
Gilles Lalmanach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1706947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells. Journal of Biological Chemistry, 2009, 284, 8680-8691.	3.4	172
2	Biochemical properties and regulation of cathepsin K activity. Biochimie, 2008, 90, 208-226.	2.6	147
3	CA-074, But Not Its Methyl Ester CA-074Me, Is a Selective Inhibitor of Cathepsin B within Living Cells. Biological Chemistry, 2002, 383, 1305-8.	2.5	142
4	Pregnancy-Associated Plasma Protein-A Is Involved in Insulin-Like Growth Factor Binding Protein-2 (IGFBP-2) Proteolytic Degradation in Bovine and Porcine Preovulatory Follicles: Identification of Cleavage Site and Characterization of IGFBP-2 Degradation. Biology of Reproduction, 2002, 68, 77-86.	2.7	132
5	Cystatins Up-regulate Nitric Oxide Release from Interferon-Î ³ - activated Mouse Peritoneal Macrophages. Journal of Biological Chemistry, 1996, 271, 28077-28081.	3.4	100
6	Kininogens: More than cysteine protease inhibitors and kinin precursors. Biochimie, 2010, 92, 1568-1579.	2.6	85
7	Therapeutic targeting of cathepsin C: from pathophysiology to treatment. , 2018, 190, 202-236.		85
8	Synthesis of a Biologically Active Triazoleâ€Containing Analogue of Cystatinâ€A Through Successive Peptidomimetic Alkyne–Azide Ligations. Angewandte Chemie - International Edition, 2012, 51, 718-722.	13.8	75
9	Investigation of the substrate specificity of cruzipain, the major cysteine proteinase of <i>Trypanosoma cruzi</i> , through the use of cystatin-derived substrates and inhibitors. Biochemical Journal, 1996, 313, 951-956.	3.7	74
10	Cysteine protease isoforms from Trypanosoma cruzi, cruzipain 2 and cruzain, present different substrate preference and susceptibility to inhibitors. Molecular and Biochemical Parasitology, 2001, 114, 41-52.	1.1	74
11	Chicken cystatin stimulates nitric oxide release from interferon-γ-activated mouse peritoneal macrophages via cytokine synthesis. FEBS Journal, 1999, 266, 1111-1117.	0.2	68
12	Evaluation of a peptide ELISA for the detection of rituximab in serum. Journal of Immunological Methods, 2007, 325, 127-139.	1.4	65
13	Binding of Chondroitin 4-Sulfate to Cathepsin S Regulates Its Enzymatic Activity. Biochemistry, 2013, 52, 6487-6498.	2.5	63
14	Immunisation of cattle with cysteine proteinases of Trypanosoma congolense: targetting the disease rather than the parasite. International Journal for Parasitology, 2001, 31, 1429-1433.	3.1	62
15	Congopain from Trypanosoma congolense: Drug Target and Vaccine Candidate. Biological Chemistry, 2002, 383, 739-49.	2.5	60
16	Regulation of TGF-β1-driven Differentiation of Human Lung Fibroblasts. Journal of Biological Chemistry, 2014, 289, 16239-16251.	3.4	60
17	The S2 subsites of cathepsins K and L and their contribution to collagen degradation. Protein Science, 2007, 16, 662-670.	7.6	58
18	Cysteine Cathepsins S and L Modulate Anti-angiogenic Activities of Human Endostatin. Journal of Biological Chemistry, 2011, 286, 37158-37167.	3.4	58

#	Article	IF	CITATIONS
19	Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. FASEB Journal, 2012, 26, 5172-5181.	0.5	58
20	Probing cathepsin K activity with a selective substrate spanning its active site. Biochemical Journal, 2003, 375, 307-312.	3.7	51
21	Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases. Biochimie, 2016, 122, 151-168.	2.6	49
22	Protean proteases: at the cutting edgeÂofÂlung diseases. European Respiratory Journal, 2017, 49, 1501200.	6.7	49
23	Active cathepsins B, H, K, L and S in human inflammatory bronchoalveolar lavage fluids. Biology of the Cell, 2006, 98, 15-22.	2.0	45
24	Neutrophilic Cathepsin C Is Maturated by a Multistep Proteolytic Process and Secreted by Activated Cells during Inflammatory Lung Diseases. Journal of Biological Chemistry, 2016, 291, 8486-8499.	3.4	45
25	Altered expression of cruzipain and a cathepsin B-like target in a Trypanosoma cruzi cell line displaying resistance to synthetic inhibitors of cysteine-proteinases. Molecular and Biochemical Parasitology, 2000, 109, 47-59.	1.1	41
26	Cysteine cathepsins and cystatins: from ancillary tasks to prominent status in lung diseases. Biological Chemistry, 2015, 396, 111-130.	2.5	40
27	Biotin-labelled peptidyl diazomethane inhibitors derived from the substrate-like sequence of cystatin: targeting of the active site of cruzipain, the major cysteine proteinase of Trypanosoma cruzi. Biochemical Journal, 1996, 318, 395-399.	3.7	39
28	A Virus Essential for Insect Host-Parasite Interactions Encodes Cystatins. Journal of Virology, 2005, 79, 9765-9776.	3.4	39
29	Inhibition of cathepsin B by its propeptide: Use of overlapping peptides to identify a critical segment. FEBS Letters, 1996, 392, 233-236.	2.8	38
30	A comparison of the enzymatic properties of the major cysteine proteinases from Trypanosoma congolense and Trypanosoma cruzi. Molecular and Biochemical Parasitology, 1997, 88, 85-94.	1.1	38
31	Antimicrobial Peptide LL-37 Is Both a Substrate of Cathepsins S and K and a Selective Inhibitor of Cathepsin L. Biochemistry, 2015, 54, 2785-2798.	2.5	38
32	Cathepsin K: a cysteine protease with unique kinin-degrading properties. Biochemical Journal, 2004, 383, 501-506.	3.7	37
33	Cleavage of Nidogen-1 by Cathepsin S Impairs Its Binding to Basement Membrane Partners. PLoS ONE, 2012, 7, e43494.	2.5	37
34	Inhibition of Trypanosomal Cysteine Proteinases by Their Propeptides. Journal of Biological Chemistry, 1998, 273, 25112-25116.	3.4	35
35	Curcumin inhibits the TGF-l²1-dependent differentiation of lung fibroblasts via PPARl³-driven upregulation of cathepsins B and L. Scientific Reports, 2019, 9, 491.	3.3	35
36	Cysteine cathepsins and caspases in silicosis. Biological Chemistry, 2006, 387, 863-870.	2.5	33

#	Article	IF	CITATIONS
37	Specific cleavage of the lung surfactant protein A by human cathepsin S may impair its antibacterial properties. International Journal of Biochemistry and Cell Biology, 2013, 45, 1701-1709.	2.8	33
38	Cysteine cathepsins in human silicotic bronchoalveolar lavage fluids. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 351-356.	3.8	32
39	Subsite specificity of trypanosomal cathepsin L-like cysteine proteases. FEBS Journal, 2001, 268, 2733-2741.	0.2	31
40	Identification of parasite-responsive cysteine proteases in <i>Manduca sexta</i> . Biological Chemistry, 2009, 390, 493-502.	2.5	31
41	Regulation of cathepsin K activity by hydrogen peroxide. Biological Chemistry, 2008, 389, 1123-1126.	2.5	30
42	Cigarette smoke induces overexpression of active human cathepsin S in lungs from current smokers with or without COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L625-L638.	2.9	30
43	GNS561, a clinical-stage PPT1 inhibitor, is efficient against hepatocellular carcinoma <i>via</i> modulation of lysosomal functions. Autophagy, 2022, 18, 678-694.	9.1	30
44	Lung cysteine cathepsins: Intruders or unorthodox contributors to the kallikrein–kinin system?. International Journal of Biochemistry and Cell Biology, 2008, 40, 1079-1094.	2.8	27
45	A New, Sensitive Fluorogenic Substrate for Papain Based on the Sequence of the Cystatin Inhibitory Site. Archives of Biochemistry and Biophysics, 1993, 306, 304-308.	3.0	25
46	Kininogen-derived peptides for investigating the putative vasoactive properties of human cathepsins K and L. FEBS Journal, 2003, 270, 171-178.	0.2	25
47	Eimeripain, a Cathepsin B-Like Cysteine Protease, Expressed throughout Sporulation of the Apicomplexan Parasite Eimeria tenella. PLoS ONE, 2012, 7, e31914.	2.5	24
48	Selective Inhibition of the Collagenase Activity of Cathepsin K. Journal of Biological Chemistry, 2007, 282, 16492-16501.	3.4	23
49	Functional expression of the catalytic domains of two cysteine proteinases from Trypanosoma congolense. International Journal for Parasitology, 2001, 31, 1435-1440.	3.1	22
50	Modulation of hypotensive effects of kinins by cathepsin K. Archives of Biochemistry and Biophysics, 2007, 459, 129-136.	3.0	22
51	Degradation of apolipoprotein B-100 by lysosomal cysteine cathepsins. Biological Chemistry, 2006, 387, 1295-303.	2.5	21
52	A selective reversible azapeptide inhibitor of human neutrophil proteinase 3 derived from a high affinity FRET substrate. Biochemical Pharmacology, 2012, 83, 788-796.	4.4	21
53	Human Cysteine Cathepsins Are Not Reliable Markers of Infection by Pseudomonas aeruginosa in Cystic Fibrosis. PLoS ONE, 2011, 6, e25577.	2.5	21
54	The Occluding Loop of Cathepsin B Prevents Its Effective Inhibition by Human Kininogens. Journal of Molecular Biology, 2010, 400, 1022-1035.	4.2	20

#	Article	IF	CITATIONS
55	Conserved cystatin segments as models for designing specific substrates and inhibitors of cysteine proteinases. The Protein Journal, 1995, 14, 645-653.	1.1	19
56	Discrimination of cruzipain, the major cysteine proteinase ofTrypanosoma cruzi, and mammalian cathepsins B and L, by a pH-inducible fluorogenic substrate of trypanosomal cysteine proteinases. FEBS Journal, 1999, 259, 275-280.	0.2	19
57	Cathepsin L, But Not Cathepsin B, Is a Potential Kininogenase. Biological Chemistry, 2001, 382, 811-816.	2.5	19
58	Aminopeptidase N1 (EtAPN1), an M1 Metalloprotease of the Apicomplexan Parasite Eimeria tenella, Participates in Parasite Development. Eukaryotic Cell, 2014, 13, 884-895.	3.4	19
59	Differential expression of cathepsins K, S and V between young and aged Caucasian women skin epidermis. Matrix Biology, 2014, 33, 41-46.	3.6	19
60	Extracellular catalase activity protects cysteine cathepsins from inactivation by hydrogen peroxide. FEBS Letters, 2008, 582, 1307-1312.	2.8	18
61	Cathepsin L, But Not Cathepsin B, Is a Potential Kininogenase. Biological Chemistry, 2001, 382, 811-5.	2.5	18
62	Cysteine Cathepsins: Markers and Therapy Targets in Lung Disorders. Clinical Reviews in Bone and Mineral Metabolism, 2011, 9, 148-161.	0.8	17
63	Straightforward synthesis of 2,4,6-trisubstituted 1,3,5-triazine compounds targeting cysteine cathepsins K and S. European Journal of Medicinal Chemistry, 2016, 121, 12-20.	5.5	17
64	Substrate-derived triazolo- and azapeptides as inhibitors of cathepsins K and S. European Journal of Medicinal Chemistry, 2018, 144, 201-210.	5.5	17
65	Regulation of the Proteolytic Activity of Cysteine Cathepsins by Oxidants. International Journal of Molecular Sciences, 2020, 21, 1944.	4.1	17
66	Revisiting the S2 specificity of papain by structural analogs of Phe. FEBS Letters, 1999, 445, 311-314.	2.8	15
67	Pro-angiogenic effect of human kallikrein-related peptidase 12 (KLK12) in lung endothelial cells does not depend on kinin-mediated activation of B2 receptor. Biological Chemistry, 2013, 394, 385-391.	2.5	15
68	Human cystatin <scp>C</scp> : <scp>A</scp> new biomarker of idiopathic pulmonary fibrosis?. Proteomics - Clinical Applications, 2014, 8, 447-453.	1.6	15
69	Cathepsin V: Molecular characteristics and significance in health and disease. Molecular Aspects of Medicine, 2022, 88, 101086.	6.4	15
70	An immunochemical approach to investigating the mechanism of inhibition of cysteine proteinases by members of the cystatin superfamily. Journal of Immunological Methods, 1992, 149, 197-205.	1.4	14
71	Interaction between cystatin-derived peptides and papain. The Protein Journal, 1993, 12, 23-31.	1.1	14
72	Procongopain from Trypanosoma congolense Is Processed at Basic pH: An Unusual Feature among Cathepsin L-Like Cysteine Proteases. Biological Chemistry, 2003, 384, 921-927.	2.5	14

#	Article	IF	CITATIONS
73	The abnormal accumulation of heparan sulfate in patients with mucopolysaccharidosis prevents the elastolytic activity of cathepsin V. Carbohydrate Polymers, 2021, 253, 117261.	10.2	13
74	Cystatin M/E (Cystatin 6): A Janus-Faced Cysteine Protease Inhibitor with Both Tumor-Suppressing and Tumor-Promoting Functions. Cancers, 2021, 13, 1877.	3.7	13
75	Inhibition of a Cathepsin L-Like Cysteine Protease by a Chimeric Propeptide-Derived Inhibitorâ€. Biochemistry, 2005, 44, 10486-10493.	2.5	12
76	Processing and Maturation of Cathepsin C Zymogen: A Biochemical and Molecular Modeling Analysis. International Journal of Molecular Sciences, 2019, 20, 4747.	4.1	12
77	Oxidation of cathepsin S by major chemicals of cigarette smoke. Free Radical Biology and Medicine, 2020, 150, 53-65.	2.9	12
78	Discordance in cathepsin B and cystatin C expressions in bronchoalveolar fluids between murine bleomycin-induced fibrosis and human idiopathic fibrosis. Respiratory Research, 2016, 17, 118.	3.6	11
79	Selective inhibition of human cathepsin S by 2,4,6-trisubstituted 1,3,5-triazine analogs. Bioorganic and Medicinal Chemistry, 2018, 26, 4310-4319.	3.0	11
80	Imaging of extracellular cathepsin S activity by a selective near infrared fluorescence substrate-based probe. Biochimie, 2019, 166, 84-93.	2.6	10
81	Active site labeling of cysteine cathepsins by a straightforward diazomethylketone probe derived from the N-terminus of human cystatin C. Biochemical and Biophysical Research Communications, 2015, 460, 250-254.	2.1	9
82	Rat cathepsin K: Enzymatic specificity and regulation of its collagenolytic activity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140318.	2.3	9
83	GNS561 acts as a potent anti-fibrotic and pro-fibrolytic agent in liver fibrosis through TGF-β1 inhibition. Therapeutic Advances in Chronic Disease, 2020, 11, 204062232094204.	2.5	9
84	Simulation of the inhibitory cystatin surface by a synthetic peptide. Biochemical and Biophysical Research Communications, 1990, 167, 117-122.	2.1	8
85	Discrimination between rat thiostatin (T-kininogen) and one of its cystatin-like inhibitory fragments by a monoclonal antibody, and localization of the epitope. FEBS Journal, 1991, 196, 73-78.	0.2	8
86	Reversible inhibition of cathepsin L-like proteases by 4-mer pseudopeptides. FEBS Letters, 2001, 507, 362-366.	2.8	8
87	In silico and in vitro mapping of specificity patterns of glycosaminoglycans towards cysteine cathepsins B, L, K, S and V. Journal of Molecular Graphics and Modelling, 2022, 113, 108153.	2.4	8
88	Labelling of four distinct trophozoite falcipains of Plasmodium falciparum by a cystatin-derived probe. Biological Chemistry, 2005, 386, 401-6.	2.5	7
89	The Unusual Resistance of Avian Defensin AvBD7 to Proteolytic Enzymes Preserves Its Antibacterial Activity. PLoS ONE, 2016, 11, e0161573.	2.5	7
90	Binding of heparan sulfate to human cystatin C modulates inhibition of cathepsin L: Putative consequences in mucopolysaccharidosis. Carbohydrate Polymers, 2022, 293, 119734.	10.2	3

#	Article	IF	CITATIONS
91	Proteolytic enzymes: From structures to transport pathways. Biochimie, 2008, 90, 191-193.	2.6	2
92	Monitoring Human Neutrophil Activation by a Proteinase 3 Near-Infrared Fluorescence Substrate-Based Probe. Bioconjugate Chemistry, 2021, 32, 1782-1790.	3.6	2
93	Upregulation of gut cathepsin L during Eimeria tenella infection. Research in Veterinary Science, 2021, 140, 109-116.	1.9	2
94	Modulation of the expression and activity of cathepsin S in reconstructed human skin by neohesperidin dihydrochalcone. Matrix Biology, 2022, 107, 97-112.	3.6	2
95	Cystatin Mimicry by Synthetic Peptides. Biological Chemistry Hoppe-Seyler, 1992, 373, 465-470.	1.4	1
96	Assignment of proton NMR resonances and conformational analysis of the K13CK cystatin-like peptide. Magnetic Resonance in Chemistry, 1992, 30, 992-995.	1.9	1
97	Cigarette smoke induces overexpression of cathepsin S in active smokers with and without COPD. , 2018, , .		1
98	Recombinant Protease Inhibitors in Plants (Biotechnology Intelligence Unit 3). Trends in Biotechnology, 2001, 19, 121-122.	9.3	0
99	068 Modulation of hypotensive effects of bradykinin by cathepsin K. Revue Des Maladies Respiratoires, 2006, 23, 548.	1.7	0
100	069 Régulation de l'activité protéolytique des cathepsines à cystéine extracellulaires par le peroxyde d'hydrogène : rÃ1e protecteur de la catalase. Revue Des Maladies Respiratoires, 2006, 23, 548.	1.7	0
101	Inhibition of cathepsins B and L by kininogens: a molecular investigation. Journal of Cystic Fibrosis, 2009, 8, S57.	0.7	0
102	Yin and Yang in the proteolytic landscape. Biochimie, 2010, 92, v-vii.	2.6	0
103	Proteases in the limelight: Both ordinary digestive enzymes and smart signaling pathway regulators. Biochimie, 2016, 122, 1-4.	2.6	0
104	What's up in the proteolysis landscape? A lively blend of classical concepts and pioneering innovations. Biochimie, 2019, 166, 1-3.	2.6	0
105	Regulation of cathepsin K activity by hydrogen peroxide. Biological Chemistry, 2008, .	2.5	0
106	The binding specificity of kininogen analogues to serine proteases related to tissue kallikrein. , 1994, , 946-947.		0
107	Deciphering molecular mechanisms of cathepsin S resistance to major chemical oxidants of cigarette smoke. , 2018, , .		0