Andrew Pohorille

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1707032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calculating free energies using average force. Journal of Chemical Physics, 2001, 115, 9169-9183.	3.0	940
2	Adaptive biasing force method for scalar and vector free energy calculations. Journal of Chemical Physics, 2008, 128, 144120.	3.0	683
3	Hydrophobic Effects and Modeling of Biophysical Aqueous Solution Interfaces. Chemical Reviews, 2002, 102, 2671-2692.	47.7	359
4	The NASA Astrobiology Roadmap. Astrobiology, 2008, 8, 715-730.	3.0	278
5	Artificial cells: prospects for biotechnology. Trends in Biotechnology, 2002, 20, 123-128.	9.3	267
6	Mechanism of Unassisted Ion Transport across Membrane Bilayers. Journal of the American Chemical Society, 1996, 118, 6580-6587.	13.7	157
7	Interaction of monovalent ions with the water liquid–vapor interface: A molecular dynamics study. Journal of Chemical Physics, 1991, 95, 6005-6013.	3.0	124
8	Molecular dynamics of phenol at the liquid–vapor interface of water. Journal of Chemical Physics, 1991, 94, 5599-5605.	3.0	88
9	Self-assembly and function of primitive cell membranes. Research in Microbiology, 2009, 160, 449-456.	2.1	85
10	Proton pumps: mechanism of action and applications. Trends in Biotechnology, 2001, 19, 140-144.	9.3	67
11	Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnology Advances, 2017, 35, 905-932.	11.7	48
12	The Origin and Early Evolution of Membrane Channels. Astrobiology, 2005, 5, 1-17.	3.0	47
13	Conformational Equilibria of Terminally Blocked Single Amino Acids at the Waterâ`'Hexane Interface. A Molecular Dynamics Study. Journal of Physical Chemistry B, 1998, 102, 281-290.	2.6	44
14	Molecular dynamics studies of simple membrane — Water interfaces: Structure and functions in the beginnings of cellular life. Origins of Life and Evolution of Biospheres, 1995, 25, 21-46.	1.9	41
15	Permeation of Membranes by Ribose and Its Diastereomers. Journal of the American Chemical Society, 2009, 131, 10237-10245.	13.7	40
16	Activation and Proton Transport Mechanism in Influenza A M2 Channel. Biophysical Journal, 2013, 105, 2036-2045.	0.5	40
17	Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance. Biophysical Journal, 2011, 100, 2394-2402.	0.5	39
18	Flip-Flop of Oleic Acid in a Phospholipid Membrane: Rate and Mechanism. Journal of Physical Chemistry B, 2014, 118, 12919-12926.	2.6	34

ANDREW POHORILLE

#	Article	IF	CITATIONS
19	Solution Influence on Biomolecular Equilibria: Nucleic Acid Base Associations. Journal of Biomolecular Structure and Dynamics, 1984, 1, 1257-1280.	3.5	33
20	Permeation of Nucleosides through Lipid Bilayers. Journal of Physical Chemistry B, 2011, 115, 3681-3688.	2.6	30
21	Early events in the folding of an amphipathic peptide: A multinanosecond molecular dynamics study. Proteins: Structure, Function and Bioinformatics, 1999, 36, 383-399.	2.6	24
22	Combining molecular dynamics and an electrodiffusion model to calculate ion channel conductance. Journal of Chemical Physics, 2014, 141, 22D519.	3.0	20
23	Flexible Proteins at the Origin of Life. Life, 2017, 7, 23.	2.4	16
24	Towards Co-Evolution of Membrane Proteins and Metabolism. Origins of Life and Evolution of Biospheres, 2014, 44, 357-361.	1.9	14
25	Permeation of Aldopentoses and Nucleosides Through Fatty Acid and Phospholipid Membranes: Implications to the Origins of Life. Astrobiology, 2013, 13, 177-188.	3.0	13
26	Validity of the Electrodiffusion Model for Calculating Conductance of Simple Ion Channels. Journal of Physical Chemistry B, 2017, 121, 3607-3619.	2.6	11
27	Sequence-Dependent Interfacial Adsorption and Permeation of Dipeptides across Phospholipid Membranes. Journal of Physical Chemistry B, 2017, 121, 9859-9867.	2.6	8
28	Gene Expression Measurement Module (GEMM) for space application: Design and validation. Life Sciences in Space Research, 2019, 22, 55-67.	2.3	6
29	M2 Proton Channel: Toward a Model of a Primitive Proton Pump. Origins of Life and Evolution of Biospheres, 2015, 45, 241-248.	1.9	5
30	Computational Electrophysiology from a Single Molecular Dynamics Simulation and the Electrodiffusion Model. Journal of Physical Chemistry B, 2021, 125, 3132-3144.	2.6	5
31	Electrophysiological Properties from Computations at a Single Voltage: Testing Theory with Stochastic Simulations. Entropy, 2021, 23, 571.	2.2	4
32	Fast bilayer-micelle fusion mediated by hydrophobic dipeptides. Biophysical Journal, 2021, 120, 2330-2342.	0.5	4
33	Early Ancestors of Existing Cells. , 2008, , 563-581.		2
34	Processes that Drove the Transition from Chemistry to Biology: Concepts and Evidence. Origins of Life and Evolution of Biospheres, 2012, 42, 429-432.	1.9	1
35	Chapter 3. Free Energy Calculations for Understanding Membrane Receptors. RSC Theoretical and Computational Chemistry Series, 2016, , 59-106.	0.7	1