physiological Entomology, 1986, 11, 251-262.	1.5	110
106	Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation. Oecologia, 2000, 125, 428-435.	2.0	110
107	Nonâ€pathogenic rhizobacteria interfere with the attraction of parasitoids to aphidâ€induced plant volatiles via jasmonic acid signalling. Plant, Cell and Environment, 2013, 36, 393-404.	5.7	110
108	Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Frontiers in Plant Science, 2013, 4, 414.	3.6	110

#	Article	IF	CITATIONS
109	Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10033-10038.	7.1	109
110	Jasmonate and ethylene signaling mediate whiteflyâ€induced interference with indirect plant defense in <i>Arabidopsis thaliana ⟨/i⟩. New Phytologist, 2013, 197, 1291-1299.</i>	7.3	109
111	Ovipositionâ€induced plant cues: do they arrest Trichogramma wasps during host location?. Entomologia Experimentalis Et Applicata, 2005, 115, 207-215.	1.4	108
112	Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus. Journal of Stored Products Research, 2004, 40, 423-438.	2.6	107
113	Do plants tap SOS signals from their infested neighbours?. Trends in Ecology and Evolution, 1995, 10, 167-170.	8.7	106
114	Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia, 2009, 160, 299-308.	2.0	106
115	Ecology of plant volatiles: taking a plant community perspective. Plant, Cell and Environment, 2014, 37, 1845-1853.	5.7	103
116	Volatile infochemicals used in host and host habitat location byCotesia flavipes Cameron andCotesia sesamiae (Cameron) (Hymenoptera: Braconidae), larval parasitoids of stemborers on graminae. Journal of Chemical Ecology, 1996, 22, 307-323.	1.8	102
117	Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and ecoâ€evolutionary implications. New Phytologist, 2018, 220, 739-749.	7.3	101
118	Phytohormone Mediation of Interactions Between Herbivores and Plant Pathogens. Journal of Chemical Ecology, 2014, 40, 730-741.	1.8	99
119	Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16817-16822.	7.1	99
120	Foraging behaviour by parasitoids in multiherbivore communities. Animal Behaviour, 2013, 85, 1517-1528.	1.9	98
121	Insects for sustainable animal feed: inclusive business models involving smallholder farmers. Current Opinion in Environmental Sustainability, 2019, 41, 23-30.	6.3	98
122	Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of <i>MyzusÂpersicae</i> . Entomologia Experimentalis Et Applicata, 2007, 125, 135-144.	1.4	97
123	Symbionts protect aphids from parasitic wasps by attenuating herbivore-induced plant volatiles. Nature Communications, 2017, 8, 1860.	12.8	96
124	Exploiting natural variation to identify insectâ€resistance genes. Plant Biotechnology Journal, 2011, 9, 819-825.	8.3	95
125	Threshold temperatures and thermal requirements of black soldier fly Hermetia illucens: Implications for mass production. PLoS ONE, 2018, 13, e0206097.	2.5	94
126	Butterfly anti-aphrodisiac lures parasitic wasps. Nature, 2005, 433, 704-704.	27.8	93

#	Article	IF	Citations
127	Herbivoreâ€induced plant responses in ⟨i⟩Brassica oleracea⟨ i⟩ prevail over effects of constitutive resistance and result in enhanced herbivore attack. Ecological Entomology, 2010, 35, 240-247.	2.2	91
128	Rhizobacteria modify plant–aphid interactions: a case of induced systemic susceptibility. Plant Biology, 2012, 14, 83-90.	3.8	91
129	Root Herbivore Effects on Aboveground Multitrophic Interactions: Patterns, Processes and Mechanisms. Journal of Chemical Ecology, 2012, 38, 755-767.	1.8	90
130	Sensitivity and Speed of Induced Defense of Cabbage (Brassica oleracea L.): Dynamics of BoLOX Expression Patterns During Insect and Pathogen Attack. Molecular Plant-Microbe Interactions, 2007, 20, 1332-1345.	2.6	89
131	Prey and Non-prey Arthropods Sharing a Host Plant: Effects on Induced Volatile Emission and Predator Attraction. Journal of Chemical Ecology, 2008, 34, 281-290.	1.8	89
132	Transgenic plants as vital components of integrated pest management. Trends in Biotechnology, 2009, 27, 621-627.	9.3	89
133	Long-Distance Assessment of Patch Profitability through Volatile Infochemicals by the ParasitoidsCotesia glomerataandC. rubecula(Hymenoptera: Braconidae). Biological Control, 1998, 11, 113-121.	3.0	88
134	Herbivore-Induced Plant Volatiles Mediate In-Flight Host Discrimination by Parasitoids. Journal of Chemical Ecology, 2005, 31, 2033-2047.	1.8	88
135	Field parasitism rates of caterpillars on <i>Brassica oleracea </i> plants are reliably predicted by differential attraction of <i>Cotesia</i> parasitoids. Functional Ecology, 2009, 23, 951-962.	3.6	87
136	Airborne host–plant manipulation by whiteflies via an inducible blend of plant volatiles. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7387-7396.	7.1	87
137	Exposure of Lima Bean Leaves to Volatiles from Herbivore-Induced Conspecific Plants Results in Emission of Carnivore Attractants: Active or Passive Process?. Journal of Chemical Ecology, 2004, 30, 1305-1317.	1.8	86
138	Variation in Herbivory-induced Volatiles Among Cucumber (Cucumis sativus L.) Varieties has Consequences for the Attraction of Carnivorous Natural Enemies. Journal of Chemical Ecology, 2011, 37, 150-160.	1.8	85
139	Smelling the Wood from the Trees: Non-Linear Parasitoid Responses to Volatile Attractants Produced by Wild and Cultivated Cabbage. Journal of Chemical Ecology, 2011, 37, 795-807.	1.8	85
140	Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia, 2015, 178, 1169-1180.	2.0	83
141	Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19647-19652.	7.1	82
142	The parasitoidCotesia glomerata (Hymenoptera: Braconidae) discriminates between first and fifth larval instars of its hostPieris brassicae, on the basis of contact cues from frass, silk, and herbivore-damaged leaf tissue. Journal of Insect Behavior, 1995, 8, 485-498.	0.7	80
143	Reciprocal crosstalk between jasmonate and salicylate defence-signalling pathways modulates plant volatile emission and herbivore host-selection behaviour. Journal of Experimental Botany, 2014, 65, 3289-3298.	4.8	80
144	Prey preference of the phytoseiid miteTyphlodromus pyri 1. Response to volatile kairomones. Experimental and Applied Acarology, 1988, 4, 1-13.	1.6	79

#	Article	IF	CITATIONS
145	Differences among plant species in acceptance by the spider mite Tetranychus urticae Koch. Journal of Applied Entomology, 2003, 127, 177-183.	1.8	78
146	Ecological Genomics of Plant-Insect Interactions: From Gene to Community Â. Plant Physiology, 2008, 146, 812-817.	4.8	78
147	Canopy light cues affect emission of constitutive and methyl jasmonateâ€induced volatile organic compounds in <i><scp>A</scp>rabidopsis thaliana</i> . New Phytologist, 2013, 200, 861-874.	7.3	78
148	Insect herbivoreâ€associated organisms affect plant responses to herbivory. New Phytologist, 2014, 204, 315-321.	7.3	78
149	Analysis of prey preference in phytoseiid mites by using an olfactometer, predation models and electrophoresis. Experimental and Applied Acarology, 1988, 5, 225-241.	1.6	77
150	Mixed blends of herbivore-induced plant volatiles and foraging success of carnivorous arthropods. Oikos, 2003, 101, 38-48.	2.7	77
151	The Herbivore-Induced Plant Volatile Methyl Salicylate Negatively Affects Attraction of the Parasitoid Diadegma semiclausum. Journal of Chemical Ecology, 2010, 36, 479-489.	1.8	77
152	Natural variation in herbivore-induced volatiles in Arabidopsis thaliana. Journal of Experimental Botany, 2010, 61, 3041-3056.	4.8	77
153	Herbivore-Mediated Effects of Glucosinolates on Different Natural Enemies of a Specialist Aphid. Journal of Chemical Ecology, 2012, 38, 100-115.	1.8	77
154	Insects as sources of iron and zinc in human nutrition. Nutrition Research Reviews, 2018, 31, 248-255.	4.1	77
155	Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica on the biology of two parasitoid species of the diamondback moth. Biological Control, 2005, 33, 131-142.	3.0	76
156	Genotypic variation in genome-wide transcription profiles induced by insect feeding: Brassica oleracea – Pieris rapae interactions. BMC Genomics, 2007, 8, 239.	2.8	75
157	Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids. Oecologia, 2015, 177, 701-713.	2.0	75
158	Jasmonic Acid-Induced Changes in Brassica oleracea Affect Oviposition Preference of Two Specialist Herbivores. Journal of Chemical Ecology, 2007, 33, 655-668.	1.8	74
159	Chemical ecology of interactions between human skin microbiota and mosquitoes. FEMS Microbiology Ecology, 2010, 74, 1-9.	2.7	74
160	Automated video tracking of thrips behavior to assess host-plant resistance in multiple parallel two-choice setups. Plant Methods, 2016, 12, 1.	4.3	74
161	Within-plant circulation of systemic elicitor of induced defence and release from roots of elicitor that affects neighbouring plants. Biochemical Systematics and Ecology, 2001, 29, 1075-1087.	1.3	72
162	The <i>Arabidopsis thaliana</i> Transcription Factor AtMYB102 Functions in Defense Against The Insect Herbivore <i>Pieris rapae</i> Plant Signaling and Behavior, 2006, 1, 305-311.	2.4	72

#	Article	IF	CITATIONS
163	Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis. Entomologia Experimentalis Et Applicata, 1999, 93, 77-86.	1.4	71
164	Intrinsic rate of population increase of the spider mite Tetranychus urticae on the ornamental crop gerbera: intraspecific variation in host plant and herbivore. Entomologia Experimentalis Et Applicata, 1998, 89, 159-168.	1.4	70
165	Leaf pubescence and two-spotted spider mite webbing influence phytoseiid behavior and population density. Oecologia, 2001, 129, 551-560.	2.0	70
166	Offering offspring as food to cannibals: oviposition strategies of Amazonian poison frogs (Dendrobates ventrimaculatus). Evolutionary Ecology, 2007, 21, 215-227.	1.2	70
167	Redefining plant systems biology: from cell to ecosystem. Trends in Plant Science, 2011, 16, 183-190.	8.8	70
168	Induced plant volatiles: from genes to climate change. Trends in Plant Science, 2010, 15, 115-117.	8.8	69
169	Role of volatile inforchemicals emitted by feces of larvae in host-searching behavior of parasitoidCotesia rubecula (Hymenoptera: Braconidae): A behavioral and chemical study. Journal of Chemical Ecology, 1995, 21, 1789-1811.	1.8	68
170	Are population differences in plant quality reflected in the preference and performance of two endoparasitoid wasps?. Oikos, 2009, 118, 733-742.	2.7	68
171	Nutritional composition of black soldier fly larvae feeding on agroâ€industrial byâ€products. Entomologia Experimentalis Et Applicata, 2020, 168, 472-481.	1.4	68
172	Nextâ€generation biological control: the need for integrating genetics and genomics. Biological Reviews, 2020, 95, 1838-1854.	10.4	67
173	Phenotypic plasticity of plant response to herbivore eggs: effects on resistance to caterpillars and plant development. Ecology, 2013, 94, 702-713.	3.2	66
174	Caterpillarâ€induced plant volatiles remain a reliable signal for foraging wasps during dual attack with a plant pathogen or nonâ€host insect herbivore. Plant, Cell and Environment, 2014, 37, 1924-1935.	5.7	66
175	Thrips advisor: exploiting thrips-induced defences to combat pests on crops. Journal of Experimental Botany, 2018, 69, 1837-1848.	4.8	66
176	Promises and challenges in insect–plant interactions. Entomologia Experimentalis Et Applicata, 2018, 166, 319-343.	1.4	66
177	Coexistence and niche segregation by field populations of the parasitoids Cotesia glomerata and C. rubecula in the Netherlands: predicting field performance from laboratory data. Oecologia, 2000, 124, 55-63.	2.0	65
178	Inhibition of lipoxygenase affects induction of both direct and indirect plant defences against herbivorous insects. Oecologia, 2010, 162, 393-404.	2.0	64
179	Responses of <i>Brassica oleracea</i> cultivars to infestation by the aphid <i>Brevicoryne brassicae</i> : an ecological and molecular approach. Plant, Cell and Environment, 2008, 31, 1592-1605.	5.7	63
180	Association mapping of plant resistance to insects. Trends in Plant Science, 2012, 17, 311-319.	8.8	63

#	Article	IF	Citations
181	Effects of aggregation pheromone on individual behaviour and food web interactions: a field study on Drosophila. Ecological Entomology, 2006, 31, 216-226.	2.2	62
182	Bidirectional Secretions from Glandular Trichomes of Pyrethrum Enable Immunization of Seedlings. Plant Cell, 2012, 24, 4252-4265.	6.6	62
183	Genomeâ€wide association analysis reveals distinct genetic architectures for single and combined stress responses in <i>Arabidopsis thaliana</i> . New Phytologist, 2017, 213, 838-851.	7.3	62
184	Nitrogen Availability and Defense of Tomato Against Two-spotted Spider Mite. Journal of Chemical Ecology, 2000, 26, 2697-2711.	1.8	61
185	Behavioural plasticity in support of a benefit for aggregation pheromone use in Drosophila melanogaster. Entomologia Experimentalis Et Applicata, 2002, 103, 61-71.	1.4	61
186	Folivory Affects Composition of Nectar, Floral Odor and Modifies Pollinator Behavior. Journal of Chemical Ecology, 2014, 40, 39-49.	1.8	61
187	Visual and odour cues: plant responses to pollination and herbivory affect the behaviour of flower visitors. Functional Ecology, 2016, 30, 431-441.	3.6	61
188	Combined biotic stresses trigger similar transcriptomic responses but contrasting resistance against a chewing herbivore in Brassica nigra. BMC Plant Biology, 2017, 17, 127.	3.6	61
189	Reproductive escape: annual plant responds to butterfly eggs by accelerating seed production. Functional Ecology, 2013, 27, 245-254.	3.6	60
190	Predatory mites learn to discriminate between plant volatiles induced by prey and nonprey herbivores. Animal Behaviour, 2005, 69, 869-879.	1.9	59
191	Trading direct for indirect defense? Phytochrome B inactivation in tomato attenuates direct antiâ€herbivore defenses whilst enhancing volatileâ€mediated attraction of predators. New Phytologist, 2016, 212, 1057-1071.	7.3	59
192	Insects as feed and the Sustainable Development Goals. Journal of Insects As Food and Feed, 2018, 4, 147-156.	3.9	59
193	Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid. Phytochemistry, 2012, 77, 162-170.	2.9	58
194	Defensive insect symbiont leads to cascading extinctions and community collapse. Ecology Letters, 2016, 19, 789-799.	6.4	58
195	LEDs Make It Resilient: Effects on Plant Growth and Defense. Trends in Plant Science, 2021, 26, 496-508.	8.8	58
196	Hitch-hiking parasitic wasp learns to exploit butterfly antiaphrodisiac. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 820-825.	7.1	56
197	Larval parasitoid uses aggregation pheromone of adult hosts in foraging behaviour: a solution to the reliability-detectability problem. Oecologia, 1993, 93, 145-148.	2.0	55
198	Plant Effects on Parasitoid Foraging: Differences between Two Tritrophic Systems. Biological Control, 1998, 11, 97-103.	3.0	55

#	Article	IF	Citations
199	Response of the zoophytophagous predators Macrolophus pygmaeus and Nesidiocoris tenuis to volatiles of uninfested plants and to plants infested by prey or conspecifics. BioControl, 2014, 59, 707-718.	2.0	55
200	Density-Dependent Interference of Aphids with Caterpillar-Induced Defenses in Arabidopsis: Involvement of Phytohormones and Transcription Factors. Plant and Cell Physiology, 2015, 56, 98-106.	3.1	55
201	Variation in plantâ€mediated interactions between rhizobacteria and caterpillars: potential role of soil composition. Plant Biology, 2015, 17, 474-483.	3.8	55
202	Plant phenotypic plasticity in the phytobiome: a volatile issue. Current Opinion in Plant Biology, 2016, 32, 17-23.	7.1	55
203	Effect of Dietary Replacement of Fishmeal by Insect Meal on Growth Performance, Blood Profiles and Economics of Growing Pigs in Kenya. Animals, 2019, 9, 705.	2.3	55
204	Effects of waste stream combinations from brewing industry on performance of Black Soldier Fly, <i>Hermetia illucens</i> (Diptera: Stratiomyidae). PeerJ, 2018, 6, e5885.	2.0	55
205	Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5205-5210.	7.1	54
206	Effects of dietary protein and carbohydrate on lifeâ€history traits and body protein and fat contents of the black soldier fly <scp><i>Hermetia illucens</i></scp> . Physiological Entomology, 2019, 44, 148-159.	1.5	54
207	Use of black soldier fly and house fly in feed to promote sustainable poultry production. Journal of Insects As Food and Feed, 2021, 7, 761-780.	3.9	54
208	Do phytoseiid mites select the best prey species in terms of reproductive success?. Experimental and Applied Acarology, 1990, 8, 161-173.	1.6	53
209	Effect of prior drought and pathogen stress on <i>Arabidopsis</i> transcriptome changes to caterpillar herbivory. New Phytologist, 2016, 210, 1344-1356.	7.3	53
210	Generalist and Specialist Parasitoid Strategies of Using Odours of Adult Drosophilid Flies When Searching for Larval Hosts. Oikos, 1996, 77, 390.	2.7	52
211	Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator Phytoseiulus persimilis. Journal of Chemical Ecology, 2001, 27, 1355-1372.	1.8	52
212	Chemical information transfer between wounded and unwounded plants: backing up the future. Biochemical Systematics and Ecology, 2001, 29, 1103-1113.	1.3	52
213	Attraction of the specialist parasitoid Cotesia rubecula to Arabidopsis thaliana infested by host or non-host herbivore species. Entomologia Experimentalis Et Applicata, 2003, 107, 229-236.	1.4	52
214	Impact of botanical extracts derived from Melia azedarach and Azadirachta indica on populations of Plutella xylostella and its natural enemies: A field test of laboratory findings. Biological Control, 2006, 39, 105-114.	3.0	52
215	Temporal changes affect plant chemistry and tritrophic interactions. Basic and Applied Ecology, 2007, 8, 421-433.	2.7	52
216	Observations and model estimates of diurnal water temperature dynamics in mosquito breeding sites in western Kenya. Hydrological Processes, 2008, 22, 4789-4801.	2.6	52

#	Article	IF	CITATIONS
217	Induction of indirect defence aganist spider-mites in uninfested lima bean leaves. Phytochemistry, 1991, 30, 1459-1462.	2.9	51
218	Title is missing!. Journal of Chemical Ecology, 2000, 26, 1433-1445.	1.8	51
219	Olfactory learning by predatory arthropods. Animal Biology, 2006, 56, 143-155.	1.0	51
220	Parasitoid load affects plant fitness in a tritrophic system. Entomologia Experimentalis Et Applicata, 2008, 128, 172-183.	1.4	51
221	Relative importance of plant-mediated bottom-up and top-down forces on herbivore abundance on Brassica oleracea. Functional Ecology, 2011, 25, 1113-1124.	3.6	51
222	Chemical stimuli in host-habitat location byLeptopilina heterotoma (Thomson) (Hymenoptera:) Tj ETQq0 0 0 rgBT	/Qyerlock	2 10 Tf 50 54
223	Mixtures of plant secondary metabolites. , 2012, , 56-77.		50
224	Volatile-mediated foraging behaviour of three parasitoid species under conditions of dual insect herbivore attack. Animal Behaviour, 2016, 111, 197-206.	1.9	50
225	Title is missing!. Journal of Chemical Ecology, 1999, 25, 2313-2325.	1.8	49
226	Acaricomes phytoseiuli gen. nov., sp. nov., isolated from the predatory mite Phytoseiulus persimilis. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 465-469.	1.7	49
227	Hierarchical structure in kairomone preference of the predatory mite <i>Amblyseius potentillae:</i> dietary component indispensable for diapause induction affects prey location behaviour. Ecological Entomology, 1986, 11, 131-138.	2.2	48
228	Anti-aphrodisiac Compounds of Male Butterflies Increase the Risk of Egg Parasitoid Attack by Inducing Plant Synomone Production. Journal of Chemical Ecology, 2009, 35, 1373-1381.	1.8	48
229	Regulation of the expression oftufAandtufB, the two genes coding for the elongation factor EF-Tu inescherichia coli. FEBS Letters, 1982, 139, 325-330.	2.8	47
230	Increased risk of parasitism as ecological costs of using aggregation pheromones: laboratory and field study of Drosophila-Leptopilina interaction. Oikos, 2003, 100, 269-282.	2.7	47
231	Behavioural responses of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) to extracts derived from Melia azedarach and Azadirachta indica. Bulletin of Entomological Research, 2005, 95, 457-465.	1.0	47
232	Ecogenomic approach to the role of herbivore-induced plant volatiles in community ecology. Journal of Ecology, 2007, 95, 17-26.	4.0	47
233	The diamondback moth, Plutella xylostella, specifically inactivates Mustard Trypsin Inhibitor 2 (MTI2) to overcome host plant defence. Insect Biochemistry and Molecular Biology, 2009, 39, 55-61.	2.7	47
234	Insect frass and exuviae to promote plant growth and health. Trends in Plant Science, 2022, 27, 646-654.	8.8	47

#	Article	IF	Citations
235	Soil environment and activity of soil microflora in the Negev desert. Journal of Arid Environments, 1982, 5, 13-28.	2.4	46
236	Effects of Volatiles from Maruca vitrata Larvae and Caterpillar-Infested Flowers of Their Host Plant Vigna unguiculata on the Foraging Behavior of the Parasitoid Apanteles taragamae. Journal of Chemical Ecology, 2010, 36, 1083-1091.	1.8	46
237	Herbivoreâ€induced volatiles of cabbage (<i>Brassica oleracea⟨i⟩) prime defence responses in neighbouring intact plants. Plant Biology, 2011, 13, 276-284.</i>	3.8	46
238	Plants under multiple herbivory: consequences for parasitoid search behaviour and foraging efficiency. Animal Behaviour, 2012, 83, 501-509.	1.9	46
239	Neonates know better than their mothers when selecting a host plant. Oikos, 2012, 121, 1923-1934.	2.7	46
240	Experience with methyl salicylate affects behavioural responses of a predatory mite to blends of herbivore-induced plant volatiles. Entomologia Experimentalis Et Applicata, 2004, 110, 181-189.	1.4	45
241	Functional response and life history parameters of Apanteles taragamae, a larval parasitoid of Maruca vitrata. BioControl, 2010, 55, 363-378.	2.0	45
242	Prey-mediated effects of glucosinolates on aphid predators. Ecological Entomology, 2011, 36, 377-388.	2.2	45
243	Early herbivore alert matters: plantâ€mediated effects of egg deposition on higher trophic levels benefit plant fitness. Ecology Letters, 2015, 18, 927-936.	6.4	45
244	Attraction of egg-killing parasitoids toward induced plant volatiles in a multi-herbivore context. Oecologia, 2015, 179, 163-174.	2.0	45
245	Vitamin a deficiency modifies response of predatory miteAmblyseius potentillae to volatile kairomone of two-spotted spider mite,Tetranychus urticae. Journal of Chemical Ecology, 1986, 12, 1389-1396.	1.8	44
246	Recognising one's enemies: a functional approach to risk assessment by prey. Behavioral Ecology and Sociobiology, 2000, 47, 258-264.	1.4	44
247	Differential effects of jasmonic acid treatment of Brassica nigra on the attraction of pollinators, parasitoids, and butterflies. Entomologia Experimentalis Et Applicata, 2008, 128, 109-116.	1.4	44
248	Microbial Symbionts of Parasitoids. Annual Review of Entomology, 2020, 65, 171-190.	11.8	44
249	Smallholder farmers' knowledge and willingness to pay for insect-based feeds in Kenya. PLoS ONE, 2020, 15, e0230552.	2.5	44
250	Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid. Pest Management Science, 2013, 69, 302-311.	3.4	43
251	Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. Oecologia, 2019, 190, 589-604.	2.0	43
252	Title is missing!. Journal of Chemical Ecology, 1999, 25, 2623-2641.	1.8	42

#	Article	IF	Citations
253	Variation in the specificity of plant volatiles and their use by a specialist and a generalist parasitoid. Animal Behaviour, 2012, 83, 1231-1242.	1.9	42
254	Induced plant responses to microbes and insects. Frontiers in Plant Science, 2013, 4, 475.	3.6	42
255	Genetic Variation in Jasmonic Acid- and Spider Mite-Induced Plant Volatile Emission of Cucumber Accessions and Attraction of the Predator Phytoseiulus persimilis. Journal of Chemical Ecology, 2010, 36, 500-512.	1.8	41
256	Induced defence in detached uninfested plant leaves: effects on behaviour of herbivores and their predators. Oecologia, 1992, 91, 554-560.	2.0	40
257	The effect of direct and indirect defenses in two wild brassicaceous plant species on a specialist herbivore and its gregarious endoparasitoid. Entomologia Experimentalis Et Applicata, 2008, 128, 99-108.	1.4	40
258	Disruption of plant carotenoid biosynthesis through virusâ€induced gene silencing affects oviposition behaviour of the butterfly <i>Pieris rapae</i> . New Phytologist, 2010, 186, 733-745.	7.3	40
259	Parasitism overrides herbivore identity allowing hyperparasitoids to locate their parasitoid host using herbivoreâ€induced plant volatiles. Molecular Ecology, 2015, 24, 2886-2899.	3.9	40
260	Protecting the environment through insect farming as a means to produce protein for use as livestock, poultry, and aquaculture feed. Journal of Insects As Food and Feed, 2015, 1, 307-309.	3.9	39
261	Dual herbivore attack and herbivore density affect metabolic profiles of <i>Brassica nigra</i> leaves. Plant, Cell and Environment, 2017, 40, 1356-1367.	5.7	39
262	When does it pay off to prime for defense? A modeling analysis. New Phytologist, 2017, 216, 782-797.	7.3	39
263	Indirect plant-mediated interactions among parasitoid larvae. Ecology Letters, 2011, 14, 670-676.	6.4	38
264	Natural variation in learning and memory dynamics studied by artificial selection on learning rate in parasitic wasps. Animal Behaviour, 2011, 81, 325-333.	1.9	38
265	Temporal changes in plant secondary metabolite production. , 2012, , 34-55.		38
266	SIEVE ELEMENT-LINING CHAPERONE1 Restricts Aphid Feeding on Arabidopsis during Heat Stress. Plant Cell, 2017, 29, 2450-2464.	6.6	38
267	Ecology of Plastic Flowers. Trends in Plant Science, 2019, 24, 725-740.	8.8	38
268	Prey preference of the phytoseiid miteTyphlodromus pyri 2. Electrophoretic diet analysis. Experimental and Applied Acarology, 1988, 4, 15-25.	1.6	36
269	Pyrethrins Protect Pyrethrum Leaves Against Attack by Western Flower Thrips, Frankliniella occidentalis. Journal of Chemical Ecology, 2012, 38, 370-377.	1.8	36
270	Plantâ€mediated effects of butterfly egg deposition on subsequent caterpillar and pupal development, across different species of wild Brassicaceae. Ecological Entomology, 2015, 40, 444-450.	2.2	36

#	Article	IF	Citations
271	Genomeâ€wide association mapping of the architecture of susceptibility to the rootâ€knot nematode <i>Meloidogyne incognita</i> in <i>Arabidopsis thaliana</i> New Phytologist, 2018, 218, 724-737.	7.3	36
272	Performance of the Black Soldier Fly (Diptera: Stratiomyidae) on Vegetable Residue-Based Diets Formulated Based on Protein and Carbohydrate Contents. Journal of Economic Entomology, 2018, 111, 2676-2683.	1.8	36
273	Quality control of massâ€reared arthropods: Nutritional effects on performance of predatory mites ¹ . Journal of Applied Entomology, 1989, 108, 462-475.	1.8	35
274	Hostâ€age discrimination during host location by <i>Cotesia glomerata</i> , a larval parasitoid of <i>Pieris brassicae</i> . Entomologia Experimentalis Et Applicata, 1995, 76, 37-48.	1.4	35
275	Aggregation pheromones of Drosophila immigrans, D. phalerata, and D. subobscura. Journal of Chemical Ecology, 1996, 22, 1835-1844.	1.8	35
276	The use of aggregation pheromone to enhance dissemination of Beauveria bassianafor the control of the banana weevil in Uganda. Biocontrol Science and Technology, 2007, 17, 111-124.	1.3	35
277	The Response Specificity of Trichogramma Egg Parasitoids towards Infochemicals during Host Location. Journal of Insect Behavior, 2007, 20, 53-65.	0.7	35
278	Do parasitized caterpillars protect their parasitoids from hyperparasitoids? A test of the †usurpation hypothesis'. Animal Behaviour, 2008, 76, 701-708.	1.9	35
279	The role of volatiles in aggregation and host-seeking of the haematophagous poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae). Experimental and Applied Acarology, 2010, 50, 191-199.	1.6	35
280	Symbiont-mediated adaptation by planthoppers and leafhoppers to resistant rice varieties. Arthropod-Plant Interactions, 2013, 7, 591-605.	1.1	35
281	Parasitic waspâ€associated symbiont affects plantâ€mediated species interactions between herbivores. Ecology Letters, 2018, 21, 957-967.	6.4	34
282	Insights in the Global Genetics and Gut Microbiome of Black Soldier Fly, Hermetia illucens: Implications for Animal Feed Safety Control. Frontiers in Microbiology, 2020, 11, 1538.	3.5	34
283	Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores. Applied Entomology and Zoology, 2003, 38, 365-368.	1.2	33
284	Performance and feeding behaviour of two biotypes of the black currant-lettuce aphid, <i>Nasonovia ribisnigri</i> , on resistant and susceptible <i>Lactuca sativa</i> near-isogenic lines. Bulletin of Entomological Research, 2013, 103, 511-521.	1.0	33
285	Food plant and herbivore host species affect the outcome of intrinsic competition among parasitoid larvae. Ecological Entomology, 2014, 39, 693-702.	2.2	33
286	Variation in herbivoreâ€induced plant volatiles corresponds with spatial heterogeneity in the level of parasitoid competition and parasitoid exposure to hyperparasitism. Functional Ecology, 2013, 27, 1107-1116.	3.6	32
287	Intra-specific variation in wild Brassica oleracea for aphid-induced plant responses and consequences for caterpillar–parasitoid interactions. Oecologia, 2014, 174, 853-862.	2.0	32
288	Genome-wide identification, classification and expression of lipoxygenase gene family in pepper. Plant Molecular Biology, 2018, 98, 375-387.	3.9	32

#	Article	IF	CITATIONS
289	Caught between Parasitoids and Predators – Survival of a Specialist Herbivore on Leaves and Flowers of Mustard Plants. Journal of Chemical Ecology, 2014, 40, 621-631.	1.8	31
290	High-throughput phenotyping of plant resistance to aphids by automated video tracking. Plant Methods, $2015,11,4.$	4.3	31
291	Compatible and incompatible pathogen–plant interactions differentially affect plant volatile emissions and the attraction of parasitoid wasps. Functional Ecology, 2016, 30, 1779-1789.	3.6	31
292	Negative impact of drought stress on a generalist leaf chewer and a phloem feeder is associated with, but not explained by an increase in herbivore-induced indole glucosinolates. Environmental and Experimental Botany, 2016, 123, 88-97.	4.2	31
293	Plantâ€mediated interactions between two herbivores differentially affect a subsequently arriving third herbivore in populations of wild cabbage. Plant Biology, 2016, 18, 981-991.	3.8	31
294	Intraspecific variation in herbivoreâ€induced plant volatiles influences the spatial range of plant–parasitoid interactions. Oikos, 2019, 128, 77-86.	2.7	31
295	Involvement of sweet pepper <i>CaLOX2</i> in jasmonateâ€dependent induced defence against Western flower thrips. Journal of Integrative Plant Biology, 2019, 61, 1085-1098.	8.5	31
296	Foliar herbivory by caterpillars and aphids differentially affects phytohormonal signalling in roots and plant defence to a root herbivore. Plant, Cell and Environment, 2020, 43, 775-786.	5.7	31
297	Intensification and prolongation of host searching inLeptopilina heterotoma (Thomson) (Hymenoptera: Eucoilidae) through a kairomone produced byDrosophila melanogaster. Journal of Chemical Ecology, 1985, 11, 125-136.	1.8	30
298	Does prey preference change as a result of prey species being presented together? Analysis of prey selection by the predatory mite Typhlodromus pyri (Acarina: Phytoseiidae). Oecologia, 1989, 81, 302-309.	2.0	30
299	Induced response of tomato plants to injury by green and red strains of Tetranychus urticae. Experimental and Applied Acarology, 2000, 24, 377-383.	1.6	30
300	Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species. Bulletin of Entomological Research, 2002, 92, 539-546.	1.0	30
301	Effects of prey mite species on life history of the phytoseiid predators Typhlodromalus manihoti and Typhlodromalus aripo. Experimental and Applied Acarology, 2003, 30, 265-278.	1.6	30
302	Signal transduction downstream of salicylic and jasmonic acid in herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1. Plant, Cell and Environment, 2003, 26, 1541-1548.	5.7	30
303	Herbivore-Induced Indirect Defense: From Induction Mechanisms to Community Ecology. , 2008, , 31-60.		30
304	The use of ovipositionâ€induced plant cues by <i>Trichogramma</i> egg parasitoids. Ecological Entomology, 2010, 35, 748-753.	2.2	30
305	Combined effects of patch size and plant nutritional quality on local densities of insect herbivores. Basic and Applied Ecology, 2010, 11, 396-405.	2.7	30
306	Transcriptional responses of Brassica nigra to feeding by specialist insects of different feeding guilds. Insect Science, 2011, 18, 259-272.	3.0	30

#	Article	IF	CITATIONS
307	Comparative analysis of <i>Solanum stoloniferum</i> responses to probing by the green peach aphid <i>Myzus persicae</i> and the potato aphid <i>Macrosiphum euphorbiae</i> Insect Science, 2013, 20, 207-227.	3.0	30
308	Varied responses by yeast-like symbionts during virulence adaptation in a monophagous phloem-feeding insect. Arthropod-Plant Interactions, 2015, 9, 215-224.	1.1	30
309	Plant response to butterfly eggs: inducibility, severity and success of egg-killing leaf necrosis depends on plant genotype and egg clustering. Scientific Reports, 2017, 7, 7316.	3.3	30
310	Order of herbivore arrival on wild cabbage populations influences subsequent arthropod community development. Oikos, 2018, 127, 1482-1493.	2.7	30
311	Orientation behaviour of the predatory hemipteran Perillus bioculatus to plant and prey odours. Entomologia Experimentalis Et Applicata, 2000, 96, 51-58.	1.4	29
312	Multidisciplinary Approach to Unravelling the Relative Contribution of Different Oxylipins in Indirect Defense of Arabidopsis thaliana. Journal of Chemical Ecology, 2009, 35, 1021-1031.	1.8	29
313	Intraspecific variation in herbivore community composition and transcriptional profiles in field-grown Brassica oleracea cultivars. Journal of Experimental Botany, 2010, 61, 807-819.	4.8	29
314	Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission. Journal of Experimental Botany, 2014, 65, 4821-4831.	4.8	29
315	To be in time: egg deposition enhances plant-mediated detection of young caterpillars by parasitoids. Oecologia, 2015, 177, 477-486.	2.0	29
316	Leaf metabolic signatures induced by real and simulated herbivory in black mustard (Brassica nigra). Metabolomics, 2019, 15, 130.	3.0	29
317	Defense of pyrethrum flowers: repelling herbivores and recruiting carnivores by producing aphid alarm pheromone. New Phytologist, 2019, 223, 1607-1620.	7.3	29
318	Change in Behavioral Response to Herbivore-induced Plant Volatiles in a Predatory Mite Population. Journal of Chemical Ecology, 2000, 26, 1497-1514.	1.8	28
319	Attraction of a predator to chemical information related to nonprey: when can it be adaptive?. Behavioral Ecology, 2000, 11 , 606-613.	2.2	28
320	Ecological interactions shape the adaptive value of plant defence: Herbivore attack versus competition for light. Functional Ecology, 2019, 33, 129-138.	3 . 6	28
321	Use of visual and olfactory cues of flowers of two brassicaceous species by insect pollinators. Ecological Entomology, 2020, 45, 45-55.	2.2	28
322	Impacts of farmer field schools in the human, social, natural and financial domain: a qualitative review. Food Security, 2020, 12, 1443-1459.	5. 3	28
323	Black Soldier Fly-Composted Organic Fertilizer Enhances Growth, Yield, and Nutrient Quality of Three Key Vegetable Crops in Sub-Saharan Africa. Frontiers in Plant Science, 2021, 12, 680312.	3.6	28
324	Change in foraging behaviour of the predatory mite Phytoseiulus persimilis after exposure to dead conspecifics and their products. Entomologia Experimentalis Et Applicata, 1998, 88, 295-300.	1.4	27

#	Article	IF	Citations
325	Impact of Botanical Pesticides Derived from Melia azedarach and Azadirachta indica Plants on the Emission of Volatiles that Attract Parasitoids of the Diamondback Moth to Cabbage Plants. Journal of Chemical Ecology, 2006, 32, 325-349.	1.8	27
326	Space Use of Amazonian Poison Frogs: Testing the Reproductive Resource Defense Hypothesis. Journal of Herpetology, 2008, 42, 270-278.	0.5	27
327	Validation of an automated mite counter for Dermanyssus gallinae in experimental laying hen cages. Experimental and Applied Acarology, 2015, 66, 589-603.	1.6	27
328	Receptor cell responses in the anterior tarsi of Phytoseiulus persimilis to volatile kairomone components. Experimental and Applied Acarology, 1991, 13, 53-58.	1.6	26
329	Differential Costs of Two Distinct Resistance Mechanisms Induced by Different Herbivore Species in Arabidopsis. Plant Physiology, 2016, 170, 891-906.	4.8	26
330	Transcriptional and metabolite analysis reveal a shift in direct and indirect defences in response to spider-mite infestation in cucumber (Cucumis sativus). Plant Molecular Biology, 2020, 103, 489-505.	3.9	26
331	Factors influencing the occurrence of fall armyworm parasitoids in Zambia. Journal of Pest Science, 2021, 94, 1133-1146.	3.7	26
332	Infochemical-mediated intraguild interactions among three predatory mites on cassava plants. Oecologia, 2003, 135, 84-90.	2.0	25
333	Efficacy of plant extracts against the cowpea beetle, Callosobruchus maculatus. International Journal of Pest Management, 2004, 50, 251-258.	1.8	25
334	ECOLOGY: Enhanced: Ecogenomics Benefits Community Ecology. Science, 2004, 305, 618-619.	12.6	25
335	Comparison of thread-cutting behavior in three specialist predatory mites to cope with complex webs of Tetranychus spider mites. Experimental and Applied Acarology, 2009, 47, 111-120.	1.6	25
336	Caterpillars induce jasmonates in flowers and alter plant responses to a second attacker. New Phytologist, 2018, 217, 1279-1291.	7.3	25
337	Role of volatile infochemicals in foraging behavior of the leafminer parasitoidDacnusa sibirica (Diptera: Agromyzidae). Journal of Insect Behavior, 1991, 4, 489-500.	0.7	24
338	Do apes smell like humans? The role of skin bacteria and volatiles of primates in mosquito host selection. Journal of Experimental Biology, 2018, 221, .	1.7	24
339	Nutritional plasticity of the black soldier fly (Hermetia illucens) in response to artificial diets varying in protein and carbohydrate concentrations. Journal of Insects As Food and Feed, 2021, 7, 51-61.	3.9	24
340	Interactive Effects of Cabbage Aphid and Caterpillar Herbivory on Transcription of Plant Genes Associated with Phytohormonal Signalling in Wild Cabbage. Journal of Chemical Ecology, 2016, 42, 793-805.	1.8	23
341	Natural variation in life history strategy of <i>Arabidopsis thaliana</i> determines stress responses to drought and insects of different feeding guilds. Molecular Ecology, 2017, 26, 2959-2977.	3.9	23
342	Development of a model forecasting Dermanyssus gallinae's population dynamics for advancing Integrated Pest Management in laying hen facilities. Veterinary Parasitology, 2017, 245, 128-140.	1.8	23

#	Article	IF	CITATIONS
343	Exploiting the chemical ecology of mosquito oviposition behavior in mosquito surveillance and control: a review. Journal of Vector Ecology, 2020, 45, 155-179.	1.0	23
344	Plant responses to butterfly oviposition partly explain preference–performance relationships on different brassicaceous species. Oecologia, 2020, 192, 463-475.	2.0	23
345	Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage–insect interactions through plant–soil feedback. New Phytologist, 2021, 232, 2475-2490.	7.3	23
346	Compatibility of Host Plant Resistance and Biological Control of the Two-Spotted Spider Mite Tetranychus urticae in the Ornamental Crop Gerbera. Biological Control, 1999, 16, 155-163.	3.0	22
347	Novel bacterial pathogen Acaricomes phytoseiuli causes severe disease symptoms and histopathological changes in the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae). Journal of Invertebrate Pathology, 2008, 98, 127-135.	3.2	22
348	Body Odors of Parasitized Caterpillars Give Away the Presence of Parasitoid Larvae to Their Primary Hyperparasitoid Enemies. Journal of Chemical Ecology, 2014, 40, 986-995.	1.8	22
349	Endure and call for help: strategies of black mustard plants to deal with a specialized caterpillar. Functional Ecology, 2017, 31, 325-333.	3.6	22
350	What makes a volatile organic compound a reliable indicator of insect herbivory?. Plant, Cell and Environment, 2019, 42, 3308-3325.	5.7	22
351	Context-Dependence and the Development of Push-Pull Approaches for Integrated Management of Drosophila suzukii. Insects, 2019, 10, 454.	2.2	22
352	Edible insects unlikely to contribute to transmission of coronavirus SARS-CoV-2. Journal of Insects As Food and Feed, 2020, 6, 333-339.	3.9	22
353	Specificity of Herbivoreâ€Induced Plant Defences. Novartis Foundation Symposium, 1999, 223, 43-59.	1.1	22
354	Silencing Defense Pathways in Arabidopsis by Heterologous Gene Sequences from Brassica oleracea Enhances the Performance of a Specialist and a Generalist Herbivorous Insect. Journal of Chemical Ecology, 2011, 37, 818-829.	1.8	21
355	Proximate mechanisms of drought resistance in Phytoseiulus persimilis eggs. Experimental and Applied Acarology, 2019, 79, 279-298.	1.6	21
356	Use of semiochemicals for surveillance and control of hematophagous insects. Chemoecology, 2020, 30, 277-286.	1.1	21
357	Feeding behaviour and performance of different populations of the black currantâ€lettuce aphid, <i><scp>N</scp>asonovia ribisnigri</i> , on resistant and susceptible lettuce. Entomologia Experimentalis Et Applicata, 2013, 148, 130-141.	1.4	21
358	Attraction of the predatory mites Typhlodromalus manihoti and Typhlodromalus aripo to cassava plants infested by cassava green mite. Entomologia Experimentalis Et Applicata, 2001, 101, 291-298.	1.4	20
359	Oviposition preference of Lygocoris pabulinus (Het., Miridae) in relation to plants and conspecifics. Journal of Applied Entomology, 2003, 127, 65-71.	1.8	20
360	Different bioassays for investigating orientation responses of the banana weevil, Cosmopolites sordidus, show additive effects of host plant volatiles and a synthetic male-produced aggregation pheromone. Entomologia Experimentalis Et Applicata, 2003, 106, 169-175.	1.4	20

#	Article	IF	Citations
361	Information use by the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae), a specialised natural enemy of herbivorous spider mites. Applied Entomology and Zoology, 2005, 40, 1-12.	1.2	20
362	Insect oviposition behavior affects the evolution of adaptation to Bt crops: consequences for refuge policies. Evolutionary Ecology, 2010, 24, 1017-1030.	1.2	20
363	Isoprene emission by poplar is not important for the feeding behaviour of poplar leaf beetles. BMC Plant Biology, 2015, 15, 165.	3.6	20
364	Feeding guild of nonâ€host community members affects hostâ€foraging efficiency of a parasitic wasp. Ecology, 2016, 97, 1388-1399.	3.2	20
365	Plantâ€mediated species networks: the modulating role of herbivore density. Ecological Entomology, 2017, 42, 449-457.	2.2	20
366	Why do plants ?talk??. Chemoecology, 1994, 5-6, 159-165.	1.1	19
367	Plants Under Attack. Plant Signaling and Behavior, 2007, 2, 527-529.	2.4	19
368	Verified and potential pathogens of predatory mites (Acari: Phytoseiidae). Experimental and Applied Acarology, 2008, 46, 307-328.	1.6	19
369	Consequences of constitutive and induced variation in the host's food plant quality for parasitoid larval development. Journal of Insect Physiology, 2012, 58, 367-375.	2.0	19
370	Quantitative resistance against <i>Bemisia tabaci</i> in <i>Solanum pennellii</i> : Genetics and metabolomics. Journal of Integrative Plant Biology, 2016, 58, 397-412.	8.5	19
371	Response of a Predatory ant to Volatiles Emitted by Aphid- and Caterpillar-Infested Cucumber and Potato Plants. Journal of Chemical Ecology, 2017, 43, 1007-1022.	1.8	19
372	Hyperparasitoids exploit herbivore-induced plant volatiles during host location to assess host quality and non-host identity. Oecologia, 2019, 189, 699-709.	2.0	19
373	Insects for peace. Current Opinion in Insect Science, 2020, 40, 85-93.	4.4	19
374	Bidirectional plantâ€mediated interactions between rhizobacteria and shootâ€feeding herbivorous insects: a community ecology perspective. Ecological Entomology, 2021, 46, 1-10.	2,2	19
375	Terpene synthases in cucumber (<i>Cucumis sativus</i>) and their contribution to herbivoreâ€induced volatile terpenoid emission. New Phytologist, 2022, 233, 862-877.	7.3	19
376	PCR-based identification of the pathogenic bacterium, Acaricomes phytoseiuli, in the biological control agent Phytoseiulus persimilis (Acari: Phytoseiidae). Biological Control, 2007, 42, 316-325.	3.0	18
377	The presence of webbing affects the oviposition rate of two-spotted spider mites, Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology, 2009, 49, 167-172.	1.6	18
378	Antagonism between two root-associated beneficial Pseudomonas strains does not affect plant growth promotion and induced resistance against a leaf-chewing herbivore. FEMS Microbiology Ecology, 2017, 93, .	2.7	18

#	Article	IF	Citations
379	Host plant odours enhance the responses of adult banana weevil to the synthetic aggregation pheromone Cosmolure+ \hat{A}^{\odot} . International Journal of Pest Management, 2007, 53, 127-137.	1.8	17
380	Tolerance of Brassica nigra to Pieris brassicae herbivory. Botany, 2008, 86, 641-648.	1.0	17
381	Comparing induction at an early and late step in signal transduction mediating indirect defence in Brassica oleracea. Journal of Experimental Botany, 2009, 60, 2589-2599.	4.8	17
382	Are naÃ-ve birds attracted to herbivore-induced plantÂdefences?. Behaviour, 2016, 153, 353-366.	0.8	17
383	Is the farmer field school still relevant? Case studies from Malawi and Indonesia. Njas - Wageningen Journal of Life Sciences, 2020, 92, 1-13.	7.7	17
384	Understanding the Long-Lasting Attraction of Malaria Mosquitoes to Odor Baits. PLoS ONE, 2015, 10, e0121533.	2.5	17
385	Insecticideâ€contaminated honeydew: risks for beneficial insects. Biological Reviews, 2022, 97, 664-678.	10.4	17
386	Foraging for patchily-distributed leaf miners by the parasitic wasp, Dacnusa sibirica. Researches on Population Ecology, 1990, 32, 381-389.	0.9	16
387	Effects of two pheromone trap densities against banana weevil, Cosmopolites sordidus, populations and their impact on plant damage in Uganda. Journal of Applied Entomology, 2005, 129, 265-271.	1.8	16
388	Factors influencing pheromone trap effectiveness in attracting the banana weevil, <i>Cosmopolites sordidus </i> . International Journal of Pest Management, 2005, 51, 281-288.	1.8	16
389	A Novel Disease Affecting the Predatory Mite Phytoseiulus persimilis (Acari, Phytoseiidae): 1. Symptoms in Adult Females. Experimental and Applied Acarology, 2006, 38, 275-297.	1.6	16
390	A Novel Disease Affecting the Predatory Mite Phytoseiulus persimilis (Acari, Phytoseiidae): 2. Disease Transmission by Adult Females. Experimental and Applied Acarology, 2006, 39, 85-103.	1.6	16
391	Oviposition preference but not adult feeding preference matches with offspring performance in the bronze bug <i><scp>T</scp>haumastocoris peregrinus</i> . Entomologia Experimentalis Et Applicata, 2017, 163, 101-111.	1.4	16
392	Volatiles from soilâ€borne fungi affect directional growth of roots. Plant, Cell and Environment, 2021, 44, 339-345.	5.7	16
393	Chemical Ecology of Phytohormones: How Plants Integrate Responses to Complex and Dynamic Environments. Journal of Chemical Ecology, 2014, 40, 653-656.	1.8	15
394	Community structure and abundance of insects inÂresponse to earlyâ€season aphid infestation in wild cabbage populations. Ecological Entomology, 2016, 41, 378-388.	2.2	15
395	The plastidial metabolite 2â€ <i>C</i> â€methylâ€ <i>D</i> â€erythritolâ€2,4â€cyclodiphosphate modulates defenc responses against aphids. Plant, Cell and Environment, 2019, 42, 2309-2323.	e 5.7	15
396	Cost-Effectiveness of Black Soldier Fly Larvae Meal as Substitute of Fishmeal in Diets for Layer Chicks and Growers. Sustainability, 2021, 13, 6074.	3.2	15

#	Article	IF	CITATIONS
397	Host preference of Callosobruchus maculatus: a comparison of life history characteristics for three strains of beetles on two varieties of cowpea. Journal of Applied Entomology, 2004, 128, 390-396.	1.8	14
398	Olfactory Responses of Banana Weevil Predators to Volatiles from Banana Pseudostem Tissue and Synthetic Pheromone. Journal of Chemical Ecology, 2005, 31, 1537-1553.	1.8	14
399	Increasing insight into induced plant defense mechanisms using elicitors and inhibitors. Plant Signaling and Behavior, 2010, 5, 271-274.	2.4	14
400	Behavioral Ecology of Oviposition-Site Selection in Herbivorous True Bugs. Advances in the Study of Behavior, 2013, 45, 175-207.	1.6	14
401	Direct and indirect genetic effects in life-history traits of flour beetles (<i>Tribolium castaneum</i>). Evolution; International Journal of Organic Evolution, 2016, 70, 207-217.	2.3	14
402	Response of <i>Brassica oleracea</i> to temporal variation in attack by two herbivores affects preference and performance of a third herbivore. Ecological Entomology, 2017, 42, 803-815.	2.2	14
403	Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density-dependent manner. Oecologia, 2017, 183, 107-120.	2.0	14
404	IPM-recommended insecticides harm beneficial insects through contaminated honeydew. Environmental Pollution, 2020, 267, 115581.	7.5	14
405	Insect species richness affects plant responses to multiâ€herbivore attack. New Phytologist, 2021, 231, 2333-2345.	7.3	14
406	Insects In Western Art. American Entomologist, 2000, 46, 228-237.	0.2	13
407	Flexible parasitoid behaviour overcomes constraint resulting from position of host and nonhost herbivores. Animal Behaviour, 2016, 113, 125-135.	1.9	13
408	Biodiversity analyses for risk assessment of genetically modified potato. Agriculture, Ecosystems and Environment, 2017, 249, 196-205.	5.3	13
409	<scp>SLI1</scp> confers broadâ€spectrum resistance to phloemâ€feeding insects. Plant, Cell and Environment, 2021, 44, 2765-2776.	5.7	13
410	Leading issues in implementation of farmer field schools: a global survey. Journal of Agricultural Education and Extension, 2021, 27, 341-353.	2.2	13
411	The soil microbial community and plant foliar defences against insects., 2012,, 170-189.		12
412	Induced plant volatiles: plant body odours structuring ecological networks. New Phytologist, 2016, 210, 10-12.	7.3	12
413	Does Aphid Infestation Interfere with Indirect Plant Defense against Lepidopteran Caterpillars in Wild Cabbage?. Journal of Chemical Ecology, 2017, 43, 493-505.	1.8	12
414	Rearing and releasing the egg parasitoid Cleruchoides noackae, a biological control agent for the Eucalyptus bronze bug. Biological Control, 2018, 123, 97-104.	3.0	12

#	Article	IF	Citations
415	Ecological significance of light quality in optimizing plant defence. Plant, Cell and Environment, 2019, 42, 1065-1077.	5 . 7	12
416	Relative contributions of egg-associated and substrate-associated microorganisms to black soldier fly larval performance and microbiota. FEMS Microbiology Ecology, 2021, 97, .	2.7	12
417	Chemical Ecology from Genes to Communities. , 2006, , 175-189.		12
418	Parasitism by endoparasitoid wasps alters the internal but not the external microbiome in host caterpillars. Animal Microbiome, 2021, 3, 73.	3.8	12
419	Rapid systemic responses to herbivory. Current Opinion in Plant Biology, 2022, 68, 102242.	7.1	12
420	Use of infochemicals in Pest Management with Special Reference to the Banana Weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae). International Journal of Tropical Insect Science, 2002, 22, 241-261.	1.0	11
421	Prey-related odor preference of the predatory mites Typhlodromalus manihoti and Typhlodromalus aripo (Acari: Phytoseiidae). Experimental and Applied Acarology, 2002, 27, 39-56.	1.6	11
422	Enhancing dissemination of Beauveria bassiana with host plant base incision trapfor the management of the banana weevil Cosmopolites sordidus. African Journal of Agricultural Research Vol Pp, 2015, 10, 3878-3884.	0.5	11
423	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1585-1595.	1.8	10
424	Field trials with plant products to protect stored cowpea against insect damage. International Journal of Pest Management, 2004, 50, 1-9.	1.8	10
425	Structured design of an automated monitoring tool for pest species. Biosystems Engineering, 2016, 151, 126-140.	4.3	10
426	Terpenoid biosynthesis in Arabidopsis attacked by caterpillars and aphids: effects of aphid density on the attraction of a caterpillar parasitoid. Oecologia, 2017, 185, 699-712.	2.0	10
427	Crossâ€seasonal legacy effects of arthropod community on plant fitness in perennial plants. Journal of Ecology, 2019, 107, 2451-2463.	4.0	10
428	Phenotypic variation in egg survival in the predatory mite Phytoseiulus persimilis under dry conditions. Biological Control, 2019, 130, 88-94.	3.0	10
429	Towards circular agriculture – exploring insect waste streams as a crop and soil health promoter. Journal of Insects As Food and Feed, 2021, 7, 357-368.	3.9	10
430	The enemy of my enemy is not always my friend: Negative effects of carnivorous arthropods on plants. Functional Ecology, 2021, 35, 2365-2375.	3.6	10
431	Do aphids in Dutch sweet pepper greenhouses carry heritable elements that protect them against biocontrol parasitoids?. Evolutionary Applications, 2022, 15, 1580-1593.	3.1	10
432	Black Soldier Fly Larvae Influence Internal and Substrate Bacterial Community Composition Depending on Substrate Type and Larval Density. Applied and Environmental Microbiology, 2022, 88, e0008422.	3.1	10

#	Article	IF	CITATIONS
433	Relationship between the ability to penetrate complex webs of Tetranychus spider mites and the ability of thread-cutting behavior in phytoseiid predatory mites. Biological Control, 2010, 53, 273-279.	3.0	9
434	The potential of a population genomics approach to analyse geographic mosaics of plant-insect coevolution. Evolutionary Ecology, 2011, 25, 977-992.	1.2	9
435	The integrative roles of plant secondary metabolites in natural systems. , 2012, , 1-9.		9
436	Effect of <i>Maruca vitrata</i> (Lepidoptera: Crambidae) host plants on lifeâ€history parameters of the parasitoid <i>Apanteles taragamae</i> (Hymenoptera: Braconidae). Insect Science, 2012, 19, 518-528.	3.0	9
437	Altered Volatile Profile Associated with Precopulatory Mate Guarding Attracts Spider Mite Males. Journal of Chemical Ecology, 2015, 41, 187-193.	1.8	9
438	Parasitic wasps avoid ant-protected hemipteran hosts via the detection of ant cuticular hydrocarbons. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20201684.	2.6	9
439	Evolution of Induced Indirect Defense of Plants. , 2021, , 62-88.		9
440	Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents. Environmental Pollution, 2021, 289, 117813.	7.5	9
441	Effects of low and high red to far-red light ratio on tomato plant morphology and performance of four arthropod herbivores. Scientia Horticulturae, 2022, 292, 110645.	3.6	9
442	CREB expression in the brains of two closely related parasitic wasp species that differ in longâ€ŧerm memory formation. Insect Molecular Biology, 2010, 19, 367-379.	2.0	8
443	Response of <i>Solanum tuberosum</i> to <i>Myzus persicae</i> infestation at different stages of foliage maturity. Insect Science, 2014, 21, 727-740.	3.0	8
444	Effect of Sequential Induction by Mamestra brassicae L. and Tetranychus urticae Koch on Lima Bean Plant Indirect Defense. Journal of Chemical Ecology, 2014, 40, 977-985.	1.8	8
445	Herbivore species identity rather than diversity of the nonâ€host community determines foraging behaviour of the parasitoid wasp C otesia glomerata. Entomologia Experimentalis Et Applicata, 2016, 161, 20-30.	1.4	8
446	A bittersweet meal: The impact of sugar solutions and honeydew on the fitness of two predatory gall midges. Biological Control, 2020, 140, 104098.	3.0	8
447	Spatial scale, neighbouring plants and variation in plant volatiles interactively determine the strength of host–parasitoid relationships. Oikos, 2020, 129, 1429-1439.	2.7	8
448	Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods?., 1999,, 131-142.		8
449	Title is missing!. Journal of Insect Behavior, 2003, 16, 523-535.	0.7	7
450	A novel disease affecting the predatory mite <i>Phytoseiulus persimilis</i> (Acari, Phytoseiidae): evidence for the involvement of bacteria. Biocontrol Science and Technology, 2008, 18, 1-19.	1.3	7

#	Article	IF	Citations
451	Lack of correlation between constitutive and induced resistance to a herbivore in crucifer plants: real or flawed by experimental methods?. Entomologia Experimentalis Et Applicata, 2009, 131, 58-66.	1.4	7
452	Does drought stress modify the effects of plantâ€growth promoting rhizobacteria on an aboveground chewing herbivore?. Insect Science, 2017, 24, 1034-1044.	3.0	7
453	The effect of rearing history and aphid density on volatileâ€mediated foraging behaviour of <i>Diaeretiella rapae</i> . Ecological Entomology, 2019, 44, 255-264.	2.2	7
454	Differential effects of the rhizobacterium Pseudomonas simiae on above―and belowground chewing insect herbivores. Journal of Applied Entomology, 2021, 145, 250-260.	1.8	7
455	Plantâ€phenotypic changes induced by parasitoid ichnoviruses enhance the performance of both unparasitized and parasitized caterpillars. Molecular Ecology, 2021, 30, 4567-4583.	3.9	7
456	Sensory Ecology of Arthropods Utilizing Plant Infochemicals. , 2001, , 253-270.		7
457	Plant metabolism and defence strategies in the flowering stage: Timeâ€dependent responses of leaves and flowers under attack. Plant, Cell and Environment, 2022, 45, 2841-2855.	5.7	7
458	Densityâ€mediated indirect interactions alter host foraging behaviour of parasitoids without altering foraging efficiency. Ecological Entomology, 2016, 41, 562-571.	2.2	6
459	Effect of the eucalypt lerp psyllid <i><scp>G</scp>lycaspis brimblecombei</i> on adult feeding, ovipositionâ€site selection, and offspring performance of the bronze bug, <i><scp>T</scp>haumastocoris peregrinus</i> Entomologia Experimentalis Et Applicata, 2018, 166, 395-401.	1.4	6
460	Maternal effect determines drought resistance of eggs in the predatory mite Phytoseiulus persimilis. Oecologia, 2020, 192, 29-41.	2.0	6
461	Fungal volatiles influence plant defence against aboveâ€ground and belowâ€ground herbivory. Functional Ecology, 2020, 34, 2259-2269.	3.6	6
462	Variation in parasitoid attraction to herbivore-infested plants and alternative host plant cover mediate tritrophic interactions at the landscape scale. Landscape Ecology, 2020, 35, 907-919.	4.2	6
463	Flowers prepare thyselves: leaf and root herbivores induce specific changes in floral phytochemistry with consequences for plant interactions with florivores. New Phytologist, 2022, 233, 2548-2560.	7.3	6
464	Bt crop risk assessment in the Netherlands. Nature Biotechnology, 2003, 21, 973-974.	17.5	5
465	Jasmonates differentially affect interconnected signal-transduction pathways of Pieris rapae-induced defenses in Arabidopsis thaliana. Insect Science, 2011, 18, 249-258.	3.0	5
466	Natural selection for anti-herbivore plant secondary metabolites. , 2012, , 10-33.		5
467	Asking the ecosystem if herbivory-inducible plant volatiles (HIPVs) have defensive functions. , 2012, , 287-307.		5
468	Assessing non-target effects and host feeding of the exotic parasitoid Apanteles taragamae, a potential biological control agent of the cowpea pod borer Maruca vitrata. BioControl, 2012, 57, 415-425.	2.0	5

#	Article	IF	Citations
469	Feeding behavior and performance of <i>Nasonovia ribisnigri</i> on grafts, detached leaves, and leaf disks of resistant and susceptible lettuce. Entomologia Experimentalis Et Applicata, 2016, 159, 102-111.	1.4	5
470	Inoculation of susceptible and resistant potato plants with the late blight pathogen <i><scp>P</scp>hytophthora infestans</i> : effects on an aphid and its parasitoid. Entomologia Experimentalis Et Applicata, 2017, 163, 305-314.	1.4	5
471	The effect of co-infestation by conspecific and heterospecific aphids on the feeding behaviour of Nasonovia ribisnigri on resistant and susceptible lettuce cultivars. Arthropod-Plant Interactions, 2017, 11, 785-796.	1.1	5
472	Reply from J. Bruin, M.W. Sabelis and M. Dicke. Trends in Ecology and Evolution, 1995, 10, 371.	8.7	4
473	Different headspace profiles in wild crucifer species in response to <i>Plutella xylostella </i> herbivory and exogenous jasmonic acid application. Insect Science, 2010, 17, 29-37.	3.0	4
474	Dynamics of plant secondary metabolites and consequences for food chains and community dynamics. , 2012, , 308-328.		4
475	Rearing history affects behaviour and performance of two virulent <i><scp>N</scp>asonovia ribisnigri</i> populations on two lettuce cultivars. Entomologia Experimentalis Et Applicata, 2014, 151, 97-105.	1.4	4
476	Oviposition preference of three lepidopteran species is not affected by previous aphid infestation in wild cabbage. Entomologia Experimentalis Et Applicata, 2018, 166, 402-411.	1.4	4
477	Volatiles from the fungus Fusarium oxysporum affect interactions of Brassica rapa plants with root herbivores. Ecological Entomology, 2021, 46, 240-248.	2.2	4
478	Multiple Attack to Inflorescences of an Annual Plant Does Not Interfere with the Attraction of Parasitoids and Pollinators. Journal of Chemical Ecology, 2021, 47, 175-191.	1.8	4
479	The Role of Microorganisms in TRI-Trophic Interactions in Systems Consisting of Plants, Herbivores, and Carnivores., 1996,, 71-84.		4
480	Behavioural ecology of plantâ€"phytoseiid interactions mediated by herbivore-induced plant volatiles. , 1999, , 251-268.		4
481	Herbivore-Induced Plant Volatiles as a Source of Information in Plant–Insect Networks. , 2020, , 327-346.		4
482	Leaf-chewing herbivores affect preference and performance of a specialist root herbivore. Oecologia, 2022, 199, 243-255.	2.0	4
483	Special Feature: Induced plant responses towards herbivory. Basic and Applied Ecology, 2003, 4, 1-2.	2.7	3
484	Phytochemicals as mediators of aboveground–belowground interactions in plants. , 2012, , 190-203.		3
485	Exploitation of Chemical Signaling by Parasitoids: Impact on Host Population Dynamics. Journal of Chemical Ecology, 2013, 39, 752-763.	1.8	3
486	Female response to predation risk alters conspecific male behaviour during preâ€copulatory mate guarding. Ethology, 2018, 124, 122-130.	1.1	3

#	Article	lF	Citations
487	An Integrated System for the Automated Recording and Analysis of Insect Behavior in T-maze Arrays. Frontiers in Plant Science, 2019, 10, 20.	3.6	3
488	Herbivore-Induced Plant Volatiles with Multifunctional Effects in Ecosystems: A Complex Pattern of Biotic Interactions., 1997,, 131-145.		3
489	Verified and potential pathogens of predatory mites (Acari: Phytoseiidae)., 2008,, 307-328.		3
490	Local and systemic effect of azadirachtin on host choice and feeding activity of Macrosiphum rosae on rose plants. Arthropod-Plant Interactions, 2022, 16, 191-204.	1.1	3
491	Evolutionary patterns and mechanisms in consumerâ€resource interactions. Journal of Evolutionary Biology, 1999, 12, 419-420.	1.7	2
492	Expression in Arabidopsis of a Strawberry Linalool Synthase Gene Under the Control of the Inducible Potato PI2 Promoter. Agricultural Sciences in China, 2008, 7, 521-534.	0.6	2
493	Resistance to a new biotype of the lettuce aphid Nasonovia ribisnigri in Lactuca virosa accession IVT280. Euphytica, 2013, 193, 265-275.	1.2	2
494	Genome-Wide Analysis Reveals Transcription Factors Regulated by Spider-Mite Feeding in Cucumber (Cucumis sativus). Plants, 2020, 9, 1014.	3.5	2
495	No evidence of modulation of indirect plant resistance of Brassica rapa plants by volatiles from soilâ€borne fungi. Ecological Entomology, 2020, 45, 1200-1211.	2.2	2
496	Herbivore-induced plant volatiles, not natural enemies, mediate a positive indirect interaction between insect herbivores. Oecologia, 2022, 198, 443.	2.0	2
497	Plant quantity affects development and reproduction of a gregarious butterfly more than plant quality. Entomologia Experimentalis Et Applicata, 0, , .	1.4	2
498	Effects of extreme temperature events on the parasitism performance of <i>Diadegma semiclausum </i> , an endoparasitoid of <i>Plutella xylostella </i> . Entomologia Experimentalis Et Applicata, 2022, 170, 656-665.	1.4	2
499	Specialist root herbivore modulates plant transcriptome and downregulates defensive secondary metabolites in a brassicaceous plant. New Phytologist, 2022, 235, 2378-2392.	7.3	2
500	Foreword. Journal of Chemical Ecology, 1990, 16, 3017-3018.	1.8	1
501	Precise Manipulation Through a Modeling Study. Journal of Chemical Ecology, 2008, 34, 943-944.	1.8	1
502	Volatile isoprenoids and abiotic stresses. , 0, , 101-119.		1
503	Effects of NeemAzalâ€√/S on different developmental stages of rose aphid, <i>Macrosiphum rosae</i> Entomologia Experimentalis Et Applicata, 2022, 170, 245-259.	1.4	1
504	Bees can be trained to identify SARS-CoV-2 infected samples. Biology Open, 2022, 11, .	1.2	1

#	‡	Article	IF	CITATIONS
5	505	Chemical Ecology: Body Odor, Behavior, and Body Building. Journal of Chemical Ecology, 2014, 40, 313-314.	1.8	0
5	506	Infochemicals that mediate plant-carnivore communication systemically induced by herbivory. , 1992, , 355-356.		0