Tatsuo Fukagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1707964/publications.pdf

Version: 2024-02-01

83 8,473 40 80 g-index

89 89 89 6384
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Simple Method that Combines CRISPR and AID to Quickly Generate Conditional Knockouts for Essential Genes in Various Vertebrate Cell Lines. Methods in Molecular Biology, 2022, 2377, 109-122.	0.9	O
2	Mobility of kinetochore proteins measured by FRAP analysis in living cells. Chromosome Research, 2022, 30, 43-57.	2.2	7
3	Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Communications Biology, 2022, 5, 78.	4.4	14
4	Recruitment of two Ndc80 complexes via the CENP-T pathway is sufficient for kinetochore functions. Nature Communications, 2022, 13, 851.	12.8	14
5	A Simple Method to Generate Super-sensitive AID (ssAID)-based Conditional Knockouts using CRISPR-based Gene Knockout in Various Vertebrate Cell Lines. Bio-protocol, 2021, 11, e4092.	0.4	1
6	CENP-C Phosphorylation by CDK1 in vitro. Bio-protocol, 2021, 11, e3879.	0.4	2
7	Bridgin connects the outer kinetochore to centromeric chromatin. Nature Communications, 2021, 12, 146.	12.8	17
8	Kinetochore stretching-mediated rapid silencing of the spindle-assembly checkpoint required for failsafe chromosome segregation. Current Biology, 2021, 31, 1581-1591.e3.	3.9	17
9	Bub1 and CENP-U redundantly recruit Plk1 to stabilize kinetochore-microtubule attachments and ensure accurate chromosome segregation. Cell Reports, 2021, 36, 109740.	6.4	20
10	Cryoâ€EM structure of the CENPâ€A nucleosome in complex with phosphorylated CENP . EMBO Journal, 2021, 40, e105671.	7.8	35
11	Cryo-EM Structures of Centromeric Tri-nucleosomes Containing a Central CENP-A Nucleosome. Structure, 2020, 28, 44-53.e4.	3.3	47
12	Essentiality of CENP-A Depends on Its Binding Mode to HJURP. Cell Reports, 2020, 33, 108388.	6.4	9
13	CENPâ€50 is required for papilloma development in the twoâ€stage skin carcinogenesis model. Cancer Science, 2020, 111, 2850-2860.	3.9	3
14	A super-sensitive auxin-inducible degron system with an engineered auxin-TIR1 pair. Nucleic Acids Research, 2020, 48, e108-e108.	14.5	32
15	H3K9me3 maintenance on a Human Artificial Chromosome is required for segregation but not centromere epigenetic memory. Journal of Cell Science, 2020, 133, .	2.0	15
16	Artificial generation of centromeres and kinetochores to understand their structure and function. Experimental Cell Research, 2020, 389, 111898.	2.6	8
17	Dynamics of kinetochore structure and its regulations during mitotic progression. Cellular and Molecular Life Sciences, 2020, 77, 2981-2995.	5.4	45
18	CDK1-mediated CENP-C phosphorylation modulates CENP-A binding and mitotic kinetochore localization. Journal of Cell Biology, 2019, 218, 4042-4062.	5.2	47

#	Article	IF	Citations
19	Centromere maintenance during DNA replication. Nature Cell Biology, 2019, 21, 669-671.	10.3	O
20	Where is the right path heading from the centromere to spindle microtubules?. Cell Cycle, $2019, 18, 1199-1211$.	2.6	8
21	Live imaging of marked chromosome regions reveals their dynamic resolution and compaction in mitosis. Journal of Cell Biology, 2019, 218, 1531-1552.	5.2	16
22	The CENP-A centromere targeting domain facilitates H4K20 monomethylation in the nucleosome by structural polymorphism. Nature Communications, 2019, 10, 576.	12.8	28
23	3D genomic architecture reveals that neocentromeres associate with heterochromatin regions. Journal of Cell Biology, 2019, 218, 134-149.	5.2	31
24	Kinetochore assembly and disassembly during mitotic entry and exit. Current Opinion in Cell Biology, 2018, 52, 73-81.	5.4	54
25	Multiple phosphorylations control recruitment of the KMN network onto kinetochores. Nature Cell Biology, 2018, 20, 1378-1388.	10.3	70
26	Site-Specific Cleavage by Topoisomerase 2: A Mark of the Core Centromere. International Journal of Molecular Sciences, 2018, 19, 534.	4.1	7
27	Stepwise unfolding supports a subunit model for vertebrate kinetochores. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3133-3138.	7.1	14
28	An efficient method to generate conditional knockout cell lines for essential genes by combination of auxin-inducible degron tag and CRISPR/Cas9. Chromosome Research, 2017, 25, 253-260.	2.2	26
29	Critical histone post-translational modifications for centromere function and propagation. Cell Cycle, 2017, 16, 1259-1265.	2.6	18
30	Constitutive centromere-associated network controls centromere drift in vertebrate cells. Journal of Cell Biology, 2017, 216, 101-113.	5.2	29
31	Critical Foundation of the Kinetochore: The Constitutive Centromere-Associated Network (CCAN). Progress in Molecular and Subcellular Biology, 2017, 56, 29-57.	1.6	52
32	Association of M18BP1/KNL2 with CENP-A Nucleosome Is Essential for Centromere Formation in Non-mammalian Vertebrates. Developmental Cell, 2017, 42, 181-189.e3.	7.0	56
33	CENP â€R acts bilaterally as a tumor suppressor and as an oncogene in the twoâ€stage skin carcinogenesis model. Cancer Science, 2017, 108, 2142-2148.	3.9	9
34	Genetic complementation analysis showed distinct contributions of the Nâ€terminal tail of H2A.Z to epigenetic regulations. Genes To Cells, 2016, 21, 122-135.	1.2	15
35	Kinetochore assembly and function through the cell cycle. Chromosoma, 2016, 125, 645-659.	2.2	58
36	Acetylation of histone H4 lysine 5 and 12 is required for CENP-A deposition into centromeres. Nature Communications, 2016, 7, 13465.	12.8	66

#	Article	IF	CITATIONS
37	Chromatin binding of RCC1 during mitosis is important for its nuclear localization in interphase. Molecular Biology of the Cell, 2016, 27, 371-381.	2.1	14
38	RbAp48 is essential for viability of vertebrate cells and plays a role in chromosome stability. Chromosome Research, 2016, 24, 161-173.	2.2	12
39	Whole-proteome genetic analysis of dependencies in assembly of a vertebrate kinetochore. Journal of Cell Biology, 2015, 211, 1141-1156.	5.2	42
40	HJURP is involved in the expansion of centromeric chromatin. Molecular Biology of the Cell, 2015, 26, 2742-2754.	2.1	38
41	Cell Division: A New Role for the Kinetochore in Central Spindle Assembly. Current Biology, 2015, 25, R554-R557.	3.9	2
42	Dynamic changes in CCAN organization through CENP-C during cell-cycle progression. Molecular Biology of the Cell, 2015, 26, 3768-3776.	2.1	62
43	A new Xist allele driven by a constitutively active promoter is dominated by Xist locus environment and exhibits the parent-of-origin effects. Development (Cambridge), 2015, 142, 4299-308.	2.5	5
44	The centromeric nucleosome-like CENP–T–W–S–X complex induces positive supercoils into DNA. Nucleic Acids Research, 2014, 42, 1644-1655.	14 . 5	72
45	The CENP-O complex requirement varies among different cell types. Chromosome Research, 2014, 22, 293-303.	2.2	34
46	The Centromere: Chromatin Foundation for the Kinetochore Machinery. Developmental Cell, 2014, 30, 496-508.	7.0	355
47	Neocentromeres. Current Biology, 2014, 24, R946-R947.	3.9	16
48	Histone H4 Lys 20 Monomethylation of the CENP-A Nucleosome Is Essential for Kinetochore Assembly. Developmental Cell, 2014, 29, 740-749.	7.0	101
49	Crystal structure and stable property of the cancer-associated heterotypic nucleosome containing CENP-A and H3.3. Scientific Reports, 2014, 4, 7115.	3.3	64
50	Chromosome Engineering Allows the Efficient Isolation of Vertebrate Neocentromeres. Developmental Cell, 2013, 24, 635-648.	7.0	155
51	CENP-T provides a structural platform for outer kinetochore assembly. EMBO Journal, 2013, 32, 424-436.	7.8	181
52	The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. Journal of Cell Biology, 2013, 200, 45-60.	5.2	182
53	Formation of a centromere-specific chromatin structure. Epigenetics, 2012, 7, 672-675.	2.7	3
54	Establishment of the vertebrate kinetochores. Chromosome Research, 2012, 20, 547-561.	2.2	36

#	Article	IF	CITATIONS
55	CENP-T-W-S-X Forms a Unique Centromeric Chromatin Structure with a Histone-like Fold. Cell, 2012, 148, 487-501.	28.9	229
56	Molecular architecture of vertebrate kinetochores. Experimental Cell Research, 2012, 318, 1367-1374.	2.6	55
57	Induced Ectopic Kinetochore Assembly Bypasses the Requirement for CENP-A Nucleosomes. Cell, 2011, 145, 410-422.	28.9	307
58	The ABCs of CENPs. Chromosoma, 2011, 120, 425-446.	2.2	173
59	Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins. Journal of Cell Biology, 2011, 193, 125-140.	5.2	82
60	Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Research, 2010, 20, 1219-1228.	5 . 5	158
61	Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. Journal of Cell Biology, 2010, 188, 809-820.	5. 2	332
62	A super-resolution map of the vertebrate kinetochore. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10484-10489.	7.1	186
63	Aurora B Phosphorylates Spatially Distinct Targets to Differentially Regulate the Kinetochore-Microtubule Interface. Molecular Cell, 2010, 38, 383-392.	9.7	430
64	Vertebrate kinetochore protein architecture: protein copy number. Journal of Cell Biology, 2010, 189, 937-943.	5. 2	80
65	The CENP-S complex is essential for the stable assembly of outer kinetochore structure. Journal of Cell Biology, 2009, 186, 173-182.	5.2	132
66	CENP-H–containing Complex Facilitates Centromere Deposition of CENP-A in Cooperation with FACT and CHD1. Molecular Biology of the Cell, 2009, 20, 3986-3995.	2.1	123
67	An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nature Methods, 2009, 6, 917-922.	19.0	1,364
68	CCAN Makes Multiple Contacts with Centromeric DNA to Provide Distinct Pathways to the Outer Kinetochore. Cell, 2008, 135, 1039-1052.	28.9	352
69	KNL1 and the CENP-H/I/K Complex Coordinately Direct Kinetochore Assembly in Vertebrates. Molecular Biology of the Cell, 2008, 19, 587-594.	2.1	176
70	CENP-O Class Proteins Form a Stable Complex and Are Required for Proper Kinetochore Function. Molecular Biology of the Cell, 2008, 19, 843-854.	2.1	123
71	CENP-C Is Involved in Chromosome Segregation, Mitotic Checkpoint Function, and Kinetochore Assembly. Molecular Biology of the Cell, 2007, 18, 2155-2168.	2.1	107
72	The CENP-H–I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nature Cell Biology, 2006, 8, 446-457.	10.3	437

#	Article	IF	CITATIONS
73	Asf1 Is Required for Viability and Chromatin Assembly during DNA Replication in Vertebrate Cells. Journal of Biological Chemistry, 2006, 281, 13817-13827.	3.4	85
74	The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. Journal of Cell Biology, 2006, 173, 9-17.	5.2	173
75	The DT40 system as a tool for analyzing kinetochore assembly. Sub-Cellular Biochemistry, 2006, 40, 91-106.	2.4	9
76	The Constitutive Centromere Component CENP-50 Is Required for Recovery from Spindle Damage. Molecular and Cellular Biology, 2005, 25, 10315-10328.	2.3	69
77	CENP-A Is Required for Accurate Chromosome Segregation and Sustained Kinetochore Association of BubR1. Molecular and Cellular Biology, 2005, 25, 3967-3981.	2.3	168
78	Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature Cell Biology, 2004, 6, 784-791.	10.3	451
79	Characterization of chicken CENP-A and comparative sequence analysis of vertebrate centromere-specific histone H3-like proteins. Gene, 2003, 316, 39-46.	2.2	23
80	Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. Journal of Cell Science, 2003, 116, 3347-3362.	2.0	139
81	CENP-I Is Essential for Centromere Function in Vertebrate Cells. Developmental Cell, 2002, 2, 463-476.	7.0	131
82	Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X \hat{l}_{\pm} -satellite array. EMBO Journal, 2002, 21, 5269-5280.	7.8	94
83	Kinetochore Architecture Employs Diverse Linker Strategies Across Evolution. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	15