Fengna Xi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1708067/publications.pdf

Version: 2024-02-01

28274 19190 14,511 129 55 118 citations h-index g-index papers 129 129 129 18788 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Three-dimensional macroscopic graphene supported vertically-ordered mesoporous silica-nanochannel film for direct and ultrasensitive detection of uric acid in serum. Talanta, 2022, 238, 123027.	5. 5	53
2	Schiff base tetranuclear Zn ₂ Ln ₂ single-molecule magnets bridged by hydroxamic acid in association with near-infrared luminescence. Dalton Transactions, 2022, 51, 6918-6926.	3.3	8
3	A Flexible Electrochemiluminescence Sensor Equipped With Vertically Ordered Mesoporous Silica Nanochannel Film for Sensitive Detection of Clindamycin. Frontiers in Chemistry, 2022, 10, 872582.	3.6	26
4	Tissue Imprinting on 2D Nanoflakes-Capped Silicon Nanowires for Lipidomic Mass Spectrometry Imaging and Cancer Diagnosis. ACS Nano, 2022, 16, 6916-6928.	14.6	41
5	Bipolar silica nanochannel array for dual-mode electrochemiluminescence and electrochemical immunosensing platform. Sensors and Actuators B: Chemical, 2022, 368, 132086.	7.8	47
6	Integration of vertically-ordered mesoporous silica-nanochannel film with electro-activated glassy carbon electrode for improved electroanalysis in complex samples. Talanta, 2021, 225, 122066.	5.5	21
7	A co-delivery platform for synergistic promotion of angiogenesis based on biodegradable, therapeutic and self-reporting luminescent porous silicon microparticles. Biomaterials, 2021, 272, 120772.	11.4	40
8	Dual anions engineering on nickel cobalt-based catalyst for optimal hydrogen evolution electrocatalysis. Journal of Colloid and Interface Science, 2021, 589, 127-134.	9.4	30
9	Graphene quantum dot-decorated luminescent porous silicon dressing for theranostics of diabetic wounds. Acta Biomaterialia, 2021, 131, 544-554.	8.3	49
10	Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER. Carbon, 2021, 184, 554-561.	10.3	43
11	Iron and nitrogen co-doped graphene quantum dots as highly active peroxidases for the sensitive detection of <scp>I</scp> -cysteine. New Journal of Chemistry, 2021, 45, 19056-19064.	2.8	18
12	Vertically Ordered Mesoporous Silica-Nanochannel Film-Equipped Three-Dimensional Macroporous Graphene as Sensitive Electrochemiluminescence Platform. Frontiers in Chemistry, 2021, 9, 770512.	3.6	11
13	Colorimetric and Fluorescent Dual-Modality Sensing Platform Based on Fluorescent Nanozyme. Frontiers in Chemistry, 2021, 9, 774486.	3.6	28
14	Silica Nanochannel Array Film Supported by ÄŸ-Cyclodextrin-Functionalized Graphene Modified Gold Film Electrode for Sensitive and Direct Electroanalysis of Acetaminophen. Frontiers in Chemistry, 2021, 9, 812086.	3.6	39
15	Green synthesis of upconversion nanocrystals by adjusting local precursor supersaturation under aqueous conditions. Materials Advances, 2020, 1, 2707-2711.	5.4	1
16	Functional nanostructure-loaded three-dimensional graphene foam as a non-enzymatic electrochemical sensor for reagentless glucose detection. RSC Advances, 2020, 10, 33739-33746.	3.6	45
17	Ratiometric Fluorescent Nanohybrid for Noninvasive and Visual Monitoring of Sweat Glucose. ACS Sensors, 2020, 5, 2096-2105.	7.8	108
18	Graphene quantum dots as full-color and stimulus responsive fluorescence ink for information encryption. Journal of Colloid and Interface Science, 2020, 579, 307-314.	9.4	63

#	Article	IF	CITATIONS
19	Confinement of fluorine anions in nickel-based catalysts for greatly enhancing oxygen evolution activity. Chemical Communications, 2020, 56, 4196-4199.	4.1	34
20	Transition metal dichalcogenide/multi-walled carbon nanotube-based fibers as flexible electrodes for electrocatalytic hydrogen evolution. Chemical Communications, 2020, 56, 5131-5134.	4.1	28
21	van der Waals Heterojunction between a Bottom-Up Grown Doped Graphene Quantum Dot and Graphene for Photoelectrochemical Water Splitting. ACS Nano, 2020, 14, 1185-1195.	14.6	100
22	Naturally derived honeycomb-like N,S-codoped hierarchical porous carbon with MS ₂ (M =) Tj ETQq0	0 0 ggBT 5.6	/Oyerlock 10
23	Dendritic cells reprogrammed by CEA messenger RNA loaded multi-functional silica nanospheres for imaging-guided cancer immunotherapy. Biomaterials Science, 2020, 8, 3026-3031.	5.4	5
24	2′- <i>O</i> -Methyl molecular beacon: a promising molecular tool that permits elimination of sticky-end pairing and improvement of detection sensitivity. RSC Advances, 2020, 10, 41618-41624.	3.6	4
25	Facile surface modification of textiles with photocatalytic carbon nitride nanosheets and the excellent performance for self-cleaning and degradation of gaseous formaldehyde. Journal of Colloid and Interface Science, 2019, 533, 144-153.	9.4	64
26	Amphiphilic graphene quantum dots as a new class of surfactants. Carbon, 2019, 153, 127-135.	10.3	55
27	Bi2MoO6/g-C3N4 of 0D/2D heterostructure as efficient photocatalyst for selective oxidation of aromatic alkanes. Applied Surface Science, 2019, 490, 102-108.	6.1	69
28	One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor. Talanta, 2019, 199, 581-589.	5.5	112
29	Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Advanced Materials, 2019, 31, e1808283.	21.0	603
30	Improved adhesion and performance of vertically-aligned mesoporous silica-nanochannel film on reduced graphene oxide for direct electrochemical analysis of human serum. Sensors and Actuators B: Chemical, 2019, 288, 133-140.	7.8	38
31	Graphene quantum dots decorated graphitic carbon nitride nanorods for photocatalytic removal of antibiotics. Journal of Colloid and Interface Science, 2019, 548, 56-65.	9.4	148
32	Highly stretchable and autonomously healable epidermal sensor based on multi-functional hydrogel frameworks. Journal of Materials Chemistry A, 2019, 7, 5949-5956.	10.3	187
33	Enzymatic Degradation of Graphene Quantum Dots by Human Peroxidases. Small, 2019, 15, e1905405.	10.0	46
34	Gram-scale synthesis of nitrogen doped graphene quantum dots for sensitive detection of mercury ions and <scp>I</scp> -cysteine. RSC Advances, 2019, 9, 32977-32983.	3.6	35
35	Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Materials Science and Engineering C, 2019, 97, 325-335.	7.3	163
36	Photoâ€Induced Hydrogel Formation Based on g ₃ N ₄ Nanosheets with Self rossâ€Linked 3D Framework for UV Protection Application. Macromolecular Materials and Engineering, 2019, 304, 1800500.	3.6	26

#	Article	IF	Citations
37	Synergistic effects of phosphorous/sulfur co-doping and morphological regulation for enhanced photocatalytic performance of graphitic carbon nitride nanosheets. Journal of Materials Science, 2019, 54, 1593-1605.	3.7	52
38	Aqueous synthesis of amphiphilic graphene quantum dots and their application as surfactants for preparing of fluorescent polymer microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 77-83.	4.7	35
39	Organic Nanotheranostics for Photoacoustic Imaging-Guided Phototherapy. Current Medicinal Chemistry, 2019, 26, 1389-1405.	2.4	24
40	Holey nickel hydroxide nanosheets for wearable solid-state fiber-supercapacitors. Nanoscale, 2018, 10, 5442-5448.	5 . 6	50
41	Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomaterials Science, 2018, 6, 746-765.	5.4	250
42	Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. Sensors and Actuators B: Chemical, 2018, 259, 364-371.	7.8	86
43	Tailoring the Electronic Properties of Graphene Quantum Dots by P Doping and Their Enhanced Performance in Metal-Free Composite Photocatalyst. Journal of Physical Chemistry C, 2018, 122, 349-358.	3.1	108
44	S-doped graphene quantum dots as nanophotocatalyst for visible light degradation. Chinese Chemical Letters, 2018, 29, 1698-1701.	9.0	59
45	Quasi-homogeneous carbocatalysis for one-pot selective conversion of carbohydrates to 5-hydroxymethylfurfural using sulfonated graphene quantum dots. Carbon, 2018, 136, 224-233.	10.3	60
46	Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy, 2018, 48, 284-291.	16.0	143
47	Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO ₂ Reduction. ACS Nano, 2018, 12, 3523-3532.	14.6	341
48	Graphene quantum dots based fluorescence turn-on nanoprobe for highly sensitive and selective imaging of hydrogen sulfide in living cells. Biomaterials Science, 2018, 6, 779-784.	5.4	42
49	One-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy for the selective removal of oily organic solvent from water. Applied Surface Science, 2018, 428, 338-347.	6.1	50
50	Oxygenic Hybrid Semiconducting Nanoparticles for Enhanced Photodynamic Therapy. Nano Letters, 2018, 18, 586-594.	9.1	294
51	Nanochannel-Confined Graphene Quantum Dots for Ultrasensitive Electrochemical Analysis of Complex Samples. ACS Nano, 2018, 12, 12673-12681.	14.6	129
52	Facile preparation of N-doped graphene quantum dots as quick-dry fluorescent ink for anti-counterfeiting. New Journal of Chemistry, 2018, 42, 17091-17095.	2.8	41
53	Highly Efficient Photoâ€Reduction of <i>p</i> àâ€Nitrophenol by Protonated Graphitic Carbon Nitride Nanosheets. ChemCatChem, 2018, 10, 4747-4754.	3.7	39
54	Enhanced charge separation ability and visible light photocatalytic performance of graphitic carbon nitride by binary S, B co-doping. Materials Research Bulletin, 2018, 107, 477-483.	5.2	39

#	Article	IF	CITATIONS
55	Graphene quantum dots-assisted exfoliation of graphitic carbon nitride to prepare metal-free zero-dimensional/two-dimensional composite photocatalysts. Journal of Materials Science, 2018, 53, 12103-12114.	3.7	49
56	An aza-BODIPY photosensitizer for photoacoustic and photothermal imaging guided dual modal cancer phototherapy. Journal of Materials Chemistry B, 2017, 5, 1566-1573.	5.8	96
57	Ternary Chalcogenide Nanosheets with Ultrahigh Photothermal Conversion Efficiency for Photoacoustic Theranostics. Small, 2017, 13, 1604139.	10.0	83
58	Organic Nanoprobe Cocktails for Multilocal and Multicolor Fluorescence Imaging of Reactive Oxygen Species. Advanced Functional Materials, 2017, 27, 1700493.	14.9	82
59	Facile and scalable preparation of highly luminescent N,S co-doped graphene quantum dots and their application for parallel detection of multiple metal ions. Journal of Materials Chemistry B, 2017, 5, 6593-6600.	5.8	106
60	N-doped mesoporous carbon by a hard-template strategy associated with chemical activation and its enhanced supercapacitance performance. Electrochimica Acta, 2017, 238, 269-277.	5.2	71
61	Activatable Photoacoustic Nanoprobes for In Vivo Ratiometric Imaging of Peroxynitrite. Advanced Materials, 2017, 29, 1604764.	21.0	220
62	Spectral and spatial characterization of upconversion luminescent nanocrystals as nanowaveguides. Nanoscale, 2017, 9, 9238-9245.	5.6	13
63	pH-Triggered and Enhanced Simultaneous Photodynamic and Photothermal Therapy Guided by Photoacoustic and Photothermal Imaging. Chemistry of Materials, 2017, 29, 5216-5224.	6.7	170
64	Preparation of biomass-activated porous carbons derived from torreya grandis shell for high-performance supercapacitor. Journal of Solid State Electrochemistry, 2017, 21, 2241-2249.	2.5	35
65	Graphene Quantum Dots Decorated Titania Nanosheets Heterojunction: Efficient Charge Separation and Enhanced Visibleâ€Light Photocatalytic Performance. ChemCatChem, 2017, 9, 3349-3357.	3.7	40
66	lonic liquid-capped graphene quantum dots as label-free fluorescent probe for direct detection of ferricyanide. Talanta, 2017, 165, 429-435.	5.5	28
67	Thermo-driven catalytic degradation of organic dyes by graphitic carbon nitride with hydrogen peroxide. Powder Technology, 2017, 308, 114-122.	4.2	10
68	Regulating Near-Infrared Photodynamic Properties of Semiconducting Polymer Nanotheranostics for Optimized Cancer Therapy. ACS Nano, 2017, 11, 8998-9009.	14.6	239
69	Preparation of 2D graphitic carbon nitride nanosheets by a green exfoliation approach and the enhanced photocatalytic performance. Journal of Materials Science, 2017, 52, 13091-13102.	3.7	92
70	Sweet graphene quantum dots for imaging carbohydrate receptors in live cells. FlatChem, 2017, 5, 25-32.	5.6	46
71	Integrative analyses of translatome and transcriptome reveal important translational controls in brown and white adipose regulated by microRNAs. Scientific Reports, 2017, 7, 5681.	3.3	10
72	Fabrication of metal-free two dimensional/two dimensional homojunction photocatalyst using various carbon nitride nanosheets as building blocks. Journal of Colloid and Interface Science, 2017, 507, 209-216.	9.4	49

#	Article	IF	CITATIONS
73	One-step template/chemical blowing route to synthesize flake-like porous carbon nitride photocatalyst. Materials Research Bulletin, 2017, 94, 423-427.	5.2	36
74	Enhanced electrochemical performance of straw-based porous carbon fibers for supercapacitor. Journal of Solid State Electrochemistry, 2017, 21, 3449-3458.	2.5	18
75	Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection. Sensors and Actuators B: Chemical, 2017, 242, 231-237.	7.8	194
76	Weavable, Highâ€Performance, Solidâ€State Supercapacitors Based on Hybrid Fibers Made of Sandwiched Structure of MWCNT/rGO/MWCNT. Advanced Electronic Materials, 2016, 2, 1600102.	5.1	47
77	One-pot synthesis of sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of lead(<scp>ii</scp>). RSC Advances, 2016, 6, 69977-69983.	3.6	93
78	Monitoring Dynamic Cellular Redox Homeostasis Using Fluorescence-Switchable Graphene Quantum Dots. ACS Nano, 2016, 10, 11475-11482.	14.6	71
79	Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chemical Science, 2016, 7, 5118-5125.	7.4	113
80	Nitrogen-rich graphitic carbon nitride: Controllable nanosheet-like morphology, enhanced visible light absorption and superior photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 257-264.	4.7	94
81	Mussel-inspired fabrication of novel superhydrophobic and superoleophilic sponge modified using a high density of nanoaggregates at low concentration of dopamine. RSC Advances, 2016, 6, 71905-71912.	3.6	20
82	Synthesis and application of ternary photocatalyst with a gradient band structure from two-dimensional nanosheets as precursors. RSC Advances, 2016, 6, 108955-108963.	3.6	18
83	The enhanced photocatalytic performance of Z-scheme two-dimensional/two-dimensional heterojunctions from graphitic carbon nitride nanosheets and titania nanosheets. Journal of Colloid and Interface Science, 2016, 478, 263-270.	9.4	42
84	Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. Nanoscale Horizons, 2016, 1, 156-160.	8.0	99
85	Ultrasensitive Profiling of Metabolites Using Tyramine-Functionalized Graphene Quantum Dots. ACS Nano, 2016, 10, 3622-3629.	14.6	145
86	Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chemical Society Reviews, 2016, 45, 2239-2262.	38.1	391
87	Regulatory networks of non-coding RNAs in brown/beige adipogenesis. Bioscience Reports, 2015, 35, .	2.4	28
88	Hybrid Fibers Made of Molybdenum Disulfide, Reduced Graphene Oxide, and Multiâ€Walled Carbon Nanotubes for Solidâ€State, Flexible, Asymmetric Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 4651-4656.	13.8	334
89	Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale, 2015, 7, 8159-8165.	5.6	174
90	Graphene quantum dots for ultrasensitive detection of acetylcholinesterase and its inhibitors. 2D Materials, 2015, 2, 034018.	4.4	33

#	Article	IF	Citations
91	A reagentless electrochemical immunosensor based on probe immobilization and the layer-by-layer assembly technique for sensitive detection of tumor markers. Analytical Methods, 2015, 7, 9655-9662.	2.7	9
92	Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small, 2015, 11, 1620-1636.	10.0	1,770
93	Three-dimensional electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on monolithic and macroporous graphene foam. Biosensors and Bioelectronics, 2015, 65, 281-286.	10.1	146
94	Facile Synthesis of Graphene Quantum Dots from 3D Graphene and their Application for Fe ³⁺ Sensing. Advanced Functional Materials, 2014, 24, 3021-3026.	14.9	446
95	Graphitic carbon nitride–BiVO ₄ heterojunctions: simple hydrothermal synthesis and high photocatalytic performances. RSC Advances, 2014, 4, 4187-4193.	3.6	92
96	Functionalization of Monolithic and Porous Three-Dimensional Graphene by One-Step Chitosan Electrodeposition for Enzymatic Biosensor. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19997-20002.	8.0	95
97	Solvothermal synthesis and enhanced visible light photocatalytic activity of novel graphitic carbon nitride–Bi 2 MoO 6 heterojunctions. Powder Technology, 2014, 267, 126-133.	4.2	67
98	Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light. Journal of Solid State Chemistry, 2014, 212, 1-6.	2.9	78
99	SO3H-functionalized mesoporous carbon/silica composite with a spherical morphology and its excellent catalytic performance for biodiesel production. Journal of Porous Materials, 2013, 20, 1423-1431.	2.6	5
100	Facile fabrication of N-doped TiO2 nanocatalyst with superior performance under visible light irradiation. Journal of Solid State Chemistry, 2013, 199, 280-286.	2.9	23
101	Hydrothermal Synthesis of Graphitic Carbon Nitride–Bi ₂ WO ₆ Heterojunctions with Enhanced Visible Light Photocatalytic Activities. ACS Applied Materials & Interfaces, 2013, 5, 7079-7085.	8.0	457
102	Yellow–colored mesoporous pure titania and its high stability in visible light photocatalysis. Powder Technology, 2013, 245, 227-232.	4.2	15
103	Magnetically separable porous carbon nanospheres as solid acid catalysts. RSC Advances, 2013, 3, 20999.	3.6	31
104	Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. Journal of Materials Chemistry A, 2013, 1, 3083.	10.3	471
105	Soft-chemical synthesis of mesoporous nitrogen-modified titania with superior photocatalytic performance under visible light irradiation. Chemical Engineering Journal, 2013, 219, 155-161.	12.7	22
106	Non-enzymatic detection of hydrogen peroxide using a functionalized three-dimensional graphene electrode. Electrochemistry Communications, 2013, 26, 81-84.	4.7	109
107	Graphene Quantum Dots as Universal Fluorophores and Their Use in Revealing Regulated Trafficking of Insulin Receptors in Adipocytes. ACS Nano, 2013, 7, 6278-6286.	14.6	229
108	Synthesis of Mn-intercalated layered titanate by exfoliation–flocculation approach and its efficient photocatalytic activity under visible–light. Journal of Solid State Chemistry, 2012, 196, 282-287.	2.9	17

#	Article	IF	Citations
109	BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. Journal of Materials Chemistry, 2012, 22, 21159.	6.7	365
110	Biological and chemical sensors based on graphene materials. Chemical Society Reviews, 2012, 41, 2283-2307.	38.1	1,591
111	A graphene–cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets. Chemical Communications, 2012, 48, 6490.	4.1	155
112	Hybrid nanocomposite with visible–light photocatalytic activity: CdS–pillared titanate. Chemical Engineering Journal, 2012, 180, 330-336.	12.7	31
113	Synthesis of mesoporous CdS/titania composites with visible light photocatalytic activities. Materials Letters, 2012, 81, 95-98.	2.6	19
114	Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips. Nanoscale, 2011, 3, 4854.	5.6	34
115	The effect of the chitosan membrane properties on the enzyme adsorption and performance for the construction of horseradish peroxidase biosensors. Carbohydrate Polymers, 2011, 85, 786-791.	10.2	16
116	Discrimination and detection of bacteria with a label-free impedimetric biosensor based on self-assembled lectin monolayer. Journal of Electroanalytical Chemistry, 2011, 656, 252-257.	3.8	40
117	Synthesis and layer-by-layer self-assembly of titania nanosheets controllably doped with binary transition metal ions. Journal of Materials Research, 2011, 26, 1285-1291.	2.6	2
118	A Simple Layerâ€byâ€Layer Assembly Strategy for a Reagentless Biosensor Based on a Nanocomposite of Methylene Blueâ€Multiwalled Carbon Nanotubes. Electroanalysis, 2010, 22, 277-285.	2.9	18
119	Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar–lectin biospecific interaction. Analytical Biochemistry, 2010, 403, 36-42.	2.4	25
120	Selective analysis of reduced thiols with a novel bionanomultilayer biosensor based on the inhibition principle. Sensors and Actuators B: Chemical, 2009, 135, 642-649.	7.8	12
121	One-step construction of reagentless biosensor based on chitosan-carbon nanotubes-nile blue-horseradish peroxidase biocomposite formed by electrodeposition. Talanta, 2009, 78, 1077-1082.	5.5	44
122	One-step construction of biosensor based on chitosan–ionic liquid–horseradish peroxidase biocomposite formed by electrodeposition. Biosensors and Bioelectronics, 2008, 24, 29-34.	10.1	74
123	Development of a bienzyme system based on sugar–lectin biospecific interactions for amperometric determination of phenols and aromatic amines. Sensors and Actuators B: Chemical, 2008, 130, 900-907.	7.8	31
124	Uniform bionanomultilayer constructed with soluble multiwall carbon nanotubes and its application as biosensor. Journal of Electroanalytical Chemistry, 2008, 623, 135-141.	3.8	19
125	Highly sensitive biosensor based on bionanomultilayer with water-soluble multiwall carbon nanotubes for determination of phenolics. Biosensors and Bioelectronics, 2008, 24, 306-312.	10.1	34
126	Novel nylon-supported organic–inorganic hybrid membrane with hierarchical pores as a potential immobilized metal affinity adsorbent. Journal of Chromatography A, 2006, 1125, 38-51.	3.7	39

FENGNA XI

#	Article	IF	CITATION
127	Preparation of macroporous chitosan layer coated on silica gel and its application to affinity chromatography for trypsin inhibitor purification. Reactive and Functional Polymers, 2006, 66, 682-688.	4.1	33
128	Preparation and characterization of trypsin immobilized on silica gel supported macroporous chitosan bead. Process Biochemistry, 2005, 40, 2833-2840.	3.7	79
129	Macroporous chitosan layer coated on non-porous silica gel as a support for metal chelate affinity chromatographic adsorbent. Journal of Chromatography A, 2004, 1057, 41-47.	3.7	73