Xiao-Zhou Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1708212/publications.pdf Version: 2024-02-01

XIAO-7HOULIAO

#	Article	IF	CITATIONS
1	Deformation twinning in nanocrystalline materials. Progress in Materials Science, 2012, 57, 1-62.	32.8	1,065
2	Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nature Materials, 2018, 17, 349-354.	27.5	874
3	Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Materialia, 2004, 52, 4589-4599.	7.9	820
4	Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys. Advanced Materials, 2006, 18, 2280-2283.	21.0	735
5	Nanostructural hierarchy increases the strength of aluminium alloys. Nature Communications, 2010, 1, 63.	12.8	552
6	Ultralong single-wall carbon nanotubes. Nature Materials, 2004, 3, 673-676.	27.5	513
7	Retaining ductility. Nature Materials, 2004, 3, 351-352.	27.5	484
8	Corrosion resistance of ultra fine-grained Ti. Scripta Materialia, 2004, 51, 225-229.	5.2	425
9	Ultrastrong, Stiff, and Lightweight Carbonâ€Nanotube Fibers. Advanced Materials, 2007, 19, 4198-4201.	21.0	419
10	Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Applied Physics Letters, 2004, 84, 592-594.	3.3	414
11	Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scripta Materialia, 2018, 154, 20-24.	5.2	412
12	Structural evolutions of metallic materials processed by severe plastic deformation. Materials Science and Engineering Reports, 2018, 133, 1-59.	31.8	401
13	Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Applied Physics Letters, 2003, 83, 632-634.	3.3	382
14	Simultaneously Increasing the Ductility and Strength of Ultra-Fine-Grained Pure Copper. Advanced Materials, 2006, 18, 2949-2953.	21.0	359
15	Dislocation–twin interactions in nanocrystalline fcc metals. Acta Materialia, 2011, 59, 812-821.	7.9	327
16	Deformation twins in nanocrystalline Al. Applied Physics Letters, 2003, 83, 5062-5064.	3.3	323
17	Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nature Communications, 2020, 11, 4824.	12.8	298
18	Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Applied Physics Letters, 2006, 89, 121906.	3.3	295

#	Article	IF	CITATIONS
19	Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy. Acta Materialia, 2009, 57, 3123-3132.	7.9	253
20	Microstructure of cryogenic treated M2 tool steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 339, 241-244.	5.6	250
21	Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta Materialia, 2003, 51, 2777-2791.	7.9	227
22	Nucleation and growth of deformation twins in nanocrystalline aluminum. Applied Physics Letters, 2004, 85, 5049-5051.	3.3	202
23	Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures. International Journal of Plasticity, 2019, 123, 178-195.	8.8	201
24	Formation mechanism of wide stacking faults in nanocrystalline Al. Applied Physics Letters, 2004, 84, 3564-3566.	3.3	183
25	Influence of stacking fault energy on nanostructure formation under high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 188-193.	5.6	179
26	High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Applied Physics Letters, 2006, 88, 021909.	3.3	178
27	Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition. Science Advances, 2021, 7, .	10.3	176
28	Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. Journal of Applied Physics, 2004, 96, 636-640.	2.5	169
29	Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion. Acta Materialia, 2019, 162, 19-32.	7.9	166
30	Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Materials Research Letters, 2018, 6, 236-243.	8.7	164
31	New Deformation Twinning Mechanism Generates Zero Macroscopic Strain in Nanocrystalline Metals. Physical Review Letters, 2008, 100, 095701.	7.8	163
32	Formation of single and multiple deformation twins in nanocrystalline fcc metals. Acta Materialia, 2009, 57, 3763-3770.	7.9	163
33	Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density. Applied Physics Letters, 2008, 92, .	3.3	158
34	Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu–Zn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 493, 123-129.	5.6	157
35	Nanostructures and deformation mechanisms in a cryogenically ball-milled Al-Mg alloy. Philosophical Magazine, 2003, 83, 3065-3075.	1.6	156
36	A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13699-13702.	7.1	153

#	Article	IF	CITATIONS
37	Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope. Acta Materialia, 2014, 62, 69-80.	7.9	142
38	Development of repetitive corrugation and straightening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 371, 35-39.	5.6	141
39	The role of stacking faults and twin boundaries in grain refinement of a Cu–Zn alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4959-4966.	5.6	141
40	Hot isostatic pressing of powder in tube MgB2 wires. Applied Physics Letters, 2003, 82, 2847-2849.	3.3	137
41	Amorphization of TiNi induced by high-pressure torsion. Philosophical Magazine Letters, 2004, 84, 183-190.	1.2	137
42	Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Materials Letters, 2015, 151, 126-129.	2.6	135
43	The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials. Acta Materialia, 2012, 60, 3181-3189.	7.9	134
44	Influence of stacking fault energy on deformation mechanism and dislocation storage capacity in ultrafine-grained materials. Scripta Materialia, 2009, 60, 52-55.	5.2	133
45	Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation. Journal of Applied Physics, 2005, 98, 034319.	2.5	131
46	Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy. Materials Research Letters, 2019, 7, 453-459.	8.7	129
47	Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures. Science China Materials, 2019, 62, 853-863.	6.3	129
48	Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion. Acta Materialia, 2014, 63, 169-179.	7.9	123
49	Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 764-774.	10.3	123
50	Cationâ€Vacancyâ€Enriched Nickel Phosphide for Efficient Electrosynthesis of Hydrogen Peroxides. Advanced Materials, 2022, 34, e2106541.	21.0	123
51	Formation mechanism of fivefold deformation twins in nanocrystalline face-centered-cubic metals. Applied Physics Letters, 2005, 86, 103112.	3.3	120
52	Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 463, 22-26.	5.6	119
53	Mechanisms for enhanced plasticity in magnesium alloys. Acta Materialia, 2015, 82, 344-355.	7.9	119
54	Super Deformability and Young's Modulus of GaAs Nanowires. Advanced Materials, 2011, 23, 1356-1360.	21.0	114

4

#	Article	IF	CITATIONS
55	Nanoâ€RuO ₂ â€Decorated Holey Graphene Composite Fibers for Microâ€&upercapacitors with Ultrahigh Energy Density. Small, 2018, 14, e1800582.	10.0	113
56	Segregation of solute elements at grain boundaries in an ultrafine grained Al–Zn–Mg–Cu alloy. Ultramicroscopy, 2011, 111, 500-505.	1.9	107
57	Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution. Acta Materialia, 2011, 59, 3903-3914.	7.9	98
58	Atomic-scale understanding of stress-induced phase transformation in cold-rolled Hf. Acta Materialia, 2017, 131, 271-279.	7.9	98
59	Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte pH. Journal of Materials Chemistry A, 2017, 5, 20390-20397.	10.3	98
60	Grain growth and dislocation density evolution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion. Scripta Materialia, 2011, 64, 327-330.	5.2	93
61	Mg(B,O)2 precipitation in MgB2. Journal of Applied Physics, 2003, 93, 6208-6215.	2.5	91
62	Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion. Acta Materialia, 2014, 63, 16-29.	7.9	90
63	Strain relaxation by alloying effects in Ge islands grown on Si(001). Physical Review B, 1999, 60, 15605-15608.	3.2	89
64	Influence of microstructures and crystalline defects on the superconductivity of MgB2. Journal of Applied Physics, 2002, 92, 351-356.	2.5	89
65	Shear banding in commercial pure titanium deformed by dynamic compression. Acta Materialia, 2014, 79, 47-58.	7.9	89
66	Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting. Acta Materialia, 2020, 196, 609-625.	7.9	89
67	Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy. Science Advances, 2021, 7, .	10.3	89
68	Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni–Fe alloy. Applied Physics Letters, 2009, 94, .	3.3	87
69	Feasibility of high strain-rate rolling of a magnesium alloy across a wide temperature range. Scripta Materialia, 2012, 67, 404-407.	5.2	82
70	Influence of Al content on the strain-hardening behavior of aged low density Fe–Mn–Al–C steels with high Al content. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 187-191.	5.6	82
71	The mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na)NbO3 ceramics. Nature Communications, 2021, 12, 881.	12.8	82
72	Effect of catalyst composition on carbon nanotube growth. Applied Physics Letters, 2003, 82, 2694-2696.	3.3	81

#	Article	IF	CITATIONS
73	Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications. Materials Science and Engineering C, 2013, 33, 3530-3536.	7.3	81
74	Deformation twins in pure titanium processed by equal channel angular pressing. Scripta Materialia, 2003, 48, 813-817.	5.2	80
75	Uniting tensile ductility with ultrahigh strength via composition undulation. Nature, 2022, 604, 273-279.	27.8	80
76	Indium Segregation and Enrichment in CoherentInxGa1â^'xAs/GaAsQuantum Dots. Physical Review Letters, 1999, 82, 5148-5151.	7.8	77
77	Transmission-electron microscopy study of the shape of buriedInxGa1â^'xAs/GaAsquantum dots. Physical Review B, 1998, 58, R4235-R4237.	3.2	75
78	Grain size and reversible beta-to-omega phase transformation in a Ti alloy. Scripta Materialia, 2010, 63, 613-616.	5.2	75
79	Deformation twinning in hexagonal materials. MRS Bulletin, 2016, 41, 314-319.	3.5	73
80	Introducing a strain-hardening capability to improve the ductility of bulk metallic glasses via severe plastic deformation. Acta Materialia, 2012, 60, 253-260.	7.9	72
81	Grain size effect on deformation twinning propensity in ultrafine-grained hexagonal close-packed titanium. Scripta Materialia, 2013, 69, 428-431.	5.2	71
82	The effect of grain size on the annealing-induced phase transformation in an AlO·3CoCrFeNi high entropy alloy. Materials and Design, 2016, 105, 381-385.	7.0	71
83	Cooperation of Ni and CaO at Interface for CO ₂ Reforming of CH ₄ : A Combined Theoretical and Experimental Study. ACS Catalysis, 2019, 9, 10060-10069.	11.2	68
84	Ultraâ€High Thermoelectric Performance in Bulk BiSbTe/Amorphous Boron Composites with Nanoâ€Đefect Architectures. Advanced Energy Materials, 2020, 10, 2000757.	19.5	67
85	Formation mechanisms of nanostructures in stainless steel during high-strain-rate severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 252-256.	5.6	66
86	Carbonâ€Nanotube Cotton for Large cale Fibers. Advanced Materials, 2007, 19, 2567-2570.	21.0	64
87	Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion. Scientific Reports, 2017, 7, 46720.	3.3	63
88	Effect of grain size on the competition between twinning and detwinning in nanocrystalline metals. Physical Review B, 2011, 84, .	3.2	62
89	Deformation twinning in bulk nanocrystalline metals: Experimental observations. Jom, 2008, 60, 60-64.	1.9	61
90	Effect of a High Density of Stacking Faults on the Young's Modulus of GaAs Nanowires. Nano Letters, 2016, 16, 1911-1916.	9.1	61

6

#	Article	IF	CITATIONS
91	Observation of coherent oxide precipitates in polycrystalline MgB2. Applied Physics Letters, 2002, 80, 3970-3972.	3.3	60
92	Microstructure and high critical current of powder-in-tube MgB2. Applied Physics Letters, 2003, 82, 1754-1756.	3.3	60
93	Compact and Dissociated Dislocations in Aluminum: Implications for Deformation. Physical Review Letters, 2005, 94, 125502.	7.8	60
94	Enhanced mechanical properties in ultrafine grained 7075 Al alloy. Journal of Materials Research, 2005, 20, 288-291.	2.6	59
95	Fabrication of Mgî—,Alî—,Znî—,Mn alloy sheets with homogeneous fine-grained structures using high strain-rate rolling in a wide temperature range. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 765-772.	5.6	59
96	Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins. Scripta Materialia, 2015, 100, 98-101.	5.2	58
97	Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion. Acta Materialia, 2016, 109, 300-313.	7.9	58
98	Controlling flux pinning precipitates during MgB2 synthesis. Applied Physics Letters, 2002, 80, 4398-4400.	3.3	56
99	Enhancement of critical current density in low level Al-doped MgB2. Superconductor Science and Technology, 2004, 17, 1093-1096.	3.5	56
100	Mechanical behaviors of nanowires. Applied Physics Reviews, 2017, 4, 031104.	11.3	54
101	In-situ high-resolution transmission electron microscopy investigation of grain boundary dislocation activities in a nanocrystalline CrMnFeCoNi high-entropy alloy. Journal of Alloys and Compounds, 2017, 709, 802-807.	5.5	53
102	Big to Small: Ultrafine Mo ₂ C Particles Derived from Giant Polyoxomolybdate Clusters for Hydrogen Evolution Reaction. Small, 2019, 15, e1900358.	10.0	53
103	Evolution of microstructure and mechanical properties in 2205 duplex stainless steels during additive manufacturing and heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 835, 142695.	5.6	53
104	Electronic Modulation of Nickel Disulfide toward Efficient Water Electrolysis. Small, 2020, 16, e1905885.	10.0	52
105	A core-sheath holey graphene/graphite composite fiber intercalated with MoS2 nanosheets for high-performance fiber supercapacitors. Electrochimica Acta, 2019, 305, 493-501.	5.2	51
106	Thiocyanate-Modified Silver Nanofoam for Efficient CO ₂ Reduction to CO. ACS Catalysis, 2020, 10, 1444-1453.	11.2	51
107	The influence of boron doping on the structure and characteristics of diamond thin films. Diamond and Related Materials, 1997, 6, 521-525.	3.9	48
108	Self-Healing of Fractured GaAs Nanowires. Nano Letters, 2011, 11, 1546-1549.	9.1	48

#	Article	IF	CITATIONS
109	Large field generation with a hot isostatically pressed powder-in-tube MgB2coil at 25 K. Superconductor Science and Technology, 2004, 17, L35-L37.	3.5	47
110	Influence of microstructures on mechanical behaviours of SiC nanowires: a molecular dynamics study. Nanotechnology, 2012, 23, 025703.	2.6	47
111	Hierarchically porous carbon nanofibers embedded with cobalt nanoparticles for efficient H2O2 detection on multiple sensor platforms. Sensors and Actuators B: Chemical, 2020, 319, 128243.	7.8	46
112	High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy. Scripta Materialia, 2010, 62, 214-217.	5.2	45
113	Strain hardening and softening in a nanocrystalline Ni–Fe alloy induced by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3398-3403.	5.6	45
114	Strengthening Brittle Semiconductor Nanowires through Stacking Faults: Insights from in Situ Mechanical Testing. Nano Letters, 2013, 13, 4369-4373.	9.1	45
115	Milk powder-derived bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 2018, 11, 134-143.	18.0	45
116	Effect of grain size on fatigue cracking at twin boundaries in a CoCrFeMnNi high-entropy alloy. Journal of Materials Science and Technology, 2020, 39, 1-6.	10.7	45
117	Scalable and controllable fabrication of CNTs improved yolk-shelled Si anodes with advanced in operando mechanical quantification. Energy and Environmental Science, 2021, 14, 3502-3509.	30.8	45
118	Determination of Young's Modulus of Ultrathin Nanomaterials. Nano Letters, 2015, 15, 5279-5283.	9.1	44
119	Unique defect evolution during the plastic deformation of a metal matrix composite. Scripta Materialia, 2019, 162, 316-320.	5.2	44
120	Dislocation density evolution during high pressure torsion of a nanocrystalline Ni–Fe alloy. Applied Physics Letters, 2009, 94, .	3.3	43
121	Enhanced grain refinement of an Al–Mg–Si alloy by high-pressure torsion processing at 100°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 415-418.	5.6	43
122	Catalytic activity atlas of ternary Co–Fe–V metal oxides for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 15951-15961.	10.3	43
123	A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution. Applied Catalysis B: Environmental, 2021, 286, 119923.	20.2	43
124	Unraveling dual phase transformations in a CrCoNi medium-entropy alloy. Acta Materialia, 2021, 215, 117112.	7.9	43
125	Nano twins in ultrafine-grained Ti processed by dynamic plastic deformation. Scripta Materialia, 2013, 68, 475-478.	5.2	41
126	Facilitation of Ferroelectric Switching via Mechanical Manipulation of Hierarchical Nanoscale Domain Structures. Physical Review Letters, 2017, 118, 017601.	7.8	41

#	Article	IF	CITATIONS
127	The on-demand engineering of metal-doped porous carbon nanofibers as efficient bifunctional oxygen catalysts for high-performance flexible Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 7297-7308.	10.3	41
128	Parametric study of carbon nanotube growth via cobalt-catalyzed ethanol decomposition. Materials Letters, 2006, 60, 1968-1972.	2.6	40
129	Thermal stability, dynamic mechanical analysis and nanoindentation behavior of FeSiB(Cu) amorphous alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 480-499.	5.6	40
130	Influence of grain size on the density of deformation twins in Cu–30%Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3942-3948.	5.6	39
131	Anelastic Behavior in GaAs Semiconductor Nanowires. Nano Letters, 2013, 13, 3169-3172.	9.1	39
132	Opposite grain size dependence of strain rate sensitivity of copper at low vs high strain rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 738, 430-438.	5.6	39
133	Microstructural evolution of Fe-rich particles in an Al–Zn–Mg–Cu alloy during equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4742-4749.	5.6	38
134	De-twinning via secondary twinning in face-centered cubic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 110-114.	5.6	38
135	Giant tuning of ferroelectricity in single crystals by thickness engineering. Science Advances, 2020, 6, .	10.3	38
136	Dislocation-induced spatial ordering of InAs quantum dots: Effects on optical properties. Journal of Applied Physics, 2002, 91, 5826-5830.	2.5	37
137	Atomistic Mechanism of Stress-Induced Combined Slip and Diffusion in Sub-5 Nanometer-Sized Ag Nanowires. ACS Nano, 2019, 13, 8708-8716.	14.6	37
138	Transmission electron microscopy study ofInxGa1â^'xAsquantum dots on a GaAs(001) substrate. Physical Review B, 1999, 59, 12279-12282.	3.2	36
139	Grain boundary structure of nanocrystalline Cu processed by cryomilling. Philosophical Magazine, 2003, 83, 1407-1419.	1.6	36
140	Mechanical milling-induced deformation twinning in Fcc materials with high stacking fault energy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 707-712.	2.2	36
141	Role of excess Mg and heat treatments on microstructure and critical current of MgB2 wires. Journal of Applied Physics, 2003, 94, 4024-4031.	2.5	36
142	Unravelling the effects of layered supports on Ru nanoparticles for enhancing N2 reduction in photocatalytic ammonia synthesis. Applied Catalysis B: Environmental, 2019, 259, 118026.	20.2	36
143	Twinning via the motion of incoherent twin boundaries nucleated at grain boundaries in a nanocrystalline Cu alloy. Scripta Materialia, 2014, 72-73, 35-38.	5.2	35
144	Manipulation of Nanoscale Domain Switching Using an Electron Beam with Omnidirectional Electric Field Distribution. Physical Review Letters, 2016, 117, 027601.	7.8	35

#	Article	IF	CITATIONS
145	Effect of Ion Irradiation Introduced by Focused Ion-Beam Milling on the Mechanical Behaviour of Sub-Micron-Sized Samples. Scientific Reports, 2020, 10, 10324. Enhancement of the in-field <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.3</td><td>35</td></mml:math>	3.3	35
146	display="inline"> < mml:mrow > < mml:msub > < mml:mi > J < /mml:mi > < mml:mi > < /mml:mi > < /mml:msub > < /mml:mrow > < mml:msub > < /mml:mi > < mml:mi > < /mml:mi > < /mml:mi > < /mml:msub > < /mml:mrow > < mml:msub > < mml:mtext > MgB < /mml:mtext > < /mml:mrow > < mml:mrow > < mml:msub > < mml:mtext > MgB < /mml:mtext > < /mml:mrow > < mml:msub > < mml:msub > < mml:mtext > MgB < /mml:mtext > < /mml:mrow > < mml:msub > < mml:msub > < mml:mtext > MgB < /mml:mtext > < /mml:mrow > < mml:msub > < mml:msub > < mml:mtext > MgB < /mml:mtext > < /mml:mrow > < mml:msub > < mml:msub > < mml:mtext > MgB < /mml:mtext > < /mml:mrow > < mml:msub > < mml:msub > < mml:mtext > MgB < /mml:mtext > < /mml:mrow > < mml:msub > < mml:msub > < mml:mtext > < /mml:mtext > < /mml:msub > < mml:msub > < mml:mtext > < /mml:mtext > < /mml:msub > < mml:msub > < mml:mtext > < /mml:mtext > < /mml:msub > < mml:msub > < mml:mtext > < /mml:mtext > < /mml:msub > < mml:msub > < mml:mtext > < /mml:mtext > < /mml:msub > < mml:msub > < mml:mtext > < /mml:mtext > < /mml:msub > < mml:msub > < mml:mtext > < /mml:mtext > < /mml:msub > < mml:msub > < mml:mtext > < /mml:mtext > < /mml:mtext > < /mml:msub > < mml:mtext > < /mml:mtext > < /mml:mte	w>n>2 ³ {7mml:	nath>of <mml :mn³⁴</mml
147	display "inline", Amml: move and image and a manage and a	5.6	34
148	Enhanced solar-driven benzaldehyde oxidation with simultaneous hydrogen production on Pt single-atom catalyst. Applied Catalysis B: Environmental, 2021, 284, 119759.	20.2	34
149	Mechanical behaviors of as-deposited and annealed nanostructured Ni–Fe alloys. Scripta Materialia, 2011, 65, 1-4.	5.2	33
150	The effect of pre-existing defects on the strength and deformation behavior of α-Fe nanopillars. Acta Materialia, 2013, 61, 439-452.	7.9	33
151	Effect of equal channel angular pressing on the thermal-annealing-induced microstructure and texture evolution of cold-rolled copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 186-192.	5.6	33
152	Microstructure and texture analysis of δ-hydride precipitation in Zircaloy-4 materials by electron microscopy and neutron diffraction. Journal of Applied Crystallography, 2014, 47, 303-315.	4.5	31
153	Atomic-scale investigation of interface-facilitated deformation twinning in severely deformed Ag-Cu nanolamellar composites. Applied Physics Letters, 2015, 107, .	3.3	31
154	Multimodal γ′ precipitation in Inconel-738 Ni-based superalloy during electron-beam powder bed fusion additive manufacturing. Journal of Materials Science, 2020, 55, 13342-13350.	3.7	31
155	Ge/Si interdiffusion in the GeSi dots and wetting layers. Journal of Applied Physics, 2001, 90, 4290-4292.	2.5	30
156	Tailoring Electronegativity of Bimetallic Ni/Fe Metal–Organic Framework Nanosheets for Electrocatalytic Water Oxidation. ACS Applied Nano Materials, 2021, 4, 1967-1975.	5.0	30
157	Direct observation of nanoscale dynamics of ferroelectric degradation. Nature Communications, 2021, 12, 2095.	12.8	30
158	Improving the plasticity of bulk metallic glasses via pre-compression below the yield stress. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 602, 68-76.	5.6	29
159	Five-parameter characterization of intervariant boundaries in additively manufactured Ti-6Al-4V. Materials and Design, 2020, 196, 109177.	7.0	29
160	A new orthorhombic phase in Al–Cu–Co representing a rational approximant to the decagonal quasicrystalline phase. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1992, 66, 549-558.	0.6	28
161	Growth Mechanism and Magnetic Properties of Highly Crystalline NiO Nanocubes and Nanorods Fabricated by Evaporation. Crystal Growth and Design, 2012, 12, 2842-2849.	3.0	28
162	Effects of elemental segregation on microstructural evolution and local mechanical properties in a dynamically deformed CrMnFeCoNi high entropy alloy. Scripta Materialia, 2021, 190, 80-85.	5.2	28

#	Article	IF	CITATIONS
163	Effects of interdiffusion on the band alignment of GeSi dots. Applied Physics Letters, 2001, 79, 1980-1982.	3.3	27
164	Effect of sample orientation and initial microstructures on the dynamic recrystallization of a Magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 691, 150-154.	5.6	27
165	Ultralow-platinum-loading nanocarbon hybrids for highly sensitive hydrogen peroxide detection. Sensors and Actuators B: Chemical, 2019, 283, 304-311.	7.8	27
166	Defect structures in MgB2wires introduced by hot isostatic pressing. Superconductor Science and Technology, 2003, 16, 799-803.	3.5	26
167	Atomic-scale observation of parallel development of super elasticity and reversible plasticity in GaAs nanowires. Applied Physics Letters, 2014, 104, .	3.3	26
168	Improving the strength and retaining the ductility of microstructural graded coarse-grained materials with low stacking fault energy. Materials and Design, 2018, 160, 21-33.	7.0	26
169	Mechanical behavior, deformation mechanism and microstructure evolutions of ultrafine-grained Al during recovery via annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138706.	5.6	26
170	A non-Fibonacci type of orthorhombic decagonal approximant. Philosophical Magazine Letters, 1995, 71, 139-145.	1.2	25
171	Alternative mechanism for misfit dislocation generation during high-temperature Ge(Si)/Si (001) island growth. Applied Physics Letters, 2002, 81, 1996-1998.	3.3	25
172	Grain refinement and growth induced by severe plastic deformation. International Journal of Materials Research, 2009, 100, 1632-1637.	0.3	25
173	Structural origins for the high plasticity of a Zr–Cu–Ni–Al bulk metallic glass. Acta Materialia, 2013, 61, 321-330.	7.9	25
174	3D electron backscatter diffraction study of α lath morphology in additively manufactured Ti-6Al-4V. Ultramicroscopy, 2020, 218, 113073.	1.9	25
175	Introducing transformation twins in titanium alloys: an evolution of α-variants during additive manufacturing. Materials Research Letters, 2021, 9, 119-126.	8.7	25
176	Phase transformation pathways in Ti-6Al-4V manufactured via electron beam powder bed fusion. Acta Materialia, 2021, 215, 117131.	7.9	25
177	Exceptional high-strain-rate tensile mechanical properties in a CrCoNi medium-entropy alloy. Science China Materials, 2022, 65, 811-819.	6.3	24
178	On the pitting corrosion of 2205 duplex stainless steel produced by laser powder bed fusion additive manufacturing in the as-built and post-processed conditions. Materials and Design, 2021, 212, 110260.	7.0	24
179	Applied stress controls the production of nano-twins in coarse-grained metals. Applied Physics Letters, 2012, 101, 231903.	3.3	23
180	Effect of strain rate on the mechanical properties of a gum metal with various microstructures. Acta Materialia, 2017, 132, 193-208.	7.9	23

#	Article	IF	CITATIONS
181	Deformation Twinning and Detwinning in Face entered Cubic Metallic Materials. Advanced Engineering Materials, 2020, 22, 1900479.	3.5	23
182	Key roles of particles in grain refinement and material strengthening for an aluminum matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140414.	5.6	23
183	On the microstructure and texture evolution in 17-4 PH stainless steel during laser powder bed fusion: Towards textural design. Journal of Materials Science and Technology, 2022, 117, 183-195.	10.7	23
184	Annealing effects on the microstructure of Ge/Si(001) quantum dots. Applied Physics Letters, 2001, 79, 1258-1260.	3.3	22
185	Xâ€Ray Induced Synthesis of 8H Diamond. Advanced Materials, 2008, 20, 3303-3307.	21.0	22
186	Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling. Journal of Materials Science and Technology, 2020, 49, 211-223.	10.7	22
187	Formation of a transition V-rich structure during the α' to αÂ+Âβ phase transformation process in additively manufactured Ti-6Al-4 V. Acta Materialia, 2022, 235, 118104.	7.9	22
188	Extracting composition and alloying information of coherent Ge(Si)/Si(001) islands from [001] on-zone bright-field diffraction contrast images. Journal of Applied Physics, 2001, 90, 2725-2729.	2.5	21
189	Precipitation processes in Al-Cu-Mg-Sn and Al-Cu-Mg-Sn-Ag. Materials and Design, 2016, 96, 385-391.	7.0	21
190	Microstructural softening induced adiabatic shear banding in Ti-23Nb-0.7Ta-2Zr-O gum metal. Journal of Materials Science and Technology, 2020, 54, 31-39.	10.7	21
191	Nanostructuring as a route to achieve ultra-strong high- and medium-entropy alloys with high creep resistance. Journal of Alloys and Compounds, 2020, 830, 154656.	5.5	21
192	Ultra-strong and thermally stable nanocrystalline CrCoNi alloy. Journal of Materials Science and Technology, 2022, 106, 1-9.	10.7	21
193	Mechanical properties and deformation behaviours of submicron-sized Cu–Al single crystals. Acta Materialia, 2022, 223, 117460.	7.9	21
194	Insight into the deformation mechanisms of \hat{i} ±-Fe at the nanoscale. Scripta Materialia, 2011, 65, 1037-1040.	5.2	20
195	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> < mml:mo stretchy="false"> { < mml:mn> 10 < mml:mover accent="true"> < mml:mn> 1 < mml:mo> Å ⁻ < mml:mn> 1 < mml:mo stretchy="false"> } twinning in Zr during rolling Journal of Materials Science	10.7	20
196	and Technology, 2020, 41, 76-80. Size-dependent deformation behavior of dual-phase, nanostructured CrCoNi medium-entropy alloy. Science China Materials, 2021, 64, 209-222.	6.3	20
197	Effects of isothermal annealing on the microstructures and mechanical properties of a FeCuSiBAl amorphous alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 543, 145-151.	5.6	19
198	A detailed appraisal of the stress exponent used for characterizing creep behavior in metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 53-59.	5.6	19

#	Article	IF	CITATIONS
199	Tuning Hydrogen and Carbon Nanotube Production from Phenol Steam Reforming on Ni/Fe-Based Nanocatalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 2098-2108.	6.7	19
200	Structural Model of the Orthorhombic Non-Fibonacci Approximant in the Al12Fe2Cr Alloy. Acta Crystallographica Section B: Structural Science, 1997, 53, 587-595.	1.8	18
201	Mechanical properties of a FeCuSiB alloy with amorphous and/or crystalline structures. Journal of Alloys and Compounds, 2011, 509, 6603-6608.	5.5	18
202	High hardness in a nanocrystalline Mg97Y2Zn1 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7494-7499.	5.6	18
203	Spontaneous formation of core–shell GaAsP nanowires and their enhanced electrical conductivity. Journal of Materials Chemistry C, 2015, 3, 1745-1750.	5.5	18
204	On the Atomic Anisotropy of Thermal Expansion in Bulk Metallic Glass. Advanced Engineering Materials, 2011, 13, 861-864.	3.5	17
205	Ultrahigh-strength submicron-sized metallic glass wires. Scripta Materialia, 2014, 84-85, 27-30.	5.2	17
206	Strain effect on the critical superconducting temperature of MgB2. Superconductor Science and Technology, 2004, 17, 1026-1030.	3.5	16
207	Deformation-induced phase transformation in 4H–SiC nanopillars. Acta Materialia, 2014, 80, 392-399.	7.9	16
208	Inhomogeneous creep deformation in metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 648, 57-60.	5.6	16
209	Cobalt Nanoparticles Confined in Carbon Cages Derived from Zeolitic Imidazolate Frameworks as Efficient Oxygen Electrocatalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 355-363.	4.7	16
210	Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion. Journal of Materials Science and Technology, 2021, 68, 199-208.	10.7	16
211	Room-temperature-deformation-induced chemical short-range ordering in a supersaturated ultrafine-grained Al-Zn alloy. Scripta Materialia, 2022, 210, 114423.	5.2	16
212	In-situ synthesis of Ag nanoparticles by electron beam irradiation. Materials Characterization, 2015, 110, 1-4.	4.4	15
213	Stress-induced reversible and irreversible ferroelectric domain switching. Applied Physics Letters, 2018, 112, .	3.3	15
214	<i>In situ</i> mechanical resonance behaviour of pristine and defective zinc blende GaAs nanowires. Nanoscale, 2018, 10, 2588-2595.	5.6	15
215	Ductility of ultrafine-grained copper processed by equal-channel angular pressing. International Journal of Materials Research, 2009, 100, 1647-1652.	0.3	14
216	Strain softening in nanocrystalline Ni–Fe alloy induced by large HPT revolutions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4807-4811.	5.6	14

#	Article	IF	CITATIONS
217	New atom probe approaches to studying segregation in nanocrystalline materials. Ultramicroscopy, 2013, 132, 158-163.	1.9	14
218	Correlation between hardness and shear banding of metallic glasses under nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 657, 38-42.	5.6	14
219	Size effect for achieving high mechanical performance body-centered cubic metals and alloys. Science China Materials, 2018, 61, 1495-1516.	6.3	14
220	Understanding formation of Mg-depletion zones in Al-Mg alloys under high pressure torsion. Journal of Materials Science and Technology, 2019, 35, 858-864.	10.7	14
221	Giant room temperature compression and bending in ferroelectric oxide pillars. Nature Communications, 2022, 13, 335.	12.8	14
222	Co–Mo catalyzed growth of multi-wall carbon nanotubes from CO decomposition. Carbon, 2003, 41, 2635-2641.	10.3	13
223	Hydrogen-induced microstructure, texture and mechanical property evolutions in a high-pressure torsion processed zirconium alloy. Scripta Materialia, 2012, 67, 752-755.	5.2	13
224	Shear bands in a bulk metallic glass after large plastic deformation. Scripta Materialia, 2012, 67, 332-335.	5.2	13
225	A double strengthened surface layer fabricated by nitro-chromizing on carbon steel. Surface and Coatings Technology, 2016, 298, 83-92.	4.8	13
226	Effect of scanning strategy on variant selection in additively manufactured Ti-6Al-4V. Additive Manufacturing, 2020, 36, 101581.	3.0	13
227	Effects of nanostructural hierarchy on the hardness and thermal stability of an austenitic stainless steel. Journal of Materials Research and Technology, 2021, 12, 376-384.	5.8	13
228	Quantifying the Influence of Inert Shell Coating on Luminescence Brightness of Lanthanide Upconversion Nanoparticles. ACS Photonics, 2022, 9, 758-764.	6.6	13
229	Martensitic Phase Transformation and Deformation Behavior of Fe–Mn–C–Al Twinningâ€Induced Plasticity Steel during Highâ€Pressure Torsion. Advanced Engineering Materials, 2014, 16, 927-932.	3.5	12
230	Real-time observation of stress-induced domain evolution in a [011]ÂPIN-PMN-PT relaxor ferroelectric single crystal. Acta Materialia, 2019, 175, 436-444.	7.9	12
231	A new monoclinic approximant of the decagonal quasicrystal in Al-Co-Cu-W and Al-Fe-Cr alloys. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 78, 143-156.	0.6	11
232	Phases in pure hafnium. Philosophical Magazine Letters, 2014, 94, 370-376.	1.2	11
233	Kinetics of Domain Switching by Mechanical and Electrical Stimulation in Relaxor-Based Ferroelectrics. Physical Review Applied, 2017, 8, .	3.8	11
234	Attraction of semiconductor nanowires: An in situ observation. Acta Materialia, 2013, 61, 7166-7172.	7.9	10

#	Article	IF	CITATIONS
235	Fracture mechanism of an Al/AIN/CrAIN gradient coating on nitrogen implanted magnesium alloy. Surface and Coatings Technology, 2016, 302, 126-130.	4.8	10
236	Confined Ru Nanocatalysts on Surface to Enhance Ammonia Synthesis: An In situ ETEM Study. ChemCatChem, 2021, 13, 534-538.	3.7	10
237	3D characterization of microstructural evolution and variant selection in additively manufactured Ti-6Al-4ÂV. Journal of Materials Science, 2021, 56, 14763-14782.	3.7	10
238	Grain size dependent microstructure and texture evolution during dynamic deformation of nanocrystalline face-centered cubic materials. Acta Materialia, 2021, 216, 117088.	7.9	10
239	Texture evolution in a CrMnFeCoNi high-entropy alloy manufactured by laser powder bed fusion. Journal of Materials Science, 2022, 57, 9714-9725.	3.7	10
240	Intergranular precipitation and chemical fluctuations in an additively manufactured 2205 duplex stainless steel. Scripta Materialia, 2022, 219, 114894.	5.2	10
241	Island shape instabilities and surfactant-like effects in the growth of InGaAs/GaAs quantum dots. Thin Solid Films, 1999, 357, 40-45.	1.8	9
242	Highly disordered intergrowths in Sr2FeMoO6. Journal of Applied Physics, 2004, 96, 7747-7749.	2.5	9
243	The formation of symmetric SiC bi-nanowires with a Y-shaped junction. Nanotechnology, 2010, 21, 405303.	2.6	9
244	Chemistry of grain boundary environments in nanocrystalline Al 7075. Journal of Alloys and Compounds, 2010, 495, 391-393.	5.5	9
245	Understanding large plastic deformation of SiC nanowires at room temperature. Europhysics Letters, 2011, 95, 63003.	2.0	9
246	Self-healing in fractured GaAs nanowires. Acta Materialia, 2012, 60, 5593-5600.	7.9	9
247	On the wurtzite to tetragonal phase transformation in ZnO nanowires. Nanotechnology, 2017, 28, 165705.	2.6	9
248	Room-temperature superplasticity in Au nanowires and their atomistic mechanisms. Nanoscale, 2019, 11, 8727-8735.	5.6	9
249	Improvement of flow strength and scratch resistance of Ti/Cu nanocrystalline metal multilayer thin films by tailoring layer thickness and modulation ratio. Surface and Coatings Technology, 2020, 404, 126461.	4.8	9
250	Microstructure-property gradients in Ni-based superalloy (Inconel 738) additively manufactured via electron beam powder bed fusion. Additive Manufacturing, 2021, 46, 102121.	3.0	9
251	Unveiling the grain boundary-related effects on the incipient plasticity and dislocation behavior in nanocrystalline CrCoNi medium-entropy alloy. Journal of Materials Science and Technology, 2022, 127, 98-107.	10.7	9
252	Evidence of in-situ Cu clustering as a function of laser power during laser powder bed fusion of 17–4 PH stainless steel. Scripta Materialia, 2022, 219, 114896.	5.2	9

#	Article	IF	CITATIONS
253	Peritectic solidification of the stable Al-Cu-Co decagonal quasicrystal. Journal of Materials Science Letters, 1992, 11, 909-912.	0.5	8
254	Elemental redistribution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7500-7505.	5.6	8
255	Correlation and Improvement of Bimetallic Electronegativity on Metal–Organic Frameworks for Electrocatalytic Water Oxidation. Advanced Energy and Sustainability Research, 2021, 2, 2100055.	5.8	8
256	Microstructural evolution and ferroelectricity in HfO2 films. , 0, , .		8
257	Rapid deposition of high temperature YBa2Cu3O7â^'xsuperconducting thin films directly on silver substrates. Applied Physics Letters, 1993, 62, 894-895.	3.3	7
258	Microwave performance of high-density bulk MgB2. Applied Physics Letters, 2003, 83, 108-110.	3.3	7
259	Effect of sub- <i>T</i> _g annealing on the mechanical properties of a ZrAlNiCuNb bulk metallic glass. Philosophical Magazine Letters, 2011, 91, 713-723.	1.2	7
260	Mechanical Behaviors of Semiconductor Nanowires. Semiconductors and Semimetals, 2016, 94, 109-158.	0.7	7
261	Formation and 3D morphology of interconnected α microstructures in additively manufactured Ti-6Al-4V. Materialia, 2021, 20, 101201.	2.7	7
262	Improving the current-carrying capacity of silver-sheathed (Bi,Pb)2Sr2Ca2Cu3O10 superconductors by cryogenic deformation. Physica C: Superconductivity and Its Applications, 1998, 301, 199-204.	1.2	6
263	The influence of structural defects on intra-granular critical currents of bulk MgB/sub 2/. IEEE Transactions on Applied Superconductivity, 2003, 13, 3068-3071.	1.7	6
264	Microstructural evolution during gaseous hydrogen charging of Zircaloy-4 processed by high-pressure torsion: A comparative study. Materials Letters, 2012, 68, 310-313.	2.6	6
265	Effects of loading misalignment and tapering angle on the measured mechanical properties of nanowires. Nanotechnology, 2015, 26, 435704.	2.6	6
266	High critical currents in powder in tube MgB/sub 2/wires: influence of microstructure and heat treatments. IEEE Transactions on Applied Superconductivity, 2003, 13, 3347-3350.	1.7	5
267	Quantum dot/substrate interaction in InAs/In0.53Ga0.47As/InP(001). Applied Physics Letters, 2004, 84, 511-513.	3.3	5
268	Precipitation of quasicrystal approximant phases in an Al–Mg–Cu–Ge alloy. Philosophical Magazine Letters, 2013, 93, 77-84.	1.2	5
269	Comments on "Characterization of the Fe-Al Interfacial Layer in a Commercial Hot-dip Galvanized Coating" ISIJ International, 1998, 38, 506-507.	1.4	5
270	Deformation-Induced Phase Transformations in Gold Nanoribbons with the 4H Phase. ACS Nano, 2022, 16, 3272-3279.	14.6	5

#	Article	IF	CITATIONS
271	A transmission electron microscopy study of crystalline surface domains on Al-Co decagonal quasicrystals and the τ2-Al13Co4approximant. Philosophical Magazine Letters, 1994, 70, 303-310.	1.2	4
272	Preferential nucleation and growth of InAs/GaAs(001) quantum dots on defected sites by droplet epitaxy. Scripta Materialia, 2013, 69, 638-641.	5.2	4
273	Elemental diffusion during the droplet epitaxy growth of In(Ga)As/GaAs(001) quantum dots by metal-organic chemical vapor deposition. Applied Physics Letters, 2014, 104, .	3.3	4
274	In-situ investigation of dislocation tangle–untangle processes in small-sized body-centered cubic Nb single crystals. Materials Letters, 2017, 198, 16-18.	2.6	4
275	Confinement Impact for the Dynamics of Supported Metal Nanocatalyst. Small, 2018, 14, 1801586.	10.0	4
276	Softening of Bi2212 crystals and growth mechanism of Bi2212 and Bi2201 grown at the KCl flux surface. Superconductor Science and Technology, 1999, 12, 77-80.	3.5	3
277	Self-healing of fractured one-dimensional brittle nanostructures. Europhysics Letters, 2012, 98, 16010.	2.0	3
278	Can misfit dislocations be located above the interface of InAs/GaAs (001) epitaxial quantum dots?. Nanoscale Research Letters, 2012, 7, 486.	5.7	3
279	Preface to the special issue on ultrafine-grained materials. Journal of Materials Science, 2014, 49, 6485-6486.	3.7	3
280	Thermoelectrics: Ultraâ€High Thermoelectric Performance in Bulk BiSbTe/Amorphous Boron Composites with Nanoâ€Đefect Architectures (Adv. Energy Mater. 41/2020). Advanced Energy Materials, 2020, 10, 2070171.	19.5	3
281	Effect of cryogenic deformation on microstructure and critical current density in Ag/Bi-2223 tapes. IEEE Transactions on Applied Superconductivity, 1999, 9, 2726-2729.	1.7	2
282	Structures and Mechanical Properties of ECAP Processed 7075 Al Alloy upon Natural Aging and T651 Treatment. Materials Research Society Symposia Proceedings, 2004, 821, 343.	0.1	2
283	[001] zone-axis bright-field diffraction contrast from coherent Ge(Si) islands on Si(001). Ultramicroscopy, 2004, 98, 239-247.	1.9	2
284	Grain Size Effect on Deformation Twinning and De-Twinning in a Nanocrystalline Ni-Fe Alloy. Materials Science Forum, 2010, 667-669, 181-186.	0.3	2
285	Effect of Cyclic Thermal Loadings on the Microstructural Evolution of a Cantor Alloy in 3D Printing Processes. Microscopy and Microanalysis, 2019, 25, 2568-2569.	0.4	2
286	Intragranular glass/crystal conjugated particles in strip cast Nd-Fe-B flakes. Journal of Magnetism and Magnetic Materials, 2020, 495, 165863.	2.3	2
287	Manipulating ferroelectric behaviors via electron-beam induced crystalline defects. Nanoscale, 2021, 13, 14330-14336.	5.6	2
288	Atomic coordinates and polarization map around a pair of 12a[011Â⁻] dislocation cores produced by plastic deformation in relaxor ferroelectric PIN–PMN–PT. Journal of Applied Physics, 2021, 129, .	2.5	2

#	Article	IF	CITATIONS
289	Effect of Thermal Annealing on Nanostructure and Shape Transition in SiC–C Nanocomposites. Nanoscience and Nanotechnology Letters, 2012, 4, 435-440.	0.4	1
290	Effect of triple junctions on deformation twinning in a nanostructured Cu–Zn alloy: A statistical study using transmission Kikuchi diffraction. Beilstein Journal of Nanotechnology, 2016, 7, 1501-1506.	2.8	1
291	Formation of Pile Networks by Long Carbon Nanotubes from Decomposition of CO on Co-Mo Film. Journal of Nanoscience and Nanotechnology, 2004, 4, 189-191.	0.9	1
292	Comparative studies of the fishtail effect associated with surface pinning and oxygen vacancy network in spiral and layer-by-layer grown single crystals. Superconductor Science and Technology, 1998, 11, 1041-1044.	3.5	0
293	Transmission electron microscopy investigation of semiconductor quantum dots. , 0, , .		0
294	<title>Microstructure and optical properties of Ge(Si) dots grown on Si</title> . , 2002, , .		0
295	Unconfined Twist: a Simple Method to Prepare Ultrafine Grained Metallic Materials. Materials Research Society Symposia Proceedings, 2004, 821, 234.	0.1	0
296	Effects of Eu interfacial mobility on the growth of epitaxial EuBa2Cu3O7â^îſ films. Applied Physics Letters, 2005, 86, 101912.	3.3	0
297	Graded Microstructure of Additive Manufactured Ti-6Al-4V via Electron Beam Melting. Microscopy and Microanalysis, 2019, 25, 498-499.	0.4	0
298	10.1063/1.5020534.4., 2018, , .		0