Patricia Dolan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1706552/publications.pdf

Version: 2024-02-01

71 papers 4,769 citations

39 h-index 66 g-index

72 all docs 72 docs citations

times ranked

72

3296 citing authors

#	Article	IF	CITATIONS
1	Mechanical Initiation of Intervertebral Disc Degeneration. Spine, 2000, 25, 1625-1636.	2.0	632
2	Personal Risk Factors for First-Time Low Back Pain. Spine, 1999, 24, 2497.	2.0	240
3	Spine biomechanics. Journal of Biomechanics, 2005, 38, 1972-1983.	2.1	220
4	Electromyographic Median Frequency Changes During Isometric Contraction of the Back Extensors to Fatigue. Spine, 1994, 19, 1223-1229.	2.0	216
5	Intervertebral disc degeneration: evidence for two distinct phenotypes. Journal of Anatomy, 2012, 221, 497-506.	1.5	197
6	Discogenic Origins of Spinal Instability. Spine, 2005, 30, 2621-2630.	2.0	158
7	Intervertebral Disc Degeneration Can Lead to "Stress-Shielding―of the Anterior Vertebral Body. Spine, 2004, 29, 774-782.	2.0	153
8	Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone, 2009, 44, 372-379.	2.9	150
9	Intervertebral Disc Degeneration Can Predispose to Anterior Vertebral Fractures in the Thoracolumbar Spine. Journal of Bone and Mineral Research, 2006, 21, 1409-1416.	2.8	137
10	The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biology, 2009, 28, 384-389.	3.6	109
11	Annulus Fissures Are Mechanically and Chemically Conducive to the Ingrowth of Nerves and Blood Vessels. Spine, 2012, 37, 1883-1891.	2.0	103
12	Effects of Backward Bending on Lumbar Intervertebral Discs. Spine, 2000, 25, 431-438.	2.0	96
13	Psychological Questionnaires: Do "Abnormal―Scores Precede or Follow First-time Low Back Pain?. Spine, 1996, 21, 2603-2611.	2.0	93
14	Significance of cartilage endplate within herniated disc tissue. European Spine Journal, 2014, 23, 1869-1877.	2.2	91
15	Intervertebral Disc Decompression Following Endplate Damage. Spine, 2013, 38, 1473-1481.	2.0	90
16	Can Exercise Therapy Improve the Outcome of Microdiscectomy?. Spine, 2000, 25, 1523-1532.	2.0	88
17	Regional Assessment of Joint Position Sense in the Spine. Spine, 1998, 23, 590-597.	2.0	87
18	Why do some intervertebral discs degenerate, when others (in the same spine) do not?. Clinical Anatomy, 2015, 28, 195-204.	2.7	87

#	Article	IF	Citations
19	Sudden and Unexpected Loading Generates High Forces on the Lumbar Spine. Spine, 2000, 25, 842-852.	2.0	86
20	Healing of a painful intervertebral disc should not be confused with reversing disc degeneration: Implications for physical therapies for discogenic back pain. Clinical Biomechanics, 2010, 25, 961-971.	1.2	83
21	Is Activation of the Back Muscles Impaired by Creep or Muscle Fatigue?. Spine, 2010, 35, 517-525.	2.0	73
22	Recent advances in lumbar spinal mechanics and their significance for modelling. Clinical Biomechanics, 2001, 16, S8-S16.	1.2	72
23	ISSLS Prize Winner. Spine, 2014, 39, 1365-1372.	2.0	72
24	Mechanical efficacy of vertebroplasty: Influence of cement type, BMD, fracture severity, and disc degeneration. Bone, 2007, 40, 1110-1119.	2.9	71
25	The Strength in Anterior Bending of Lumbar Intervertebral Discs. Spine, 1994, 19, 2197-2203.	2.0	67
26	Lumbar loading during lifting: a comparative study of three measurement techniques. Journal of Electromyography and Kinesiology, 2001, 11, 337-345.	1.7	65
27	The internal mechanical properties of cervical intervertebral discs as revealed by stress profilometry. European Spine Journal, 2007, 16, 1701-1709.	2.2	64
28	Mechanical Function of Vertebral Body Osteophytes, as Revealed by Experiments on Cadaveric Spines. Spine, 2011, 36, 770-777.	2.0	64
29	Nerves and blood vessels in degenerated intervertebral discs are confined to physically disrupted tissue. Journal of Anatomy, 2018, 233, 86-97.	1.5	64
30	Strength of the Cervical Spine in Compression and Bending. Spine, 2007, 32, 1612-1620.	2.0	60
31	Bone creep can cause progressive vertebral deformity. Bone, 2009, 45, 466-472.	2.9	58
32	Biomechanics of vertebral compression fractures and clinical application. Archives of Orthopaedic and Trauma Surgery, 2011, 131, 1703-1710.	2.4	57
33	Vertebroplasty. Spine, 2009, 34, 2865-2873.	2.0	56
34	Asymmetric low back loading in asymmetric lifting movements is not prevented by pelvic twist. Journal of Biomechanics, 1998, 31, 527-534.	2.1	53
35	Time-Dependent Compressive Deformation of the Ageing Spine. Spine, 2010, 35, 386-394.	2.0	47
36	Porosity and Thickness of the Vertebral Endplate Depend on Local Mechanical Loading. Spine, 2015, 40, 1173-1180.	2.0	45

#	Article	IF	Citations
37	When Are Intervertebral Discs Stronger Than Their Adjacent Vertebrae?. Spine, 2007, 32, 2455-2461.	2.0	43
38	Could sudden increases in physical activity cause degeneration of intervertebral discs?. Lancet, The, 1997, 350, 734-735.	13.7	42
39	Vertebral fractures in the elderly may not always be "osteoporotic― Bone, 2010, 47, 111-116.	2.9	42
40	Can Vertebroplasty Restore Normal Load-Bearing to Fractured Vertebrae?. Spine, 2005, 30, 1723-1730.	2.0	41
41	Spinal Position Sense Is Independent of the Magnitude of Movement. Spine, 2000, 25, 98.	2.0	39
42	Annulus Fibrosus Can Strip Hyaline Cartilage End Plate from Subchondral Bone: A Study of the Intervertebral Disk in Tension. Global Spine Journal, 2015, 5, 360-365.	2.3	34
43	Is kyphoplasty better than vertebroplasty at restoring form and function after severe vertebral wedge fractures?. Spine Journal, 2015, 15, 721-732.	1.3	30
44	Defects of the vertebral end plate: implications for disc degeneration depend on size. Spine Journal, 2017, 17, 727-737.	1.3	30
45	Dynamic Forces Acting on the Lumbar Spine During Manual Handling. Spine, 1999, 24, 698-703.	2.0	29
46	Pathogenesis of Vertebral Anterior Wedge Deformity. Spine, 2015, 40, 902-908.	2.0	28
47	How are adjacent spinal levels affected by vertebral fracture and by vertebroplasty? A biomechanical study on cadaveric spines. Spine Journal, 2017, 17, 863-874.	1.3	26
48	Sensorimotor function of the cervical spine in healthy volunteers. Clinical Biomechanics, 2015, 30, 260-268.	1.2	24
49	Is kyphoplasty better than vertebroplasty in restoring normal mechanical function to an injured spine?. Bone, 2010, 46, 1050-1057.	2.9	23
50	Vertebral deformity arising from an accelerated "creep―mechanism. European Spine Journal, 2012, 21, 1684-1691.	2.2	23
51	Spinal Position Sense and Disease Progression in Ankylosing Spondylitis. Spine, 2004, 29, 1240-1245.	2.0	22
52	Importance of the epiphyseal ring in OLIF stand-alone surgery: a biomechanical study on cadaveric spines. European Spine Journal, 2021, 30, 79-87.	2.2	22
53	Vertebroplasty and Kyphoplasty Can Restore Normal Spine Mechanics following Osteoporotic Vertebral Fracture. Journal of Osteoporosis, 2010, 2010, 1-9.	0.5	21
54	Experimental determination of stress distributions in articular cartilage before and after sustained loading. Clinical Biomechanics, 1999, 14, 88-96.	1,2	18

#	Article	IF	CITATIONS
55	Spinal Position Sense in Ankylosing Spondylitis. Spine, 2004, 29, 413-420.	2.0	18
56	Back extensor muscle fatigue at submaximal workloads assessed using frequency banding of the electromyographic signal. Clinical Biomechanics, 2011, 26, 971-976.	1.2	18
57	Quality of life and neck pain in nurses. International Journal of Occupational Medicine and Environmental Health, 2014, 27, 236-42.	1.3	18
58	Does an asymmetric straddle-legged lifting movement reduce the low-back load?. Human Movement Science, 1998, 17, 243-259.	1.4	16
59	Associations Between Intervertebral Disc Degeneration Grading Schemes and Measures of Disc Function. Journal of Orthopaedic Research, 2019, 37, 1946-1955.	2.3	15
60	Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231, 821-830.	1.8	13
61	Vertebroplasty reduces progressive ׳creep' deformity of fractured vertebrae. Journal of Biomechanics, 2016, 49, 869-874.	2.1	9
62	Vertebral fracture and intervertebral discs. Journal of Bone and Mineral Research, 2012, 27, 1432-1432.	2.8	7
63	Lumbar Intervertebral Disk Injury, Herniation and Degeneration. , 2016, , 23-39.		5
64	When do Bending Stresses on the Spine Rise to Damaging Levels?. Proceedings of the Human Factors and Ergonomics Society, 2000, 44, 635-638.	0.3	3
65	Biomechanical Factors Affecting The Disc. Journal of Orthopaedic Medicine, 2000, 22, 3-9.	0.0	2
66	What is the relation between proprioception and low back pain?., 2013,, 219-230.		2
67	Intervertebral discs influence vertebral body bone. Bone, 2013, 57, 476.	2.9	1
68	A predictive model for creep deformation following vertebral compression fractures. Bone, 2020, 141, 115595.	2.9	1
69	Time-dependent mechanisms that impair muscle protection of the spine. , 2013, , 157-168.		0
70	Morphometric measurements can improve prediction of progressive vertebral deformity following vertebral damage. European Spine Journal, 2022, 31, 70-78.	2.2	0
71	Biomechanics of the spine. , 2015, , 72-79.		0