Rishi Raj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1704326/publications.pdf

Version: 2024-02-01

427 papers

22,661 citations

79 h-index 133 g-index

442 all docs 442 docs citations

times ranked

442

10144 citing authors

#	Article	IF	CITATIONS
1	Inâ€flash immersionâ€andâ€quench of yttriaâ€stabilized zirconia into liquid nitrogen yields an electronic conductor. Journal of the American Ceramic Society, 2022, 105, 1635-1639.	3.8	6
2	Higher conductivity of non-stoichiometric lithium lanthanum zirconate ceramics made by reactive flash synthesis. MRS Communications, 2022, 12, 201-205.	1.8	2
3	On the catalytic effect of zirconia on flash sintering of alumina. Journal of the American Ceramic Society, 2022, 105, 3746-3752.	3.8	4
4	Influence of flash sintering on phase transformation and conductivity of hydroxyapatite. Ceramics International, 2021, 47, 9125-9131.	4.8	17
5	Thin coatings of hafnon abate oxidative recession of SiC fibers. Journal of the American Ceramic Society, 2021, 104, 1210-1215.	3.8	2
6	Precipitous weakening of quartz at the $\langle i \rangle \hat{l} \pm \langle i \rangle \hat{a} \in (i \rangle \hat{l}^2 \langle i \rangle)$ phase inversion. Journal of the American Ceramic Society, 2021, 104, 23-26.	3.8	6
7	Tuneable chemistry at the interface and self-healing towards improving structural properties of carbon fiber laminates: a critical review. Nanoscale Advances, 2021, 3, 5745-5776.	4.6	9
8	Flash sintering of yttriaâ€stabilized zirconia powders coated with nanoscale films of alumina by atomic layer deposition. Journal of the American Ceramic Society, 2021, 104, 2472-2482.	3.8	2
9	Current constriction of Li-ion transport across lithium metal–ceramic electrolyte interface: Imaged with X-ray Tomography. MRS Communications, 2021, 11, 283-287.	1.8	6
10	Frenkel pairs cause elastic softening in zirconia: theory and experiments. New Journal of Physics, 2021, 23, 053013.	2.9	8
11	Development of a processing map for safe flash sintering of gadoliniumâ€doped ceria. Journal of the American Ceramic Society, 2021, 104, 4316-4328.	3.8	20
12	Influence of temperature and ASR on the critical current density in lithium-metal–ceramic cells. MRS Communications, 2021, 11, 483-488.	1.8	2
13	Phase evolution during reactive flash sintering of Li6.25Al0.25La3Zr2O12 starting from a chemically prepared powder. Journal of the European Ceramic Society, 2021, 41, 4552-4557.	5.7	30
14	Stack Pressure and Critical Current Density in Li-metal Cells: The Role of Mechanical Deformation. Acta Materialia, 2021, 215, 117076.	7.9	13
15	On the Arrhenius-like behavior of conductivity during flash sintering of 3 mol% yttria stabilized zirconia ceramics. Scripta Materialia, 2021, 203, 114093.	5.2	11
16	Flash sintering: A new frontier in defect physics and materials science. MRS Bulletin, 2021, 46, 36-43.	3.5	25
17	Nucleation of voids at second phase particles at lithium–ceramic interface degrades cell performance. MRS Communications, 2021, 11, 879.	1.8	О
18	Reactive flash sintering of the complex oxide Li0.5La0.5TiO3 starting from an amorphous precursor powder. Scripta Materialia, 2020, 176, 78-82.	5.2	35

#	Article	IF	CITATIONS
19	Processing and properties of Bi _{0.98} R _{0.02} FeO ₃ (RÂ=ÂLa, Sm, Y) ceramics flash sintered at ~650°C in <5Âs. Journal of the American Ceramic Society, 2020, 103, 136-144.	3.8	7
20	Transition to electronic conduction at the onset of flash in cubic zirconia. Scripta Materialia, 2020, 174, 29-32.	5.2	30
21	Flash-induced spreading of metals on zirconia. Scripta Materialia, 2020, 176, 73-77.	5.2	8
22	An ingenious fluidic capacitor for complete suppression of thermal fluctuations in two-phase microchannel heat sinks. International Communications in Heat and Mass Transfer, 2020, 110, 104347.	5.6	12
23	Scalable macroscale wettability patterns for pool boiling heat transfer enhancement. Heat and Mass Transfer, 2020, 56, 989-1000.	2.1	10
24	Electric field-assisted flash sintering of Bi2/3Cu3Ti4O12 starting from a multi-phase precursor powder. Journal of the European Ceramic Society, 2020, 40, 4004-4009.	5.7	14
25	Design, fabrication, and performance evaluation of a novel orientation independent and wickless heat spreader. International Journal of Heat and Mass Transfer, 2020, 153, 119572.	4.8	6
26	Droplets on Lubricant-Infused Surfaces: Combination of Constant Mean Curvature Interfaces with Neumann Triangle Boundary Conditions. Langmuir, 2020, 36, 2974-2983.	3.5	11
27	Reactive flash sintering of the entropy-stabilized oxide Mg0.2Ni0.2Co0.2Cu0.2Zn0.2O. Scripta Materialia, 2020, 181, 48-52.	5.2	72
28	Current-rate flash sintering of gadolinium doped ceria: Microstructure and Defect generation. Acta Materialia, 2020, 189, 145-153.	7.9	54
29	The flash effect in electronic conductors: The case of amorphous carbon fibers. Scripta Materialia, 2020, 179, 20-24.	5.2	7
30	Electronic conductivity in gadolinium doped ceria under direct current as a trigger for flash sintering. Scripta Materialia, 2020, 179, 55-60.	5.2	55
31	Combined effect of inlet restrictor and nanostructure on two-phase flow performance of parallel microchannel heat sinks. International Journal of Thermal Sciences, 2020, 153, 106339.	4.9	21
32	Reactive flash sintering: MgO and αâ€Al ₂ O ₃ transform and sinter into singleâ€phase polycrystals of MgAl ₂ O ₄ . Journal of the American Ceramic Society, 2019, 102, 2294-2303.	3.8	38
33	αâ€Alumina and spinel react into singleâ€phase highâ€alumina spinel in <3Âseconds during flash sintering. Journal of the American Ceramic Society, 2019, 102, 644-653.	3.8	30
34	Flash sintering of Li-ion conducting ceramic in a few seconds at 850â€Â°C. Scripta Materialia, 2019, 172, 1-5.	5.2	26
35	Design, fabrication, and performance evaluation of a novel biomass-gasification-based hot water generation system. Energy, 2019, 185, 148-157.	8.8	6
36	Effect of foamability on pool boiling critical heat flux with nanofluids. Soft Matter, 2019, 15, 5308-5318.	2.7	12

#	Article	IF	CITATIONS
37	Reactive flash sintering of powders of four constituents into a single phase of a complex oxide in a few seconds below 700°C. Journal of the American Ceramic Society, 2019, 102, 6443-6448.	3.8	42
38	Surface-active ionic liquids as potential additive for pool boiling based energy systems. Journal of Molecular Liquids, 2019, 287, 110953.	4.9	18
39	On the role of Debye temperature in the onset of flash in three oxides. Scripta Materialia, 2019, 170, 81-84.	5. 2	47
40	In-situ acoustic detection of critical heat flux for controlling thermal runaway in boiling systems. International Journal of Heat and Mass Transfer, 2019, 138, 135-143.	4.8	18
41	Experimental characterization and modeling of critical heat flux with subcooled foaming solution. International Journal of Thermal Sciences, 2019, 141, 199-210.	4.9	13
42	Aqueous Ionic Liquid Solution based Two-phase Thermal Management for Adverse Gravity Applications. , $2019, \dots$		0
43	Flash sintering with current rate: A different approach. Journal of the American Ceramic Society, 2019, 102, 823-835.	3.8	54
44	On the onset of fracture as a siliconâ€based polymer converts into the ceramic phase. Journal of the American Ceramic Society, 2019, 102, 924-929.	3.8	15
45	Influence of flash sintering on the ionic conductivity of 8 mol% yttria stabilized zirconia. Journal of the European Ceramic Society, 2019, 39, 1352-1358.	5.7	30
46	Thermohydraulic characterization of flow boiling in a nanostructured microchannel heat sink with vapor venting manifold. International Journal of Heat and Mass Transfer, 2019, 130, 1249-1259.	4.8	32
47	Flash sintering of ceramic films: The influence of surface to volume ratio. Journal of the American Ceramic Society, 2019, 102, 3063-3069.	3.8	9
48	Facile Fabrication of Nanostructured Microchannels for Flow Boiling Heat Transfer Enhancement. Heat Transfer Engineering, 2019, 40, 537-548.	1.9	23
49	On the synchronicity of flash sintering and phase transformation. Journal of the American Ceramic Society, 2019, 102, 3110-3116.	3.8	26
50	Aqueous ionic liquid solutions for boiling heat transfer enhancement in the absence of buoyancy induced bubble departure. International Journal of Heat and Mass Transfer, 2018, 122, 354-363.	4.8	24
51	Hotspot Thermal Management via Thin-Film Evaporationâ€"Part I: Experimental Characterization. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 88-98.	2.5	11
52	Phase-pure BiFeO ₃ produced by reaction flash-sintering of Bi ₂ O ₃ and Fe ₂ O ₃ . Journal of Materials Chemistry A, 2018, 6, 5356-5366.	10.3	83
53	<scp>AC</scp> electric fieldâ€induced softening of alkali silicate glasses. Journal of the American Ceramic Society, 2018, 101, 2277-2286.	3.8	6
54	Hotspot Thermal Management via Thin-Film Evaporationâ€"Part II: Modeling. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 99-112.	2.5	7

#	Article	IF	CITATIONS
55	Continuous flash sintering. Journal of the American Ceramic Society, 2018, 101, 1432-1440.	3.8	25
56	Measurement of O and Ti atom displacements in TiO ₂ during flash sintering experiments. Journal of the American Ceramic Society, 2018, 101, 1811-1817.	3.8	54
57	Generation of Frenkel defects above the Debye temperature by proliferation of phonons near the Brillouin zone edge. New Journal of Physics, 2018, 20, 093013.	2.9	45
58	Biomass-gasification-based atmospheric water harvesting in India. Energy, 2018, 165, 610-621.	8.8	40
59	Surfactant aided bubble departure during pool boiling. International Journal of Thermal Sciences, 2018, 131, 105-113.	4.9	48
60	Wettability-independent critical heat flux during boiling crisis in foaming solutions. International Journal of Heat and Mass Transfer, 2018, 126, 567-579.	4.8	38
61	Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries. Journal of Power Sources, 2017, 343, 119-126.	7.8	161
62	The onset of the flash transition in single crystals of cubic zirconia as a function of electric field and temperature. Scripta Materialia, 2017, 134, 123-127.	5.2	54
63	Flash sintering of a threeâ€phase alumina, spinel, and yttriaâ€stabilized zirconia composite. Journal of the American Ceramic Society, 2017, 100, 3262-3268.	3.8	37
64	Droplets on Microdecorated Surfaces: Evolution of the Polygonal Contact Line. Langmuir, 2017, 33, 4854-4862.	3.5	19
65	Spline Based Shape Prediction and Analysis of Uniformly Rotating Sessile and Pendant Droplets. Langmuir, 2017, 33, 5603-5612.	3.5	10
66	Dynamic Roughness Ratio-Based Framework for Modeling Mixed Mode of Droplet Evaporation. Langmuir, 2017, 33, 7191-7201.	3.5	19
67	Stress–rupture measurements of cast magnesium strengthened by in-situ production of ceramic particles. Journal of Magnesium and Alloys, 2017, 5, 225-230.	11.9	13
68	Flash transition as a possible origin for low open circuit voltage in thin film solid oxide fuel cells. Journal of Power Sources, 2017, 359, 48-51.	7.8	6
69	Flash sintering of highly insulating nanostructured phaseâ€pure BiFeO ₃ . Journal of the American Ceramic Society, 2017, 100, 3365-3369.	3.8	58
70	Processing, microstructural evolution and strength properties of in-situ magnesium matrix composites containing nano-sized polymer derived SiCNO particles. Materials Science & Sichoe	5.6	53
71	Inâ€situ measurements of lattice expansion related to defect generation during flash sintering. Journal of the American Ceramic Society, 2017, 100, 4965-4970.	3.8	76
72	Thin-film evaporation from micropillar wicks in ambient environment., 2017,,.		1

#	Article	IF	Citations
73	Two unique measurements related to flash experiments with yttriaâ€stabilized zirconia. Journal of the American Ceramic Society, 2017, 100, 5374-5378.	3.8	43
74	Mechanism of electric field-induced softening (EFIS) of alkali silicate glasses. Journal of Non-Crystalline Solids, 2017, 471, 384-395.	3.1	23
75	Spline Based Modeling of Two-Dimensional Droplets on Rough and Heterogeneous Surfaces. Lecture Notes in Mechanical Engineering, 2017, , 1049-1058.	0.4	0
76	Predicting structural properties of amorphous silicon carbonitride by atomistic simulation. International Journal of Materials and Structural Integrity, 2016, 10, 63.	0.1	1
77	Onset of Nucleate Boiling, Void Fraction, and Liquid Film Thickness. , 2016, , 5-90.		5
78	Analysis of the Power Density at the Onset of Flash Sintering. Journal of the American Ceramic Society, 2016, 99, 3226-3232.	3.8	150
79	Broadening of Diffraction Peak Widths and Temperature Nonuniformity During Flash Experiments. Journal of the American Ceramic Society, 2016, 99, 3429-3434.	3.8	27
80	Experimental Characterization and Modeling of Capillary-Pumped Thin-Film Evaporation From Micropillar Wicks. , 2016, , .		0
81	Surfactants for Bubble Removal against Buoyancy. Scientific Reports, 2016, 6, 19113.	3. 3	57
82	Preliminary investigation of hydroxyapatite microstructures prepared by flash sintering. Advances in Applied Ceramics, 2016, 115, 276-281.	1.1	26
83	Additive Manufacturing of Ceramics Enabled by Flash Pyrolysis of Polymer Precursors with Nanoscale Layers. Journal of the American Ceramic Society, 2016, 99, 57-63.	3.8	22
84	Three-dimensional architecture of lithium-anodes made from graphite fibers coated with thin-films of silicon oxycarbide: Design, performance and manufacturability. Journal of Power Sources, 2016, 310, 18-25.	7.8	9
85	Electric field-assisted flash sintering of CaCu3Ti4O12: Microstructure characteristics and dielectric properties. Journal of Alloys and Compounds, 2016, 682, 753-758.	5 . 5	26
86	Hafnia-silicon carbide nanocomposites II: Measurements of the residual stress. Journal of the European Ceramic Society, 2016, 36, 937-942.	5.7	0
87	Beyond flash sintering in 3 mol % yttria stabilized zirconia. Journal of the Ceramic Society of Japan, 2016, 124, 283-288.	1.1	74
88	Microstructure and microchemistry of flash sintered K _{0.5} Na _{0.5} 0.5NbO ₃ . Journal of the Ceramic Society of Japan, 2016, 124, 321-328.	1.1	39
89	Electric field-assisted ultrafast synthesis of nanopowders: a novel and cost-efficient approach. RSC Advances, 2016, 6, 107208-107213.	3.6	17
90	Hotspot thermal management via thin-film evaporation. , 2016, , .		2

#	Article	IF	CITATIONS
91	Additive Manufacturing of SiCN Ceramic Matrix for SiC Fiber Composites by Flash Pyrolysis of Nanoscale Polymer Films. Journal of the American Ceramic Society, 2016, 99, 1855-1858.	3.8	14
92	Design of micropillar wicks for thin-film evaporation. International Journal of Heat and Mass Transfer, 2016, 101, 280-294.	4.8	116
93	The Change of Xâ€ray Diffraction Peak Width During <i>in situ</i> i> Conventional Sintering of Nanoscale Powders. Journal of the American Ceramic Society, 2016, 99, 765-768.	3.8	11
94	Visualization of the Evaporating Liquid-Vapor Interface in Micropillar Arrays. Journal of Heat Transfer, 2016, 138, .	2.1	3
95	Correlations between conductivity, electroluminescence and flash sintering. Scripta Materialia, 2016, 118, 1-4.	5.2	41
96	Dynamic Evolution of the Evaporating Liquid–Vapor Interface in Micropillar Arrays. Langmuir, 2016, 32, 519-526.	3.5	29
97	Electric field induced texture in titania during experiments related to flash sintering. Journal of the European Ceramic Society, 2016, 36, 257-261.	5.7	43
98	Phase transformation in the alumina–titania system during flash sintering experiments. Journal of the European Ceramic Society, 2016, 36, 733-739.	5.7	64
99	EXTREME HOTSPOT HEAT FLUX THERMAL MANAGEMENT VIA THIN-FILM EVAPORATION FROM MICROSTRUCTURED SURFACES., 2016,,.		0
100	On the thermodynamically stable amorphous phase of polymer-derived silicon oxycarbide. Scientific Reports, 2015, 5, 14550.	3.3	18
101	Optimization of Biporous Micropillar Array for Enhanced Heat Transfer Performance., 2015, , .		5
102	Electric field-induced softening of alkali silicate glasses. Applied Physics Letters, 2015, 107, .	3.3	46
103	Temperature Distributions During Flash Sintering of 8% Yttriaâ€Stabilized Zirconia. Journal of the American Ceramic Society, 2015, 98, 3525-3528.	3.8	33
104	Semiconductive Behavior of Polymerâ€Derived SiCN Ceramics for HydrogenÂSensing. Journal of the American Ceramic Society, 2015, 98, 1052-1055.	3.8	23
105	Low-Wear High-Friction Behavior of Copper Matrix Composites Dispersed With an In Situ Polymer Derived Ceramic. Journal of Tribology, 2015, 137, .	1.9	4
106	Emergence and Extinction of a New Phase During On–Off Experiments Related to Flash Sintering of 3 <scp>YSZ</scp> . Journal of the American Ceramic Society, 2015, 98, 1493-1497.	3.8	91
107	A novel in-situ polymer derived nano ceramic MMC by friction stir processing. Materials and Design, 2015, 85, 626-634.	7.0	47
108	Electroluminescence and the measurement of temperature during Stage III of flash sintering experiments. Journal of the European Ceramic Society, 2015, 35, 3195-3199.	5.7	112

#	Article	IF	Citations
109	Si <scp>OCN</scp> Functionalized Carbon Nanotube Gas Sensors for Elevated Temperature Applications. Journal of the American Ceramic Society, 2015, 98, 1142-1149.	3.8	16
110	Bubble Nucleation During Oxidation of SiC. Journal of the American Ceramic Society, 2015, 98, 2579-2586.	3.8	19
111	Evaluation of high temperature resistance of white Si–O–C(–H) ceramics in an inert atmosphere. Journal of Non-Crystalline Solids, 2015, 410, 106-111.	3.1	5
112	<i>Ab inito</i> and <scp>FTIR</scp> Studies of <scp>HfSiCNO</scp> Processed from the Polymer Route. Journal of the American Ceramic Society, 2014, 97, 742-749.	3.8	14
113	Reversible elastic deformation of functionalized sp2 carbon at pressures of up to 33 GPa. Applied Physics Letters, 2014, 105, 141901.	3.3	0
114	Electric Fields Obviate Constrained Sintering. Journal of the American Ceramic Society, 2014, 97, 3103-3109.	3.8	32
115	Polymer-Derived In-Situ Metal Matrix Composites Created by Direct Injection of a Liquid Polymer into Molten Magnesium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 551-554.	2.2	19
116	Oxidation, mechanical and thermal properties of hafnia–silicon carbide nanocomposites. Journal of the European Ceramic Society, 2014, 34, 1783-1790.	5.7	14
117	Field assisted sintering of ceramic constituted by alumina and yttria stabilized zirconia. Journal of the European Ceramic Society, 2014, 34, 2435-2442.	5.7	85
118	Dramatic influence of interface chemical potentials on the oxidation of silicon and carbon based compounds. Journal of the European Ceramic Society, 2014, 34, 1035-1039.	5.7	1
119	Diffusive relaxation of Li in particles of silicon oxycarbide measured byÂgalvanostatic titrations. Journal of Power Sources, 2014, 249, 219-230.	7.8	13
120	Framework water capacity and infiltration pressure of MFI zeolites. Microporous and Mesoporous Materials, 2014, 190, 84-91.	4.4	20
121	Interfacially engineered liquid-phase-sintered Cu–In composite solders for thermal interface material applications. Journal of Materials Science, 2014, 49, 7844-7854.	3.7	14
122	Nanoporous evaporative device for advanced electronics thermal management. , 2014, , .		19
123	A First Report of Photoemission in Experiments Related to Flash Sintering. Journal of the American Ceramic Society, 2014, 97, 2427-2430.	3.8	71
124	High-resolution liquid patterns via three-dimensional droplet shape control. Nature Communications, 2014, 5, 4975.	12.8	85
125	Flash sintering as a nucleation phenomenon and a model thereof. Journal of the European Ceramic Society, 2014, 34, 4063-4067.	5.7	144
126	Densification behaviour and microstructural development in undoped yttria prepared by flash-sintering. Journal of the European Ceramic Society, 2014, 34, 991-1000.	5.7	159

#	Article	IF	CITATIONS
127	The Effect of Electric Field on Sintering and Electrical Conductivity of Titania. Journal of the American Ceramic Society, 2014, 97, 527-534.	3.8	151
128	Effect of Hydrophilic Defects on Water Transport in MFI Zeolites. Langmuir, 2014, 30, 6446-6453.	3.5	53
129	Field-assisted sintering of undoped BaTiO3: Microstructure evolution and dielectric permittivity. Journal of the European Ceramic Society, 2014, 34, 3655-3660.	5.7	131
130	Polygonal Droplets on Microstructured Surfaces. Journal of Heat Transfer, 2014, 136, .	2.1	0
131	A Novel In Situ Method for Producing a Dispersion of a Ceramic Phase into Copper That Remains Stable at 0.9T M. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4734-4742.	2.2	22
132	Can Die Configuration Influence Fieldâ€Assisted Sintering of Oxides in the <scp>SPS</scp> Process?. Journal of the American Ceramic Society, 2013, 96, 3697-3700.	3.8	6
133	Non-wetting droplets on hot superhydrophilic surfaces. Nature Communications, 2013, 4, 2518.	12.8	129
134	Extreme-rate capable and highly stable SiCO–TiO2 hybrids for Li ion battery anodes. Chemical Communications, 2013, 49, 9657.	4.1	11
135	Experiment and modeling of microstructured capillary wicks for thermal management of electronics. , 2013, , .		6
136	The role of non-stoichiometric defects in radiation damage evolution of SrTiO3. Journal of Materials Chemistry A, 2013, 1, 9235.	10.3	11
137	Flash Sintering of Anode–Electrolyte Multilayers for <scp>SOFC</scp> Applications. Journal of the American Ceramic Society, 2013, 96, 1352-1354.	3.8	47
138	Oxidation process of white Si–C–C(–H) ceramics with various hydrogen contents. Scripta Materialia, 2013, 69, 602-605.	5.2	25
139	Wettability of Graphene. Nano Letters, 2013, 13, 1509-1515.	9.1	400
140	Pyrolysis of Titanicone Molecular Layer Deposition Films as Precursors for Conducting TiO ₂ /Carbon Composite Films. Journal of Physical Chemistry C, 2013, 117, 17442-17450.	3.1	50
141	Impedance Spectroscopy and Dielectric Properties of Flash Versus Conventionally Sintered Yttriaâ€Doped Zirconia Electroceramics Viewed at the Microstructural Level. Journal of the American Ceramic Society, 2013, 96, 3760-3767.	3.8	84
142	Limits to the Stability of the Amorphous Nature of Polymerâ€Derived <scp><scp>HfSiCNO</scp></scp> Compounds. Journal of the American Ceramic Society, 2013, 96, 2117-2123.	3.8	17
143	Influence of the Field and the Current Limit on Flash Sintering at Isothermal Furnace Temperatures. Journal of the American Ceramic Society, 2013, 96, 2754-2758.	3.8	203
144	Oxidation of Polymerâ€Derived <scp><scp>HfSi</scp>CNO</scp> up to 1600°C. Journal of the American Ceramic Society, 2013, 96, 1278-1284.	3.8	24

#	Article	IF	CITATIONS
145	Chemical Potential-Based Analysis for the Oxidation Kinetics of Si and SiC Single Crystals. Journal of the American Ceramic Society, 2013, 96, 2926-2934.	3.8	6
146	A Langmuirâ€ <scp>K</scp> inetic Model for <scp>CVD</scp> Growth from Chemical Precursors. Chemical Vapor Deposition, 2013, 19, 260-266.	1.3	3
147	Capillary-Limited Evaporation From Well-Defined Microstructured Surfaces. , 2013, , .		2
148	Grain Boundary Resistivity of Yttria-Stabilized Zirconia at 1400°C. Journal of Ceramics, 2013, 2013, 1-4.	0.9	4
149	PDCs functionalized carbon nanostructure for gas sensing application., 2012,,.		0
150	On the Scaling of Pool Boiling Heat Flux With Gravity and Heater Size. Journal of Heat Transfer, 2012, 134, .	2.1	24
151	Pool Boiling Heat Transfer on the International Space Station: Experimental Results and Model Verification. Journal of Heat Transfer, 2012, 134, .	2.1	48
152	Evaporation-Induced Cassie Droplets on Superhydrophilic Microstructured Surfaces., 2012,,.		1
153	Unified Model for Contact Angle Hysteresis on Heterogeneous and Superhydrophobic Surfaces. Langmuir, 2012, 28, 15777-15788.	3.5	127
154	Flashâ€Sinterforging of Nanograin Zirconia: Field Assisted Sintering and Superplasticity. Journal of the American Ceramic Society, 2012, 95, 138-146.	3.8	95
155	Contact line behavior for a highly wetting fluid under superheated conditions. International Journal of Heat and Mass Transfer, 2012, 55, 2664-2675.	4.8	64
156	Defect Structure of Flashâ€Sintered Strontium Titanate. Journal of the American Ceramic Society, 2012, 95, 2531-2536.	3.8	148
157	Joule heating during flash-sintering. Journal of the European Ceramic Society, 2012, 32, 2293-2301.	5.7	419
158	Particle size effects in flash sintering. Journal of the European Ceramic Society, 2012, 32, 3129-3136.	5.7	109
159	Boiling in variable gravity under the action of an electric field: results of parabolic flight experiments. Journal of Physics: Conference Series, 2011, 327, 012039.	0.4	11
160	Surface Diffusion ontrolled Neck Growth Kinetics in Early Stage Sintering of Zirconia, with and without Applied DC Electrical Field. Journal of the American Ceramic Society, 2011, 94, 391-395.	3.8	50
161	Flashâ€Sintering of Cubic Yttriaâ€Stabilized Zirconia at 750°C for Possible Use in SOFC Manufacturing. Journal of the American Ceramic Society, 2011, 94, 316-319.	3.8	218
162	Influence of Externally Imposed and Internally Generated Electrical Fields on Grain Growth, Diffusional Creep, Sintering and Related Phenomena in Ceramics. Journal of the American Ceramic Society, 2011, 94, 1941-1965.	3.8	267

#	Article	IF	Citations
163	Surface Energy of Sol Gelâ€Derived Silicon Oxycarbide Glasses. Journal of the American Ceramic Society, 2011, 94, 4523-4533.	3.8	22
164	Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. Journal of the European Ceramic Society, 2011, 31, 2827-2837.	5.7	310
165	Liquid phase sintered Cu–In composite solders for thermal interface material and interconnect applications. Journal of Materials Science, 2011, 46, 7012-7025.	3.7	17
166	Ultrahigh figure-of-merit for hydrogen generation from sodium borohydride using ternary metal catalysts. Journal of Power Sources, 2011, 196, 69-75.	7.8	22
167	Superefficient thin film multilayer catalyst for generating hydrogen from sodium borohydride. Journal of Power Sources, 2011, 196, 741-746.	7.8	16
168	Cyclic stability and C-rate performance of amorphous silicon and carbon based anodes for electrochemical storage of lithium. Journal of Power Sources, 2011, 196, 2179-2186.	7.8	107
169	Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. Journal of Power Sources, 2011, 196, 2061-2065.	7.8	181
170	C-rate performance of silicon oxycarbide anodes for Li+ batteries enhanced by carbon nanotubes. Journal of Power Sources, 2011, 196, 2875-2878.	7.8	27
171	Silicon-oxycarbide based thin film anodes for lithium ion batteries. Journal of Power Sources, 2011, 196, 5945-5950.	7.8	52
172	Gravity Scaling Parameter for Pool Boiling Heat Transfer. Journal of Heat Transfer, 2010, 132, .	2.1	26
173	Heater Size and Gravity Based Pool Boiling Regime Map: Transition Criteria Between Buoyancy and Surface Tension Dominated Boiling. Journal of Heat Transfer, 2010, 132, .	2.1	25
174	Heater Size and Orientation Effect on Pool Boiling of FC-72. , 2010, , .		0
175	Inverse Problems in Stochastic Modeling of Mixed-Mode Power-Law and Diffusional Creep for Distributed Grain Size. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 308-317.	2.2	2
176	Giant piezoresistivity of polymer-derived ceramics at high temperatures. Journal of the European Ceramic Society, 2010, 30, 2203-2207.	5.7	70
177	Thermodynamic measurements pertaining to the hysteretic intercalation of lithium in polymer-derived silicon oxycarbide. Journal of Power Sources, 2010, 195, 3900-3906.	7.8	82
178	Colossal anelasticity in polycrystals deforming under conditions of diffusional creep. Acta Materialia, 2010, 58, 702-708.	7.9	0
179	Compression Creep of Alumina Containing Interfacial Silicon, Carbon, and Nitrogen, Derived from a Polysilazane Precursor. Journal of the American Ceramic Society, 2010, 93, 954-958.	3.8	4
180	Lithium Insertion in Polymerâ€Derived Silicon Oxycarbide Ceramics. Journal of the American Ceramic Society, 2010, 93, 1127-1135.	3.8	70

#	Article	IF	Citations
181	Ultrahighâ€Temperature Semiconductors Made from Polymerâ€Derived Ceramics. Journal of the American Ceramic Society, 2010, 93, 1668-1676.	3.8	82
182	Transient Viscous Flow During the Evolution of a Ceramic (Silicon Carbonitride) from a Polymer (Polysilazane). Journal of the American Ceramic Society, 2010, 93, 2567-2570.	3.8	9
183	Enhanced Sintering Rate of Zirconia (3Yâ€₹ZP) Through the Effect of a Weak dc Electric Field on Grain Growth. Journal of the American Ceramic Society, 2010, 93, 2935-2937.	3.8	135
184	Flash Sintering of Nanograin Zirconia in <5 s at 850°C. Journal of the American Ceramic Society, 2010, 93, 3556-3559.	3.8	824
185	Subcooled Pool Boiling in Variable Gravity Environments. Journal of Heat Transfer, 2009, 131, .	2.1	47
186	Liquid Phase Sintered Solders with Indium as Minority Phase for Next Generation Thermal Interface Material Applications. Journal of Electronic Materials, 2009, 38, 2735-2745.	2.2	31
187	A Huge Effect of Weak dc Electrical Fields on Grain Growth in Zirconia. Journal of the American Ceramic Society, 2009, 92, 1856-1859.	3.8	149
188	Thermocapillary Convection during Subcooled Boiling in Reduced Gravity Environments. Annals of the New York Academy of Sciences, 2009, 1161, 173-181.	3.8	2
189	Gravity Scaling Parameter for Pool Boiling Heat Transfer. , 2009, , .		0
190	A low-cost method for producing high-performance nanocomposite thin-films made from silica and CNTs on cellulose substrates. Journal of Materials Science, 2008, 43, 4862-4869.	3.7	13
191	Nanoceramic–Metal Matrix Composites by In-Situ Pyrolysis of Organic Precursors in a Liquid Melt. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 3291-3297.	2.2	30
192	Thermodynamically Stable Si _{<i>w</i>} C _{<i>x</i>} N _{<i>y</i>} O _{<i>z</i>} Polymerâ€Like, Amorphous Ceramics Made from Organic Precursors. Journal of the American Ceramic Society, 2008, 91, 2391-2393.	3.8	27
193	Intensely Photoluminescent Pseudoâ€Amorphous SiliconOxyCarboNitride Polymer–Ceramic Hybrids. Journal of the American Ceramic Society, 2008, 91, 2422-2424.	3.8	32
194	Energetics of Si _{<i>x</i>} O _{<i>y</i>} C _{<i>z</i>} Polymerâ€Derived Ceramics Prepared Under Varying Conditions. Journal of the American Ceramic Society, 2008, 91, 2969-2974.	3.8	51
195	Porous Al2O3-Spinel Based Polycrystals That Resist Free-Sintering. Journal of the American Ceramic Society, 2008, 91, 3451-3454.	3.8	5
196	Novel liquid phase sintered solders with indium as minority phase for next generation thermal interface material applications. , 2008, , .		5
197	Novel Liquid Phase Sintered Sn-In Solders with Tailorable Properties for Thermal Interface Material and Interconnect Applications. , 2007, , .		3
198	Study of the pyrolysis process of an hybrid CH3SiO1.5 gel into a SiCO glass. Vibrational Spectroscopy, 2007, 45, 61-68.	2,2	54

#	Article	IF	CITATIONS
199	Shear strength and sliding at a metal–ceramic (aluminum–spinel) interface at ambient and elevated temperatures. Acta Materialia, 2007, 55, 3049-3057.	7.9	19
200	A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells. Journal of Power Sources, 2007, 165, 315-323.	7.8	167
201	Solidification of a semitransparent planar layer subjected to radiative and convective cooling. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 107, 226-235.	2.3	19
202	Selection of TiN as the Interconnect Material for Measuring the Electrical Conductivity of Polymer-Derived SiCN at High Temperatures. Journal of the American Ceramic Society, 2007, 90, 295-297.	3.8	8
203	Mechanical Design for Accommodating Thermal Expansion Mismatch in Multilayer Coatings for Environmental Protection at Ultrahigh Temperatures. Journal of the American Ceramic Society, 2007, 90, 170-176.	3.8	6
204	Multilayer Design and Evaluation of a High Temperature Environmental Barrier Coating for Si-Based Ceramics. Journal of the American Ceramic Society, 2007, 90, 516-522.	3.8	21
205	Crystallization Maps for SiCO Amorphous Ceramics. Journal of the American Ceramic Society, 2007, 90, 578-583.	3.8	144
206	Thermodynamically Stable Si _{<i>x</i>} O _{<i>y</i>} C _{<i>z</i>} Polymerâ€Like Amorphous Ceramics. Journal of the American Ceramic Society, 2007, 90, 3213-3219.	3.8	117
207	Novel Composites Constituted from Hafnia and a Polymerâ€Derived Ceramic as an Interface: Phase for Severe Ultrahigh Temperature Applications. Journal of the American Ceramic Society, 2007, 90, 3171-3176.	3.8	25
208	A Phenomenological Model (and Experiments) for Liquid Phase Sintering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 628-637.	2.2	9
209	Analysis of Solidification of a Semitransparent Planar Layer Using the Lattice Boltzmann Method and the Discrete Transfer Method. Numerical Heat Transfer; Part A: Applications, 2006, 49, 279-299.	2.1	55
210	Synthesis and Tribological Behavior of Silicon Oxycarbonitride Thin Films Derived from Poly(Urea)Methyl Vinyl Silazane. International Journal of Applied Ceramic Technology, 2006, 3, 113-126.	2.1	29
211	Effect of Steam Velocity on the Hydrothermal Oxidation/Volatilization of Silicon Nitride. Journal of the American Ceramic Society, 2006, 89, 1380-1387.	3.8	19
212	A Model for the Nanodomains in Polymer-Derived SiCO. Journal of the American Ceramic Society, 2006, 89, 060428035142017-???.	3.8	128
213	Preparation of Ultrathin-Walled Carbon-Based Nanoporous Structures by Etching Pseudo-Amorphous Silicon Oxycarbide Ceramics. Journal of the American Ceramic Society, 2006, 89, 2473-2480.	3.8	85
214	Mechanical and Tribological Behavior of Polymer-Derived Ceramics Constituted from SiCxOyNz. Journal of the American Ceramic Society, 2006, 89, 3706-3714.	3.8	40
215	Diffusion reactions at Al–MgAl2O4 interfaces—and the effect of applied electric fields. Journal of Materials Science, 2006, 41, 7785-7797.	3.7	13
216	Characterization of Nanodomains in Polymerâ€Derived SiCN Ceramics Employing Multiple Techniques. Journal of the American Ceramic Society, 2005, 88, 232-234.	3.8	81

#	Article	IF	CITATIONS
217	Friction and Wear Behavior of Silicon Carbonitride Processed From the Polymer-Derived Ceramic Route., 2005,, 473.		2
218	Passive Oxidation of an Effluent System: The Case of Polymer-Derived SiCO. Journal of the American Ceramic Society, 2005, 88, 339-345.	3.8	59
219	Influence of grain size variability on the strain rate dependence of the stress exponent in mixed-mode power law and diffusional creep. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 2913-2919.	2.2	8
220	The role of carbon in unexpected visco(an)elastic behavior of amorphous silicon oxycarbide above 1273K. Journal of Non-Crystalline Solids, 2005, 351, 2238-2243.	3.1	73
221	Rate mechanisms of a novel thiol-ene photopolymerization reaction. Macromolecular Symposia, 2004, 206, 361-374.	0.7	45
222	Oxidation Behavior of SiCN–ZrO ₂ Fiber Prepared from Alkoxideâ€Modified Silazane. Journal of the American Ceramic Society, 2004, 87, 1556-1558.	3.8	41
223	Temperature-dependent variability in lifetime prediction of thermally activated systems. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1471-1476.	2.2	3
224	Thiol-ene photopolymerization of polymer-derived ceramic precursors. Journal of Polymer Science Part A, 2004, 42, 1752-1757.	2.3	30
225	A methodology for analyzing the variability in the performance of a MEMS actuator made from a novel ceramic. Sensors and Actuators A: Physical, 2004, 116, 336-344.	4.1	18
226	Investigation on the oxidation process of SiCO glasses by the means of non-Rutherford backscattering spectrometry. Nuclear Instruments & Methods in Physics Research B, 2003, 211, 401-407.	1.4	13
227	YSZ layers by pulsed-MOCVD on solid oxide fuel cell electrodes. Surface and Coatings Technology, 2003, 167, 226-233.	4.8	23
228	Processing and characterization of silicon carbon-nitride ceramics: application of electrical properties towards MEMS thermal actuators. Sensors and Actuators A: Physical, 2003, 103, 171-181.	4.1	70
229	A novel micro glow plug fabricated from polymer-derived ceramics: in situ measurement of high-temperature properties and application to ultrahigh-temperature ignition. Sensors and Actuators A: Physical, 2003, 104, 246-262.	4.1	36
230	A real time human–machine interface for an ultrahigh temperature MEMS sensor–igniter. Sensors and Actuators A: Physical, 2003, 105, 23-30.	4.1	6
231	Influence of Distributed Particle Size on the Determination of the Parabolic Rate Constant for Oxidation by the Powder Method. Journal of the American Ceramic Society, 2003, 86, 351-353.	3.8	4
232	Integration of Ceramics Research with the Development of a Microsystem. Journal of the American Ceramic Society, 2003, 86, 1217-1219.	3.8	4
233	Amorphous Silicon Carbonitride Fibers Drawn from Alkoxide Modified Cerasetâ,,¢. Journal of the American Ceramic Society, 2003, 86, 1443-1445.	3.8	30
234	Polymer-Derived Ceramic Materials from Thiol-ene Photopolymerizations. Chemistry of Materials, 2003, 15, 4257-4261.	6.7	49

#	Article	IF	Citations
235	Polymer-derived SiCN composites with magnetic properties. Journal of Materials Research, 2003, 18, 2549-2551.	2.6	46
236	Developing an Ab-Initio Human-Machine Interface for an Ultrahigh Temperature MEMS Sensor made from a Novel Polymer Derived Ceramic. , 2002, , .		0
237	Carbon Nanotubes Welded by Precursor-Derived Silicoboron Carbonitride Ceramics: A TEM Study. Physica Status Solidi A, 2002, 193, R13-R15.	1.7	12
238	Ion exchange at a metal–ceramic interface. Acta Materialia, 2002, 50, 1165-1176.	7.9	13
239	Mechanical properties of a fully dense polymer derived ceramic made by a novel pressure casting process. Acta Materialia, 2002, 50, 4093-4103.	7.9	123
240	Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer. Sensors and Actuators A: Physical, 2002, 95, 120-134.	4.1	172
241	Application of microforging to SiCN MEMS fabrication. Sensors and Actuators A: Physical, 2002, 95, 143-151.	4.1	66
242	Pyrolysis Kinetics for the Conversion of a Polymer into an Amorphous Silicon Oxycarbide Ceramic. Journal of the American Ceramic Society, 2002, 85, 2181-2187.	3.8	90
243	Crystallization of Polymer-Derived Silicon Carbonitride at 1873 K under Nitrogen Overpressure. Journal of the American Ceramic Society, 2002, 85, 2587-2589.	3.8	30
244	Solid Yttriaâ€Stabilized Zirconia Films by Pulsed Chemical Vapor Deposition from Metalâ€organic Precursors. Journal of the American Ceramic Society, 2002, 85, 2873-2875.	3.8	7
245	Growth rate and morphology for ceramic films by pulsed-MOCVD. Surface and Coatings Technology, 2001, 141, 7-14.	4.8	29
246	Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique. Sensors and Actuators A: Physical, 2001, 89, 64-70.	4.1	143
247	Experimental Characterization and Modeling of Pulsed MOCVD with Ultrasonic Atomization of Liquid Precursor. Chemical Vapor Deposition, 2001, 7, 85-90.	1.3	19
248	Oxidation Kinetics of an Amorphous Silicon Carbonitride Ceramic. Journal of the American Ceramic Society, 2001, 84, 1803-1810.	3.8	96
249	Introduction to the Special Topical Issue on Ultrahighâ€Temperature Polymerâ€Derived Ceramics. Journal of the American Ceramic Society, 2001, 84, 2158-2159.	3.8	71
250	Nanoscale Densification Creep in Polymerâ€Derived Silicon Carbonitrides at 1350°C. Journal of the American Ceramic Society, 2001, 84, 2208-2212.	3.8	21
251	Unique precursor delivery and control afforded by low-pressure pulsed-CVD process with ultrasonic atomization. European Physical Journal Special Topics, 2001, 11, Pr3-1161-Pr3-1168.	0.2	8
252	An Interdisciplinary Framework for the Design and Life Prediction of Engineering Systems. Journal of Engineering Materials and Technology, Transactions of the ASME, 2000, 122, 348-354.	1.4	12

#	Article	IF	Citations
253	Fracture toughness of diamondlike carbon coatings. Journal of Materials Research, 1999, 14, 2173-2180.	2.6	44
254	Measurement of an electrical potential induced by normal stress applied to the interface of an ionic material at elevated temperatures. Acta Materialia, 1999, 47, 3423-3431.	7.9	36
255	A system level partitioning approach for analyzing the origins of variability in life prediction of tungsten filaments for incandescent lamps. Materials & Design, 1999, 21, 9-18.	5.1	15
256	Conversion Efficiency of Alkoxide Precursor to Oxide Films Grown by an Ultrasonicâ€Assisted, Pulsed Liquid Injection, Metalorganic Chemical Vapor Deposition (Pulsed VD) Process. Journal of the American Ceramic Society, 1999, 82, 1605-1607.	3.8	23
257	Time evolution of stress redistribution around multiple fiber breaks in a composite with viscous and viscoelastic matrices. International Journal of Solids and Structures, 1998, 35, 3177-3211.	2.7	58
258	Amorphous Silicoboron Carbonitride Ceramic with Very High Viscosity at Temperatures above 1500°C. Journal of the American Ceramic Society, 1998, 81, 3341-3344.	3.8	234
259	Crystallization of a Liquid (or a Glass) Contained within a Nanotube. Physica Status Solidi A, 1998, 166, 529-540.	1.7	1
260	Newtonian Viscosity of Amorphous Silicon Carbonitride at High Temperature. Journal of the American Ceramic Society, 1998, 81, 1349-1352.	3.8	162
261	Electric field induced domain rearrangement in potassium niobate thin films studied byin situsecond harmonic generation measurements. Journal of Applied Physics, 1997, 81, 865-875.	2.5	37
262	In-situ X-ray diffraction study of phase transitions in epitaxial KNbO3thin films. Ferroelectrics, 1997, 200, 343-351.	0.6	1
263	Domain Wall Pinning by Grain Boundaries During Electric Field Poling of KNbO3 Thin Films. Materials Research Society Symposia Proceedings, 1997, 493, 75.	0.1	2
264	Influence of microstructural scale on plastic flow behavior of metal matrix composites. Acta Materialia, 1997, 45, 1633-1643.	7.9	76
265	Design and performance of a new type of Knudsen cell for chemical beam epitaxy using metal-organic precursors. Vacuum, 1997, 48, 165-173.	3.5	5
266	Thermodynamic Analysis of Grain Aspect Ratio in Fibrous Microstructures of Silicon Nitride. Journal of the American Ceramic Society, 1997, 80, 3250-3252.	3.8	8
267	Epitaxial Variants and Grain Boundary Structures in Heteroepitaxial Lithium Tantalate on Basal Sapphire. Materials Research Society Symposia Proceedings, 1996, 441, 125.	0.1	O
268	The influence of micro structural scale on the creep resistance of high volume fraction ceramic-metal composites made from aluminum oxide and niobium. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 206, 128-137.	5.6	3
269	A mechanistic basis for high strain rate superplasticity of aluminum based metal matrix composites. Materials Science & Description of the Composite of the Com	5. 6	3
270	A mechanistic basis for high strain rate superplasticity of aluminum based metal matrix composites. Materials Science & Description of the Materials of Science & Description of the Materials of	5.6	3

#	Article	IF	CITATIONS
271	Space-Charge-Controlled Diffusional Creep: Volume Diffusion Case+. Journal of the American Ceramic Society, 1996, 79, 193-198.	3.8	23
272	Domain Structure-Second Harmonic Generation Correlation in Potassium Niobate Thin Films Deposited on a Strontium Titanate Substrate. Journal of the American Ceramic Society, 1996, 79, 3289-3296.	3.8	21
273	Heteroepitaxial Growth Kinetics in a CVD Process Using Nickel Oxide on MgO as a Model System. Journal of the American Ceramic Society, 1996, 79, 1019-1024.	3.8	2
274	Controlled Epitaxial Nucleation of Nickel Oxide on Microfabricated Magnesium Oxide Substrates in a CVD Process. Journal of the American Ceramic Society, 1996, 79, 1025-1033.	3.8	3
275	A tungsten filament high temperature heater for thin film deposition. Review of Scientific Instruments, 1996, 67, 3958-3960.	1.3	3
276	Domain structure and phase transitions in epitaxial KNbO3 thin films studied by in situ second harmonic generation measurements. Applied Physics Letters, 1996, 68, 1323-1325.	3.3	67
277	Transmission electron microscopy study of microstructure and misfit dislocations in epitaxial LiTaO3thin films grown on sapphire by a metalorganic chemical vapor deposition process. Journal of Applied Physics, 1996, 79, 3675-3680.	2.5	4
278	Measurement of the Interfacial Shear Strength of thin Copper Films on Sapphire by Microindentation Experiments. Materials Research Society Symposia Proceedings, 1995, 403, 151.	0.1	0
279	Influence of Grain Size on Ferroelastic Toughening and Piezoelectric Behavior of Lead Zirconate Titanate. Journal of the American Ceramic Society, 1995, 78, 3363-3368.	3.8	51
280	Metalorganic Chemical Vapor Deposition by Pulsed Liquid Injection Using an Ultrasonic Nozzle: Titanium Dioxide on Sapphire from Titanium(IV) Isopropoxide. Journal of the American Ceramic Society, 1995, 78, 2763-2768.	3.8	21
281	Electron Cyclotron Resonance Plasma-Enhanced Metalorganic Chemical Vapor Deposition of Tantalum Oxide Thin Films on Silicon near Room Temperature. Journal of the American Ceramic Society, 1995, 78, 1585-1592.	3.8	17
282	Structure-Optical Property Correlation of Epitaxial Potassium Niobate Thin Films Deposited on Magnesium Oxide (100) Substrates Using a Strontium Titanate Transition Layer. Journal of the American Ceramic Society, 1995, 78, 1825-1833.	3.8	29
283	Domain configurations in ferroelectric PbTiO3 thin films: The influence of substrate and film thickness. Solid State Ionics, 1995, 75, 43-48.	2.7	36
284	Xâ€ray characterization of the domain structure of epitaxial lead titanate thin films on (001) strontium titanate. Applied Physics Letters, 1995, 67, 792-794.	3.3	51
285	Nonlinear optical properties of epitaxial lithium tantalate thin films. Journal of Applied Physics, 1995, 77, 3420-3425.	2.5	26
286	The influence of Pt and SrTiO ₃ interlayers on the microstructure of PbTiO ₃ thin films deposited by laser ablation on (001) MgO. Journal of Materials Research, 1995, 10, 791-794.	2.6	23
287	Nanostructure and chemistry of a (100)MgO/(100)GaAs interface. Applied Physics Letters, 1994, 65, 564-566.	3.3	15
288	TEM study of the structure and chemistry of a diamond/silicon interface. Journal of Materials Research, 1994, 9, 1566-1572.	2.6	27

#	Article	IF	Citations
289	Crystallization of the Nanophase in Silicon Nitrides. , 1994, , 201-216.		3
290	Analysis of the single-fiber-composite test to measure the mechanical properties of metal-ceramic interfaces. Acta Metallurgica Et Materialia, 1994, 42, 4177-4187.	1.8	33
291	Determination of fracture toughness and bridging tractions from crack-opening displacement measurements in particulate composites of diamond in zinc sulfide. Acta Metallurgica Et Materialia, 1994, 42, 65-75.	1.8	8
292	In situ stress-strain response of small metal particles embedded in a ceramic matrix. Acta Metallurgica Et Materialia, 1994, 42, 2477-2485.	1.8	23
293	Electronic Structure and Bonding at Interfaces Between cvd Diamond and Silicon. Materials Research Society Symposia Proceedings, 1994, 332, 163.	0.1	1
294	In situ study of MgO on GaAs (001) for integrating thin film ferroelectrics with semiconductors. Ferroelectrics, 1994, 157, 353-358.	0.6	1
295	Orientation control of KNbO3thin films deposited by laser ablation on MgO (100) using SrTiO3transition layers. Ferroelectrics, 1994, 152, 55-60.	0.6	5
296	Growth of epitaxial lithium tantalate on sapphire by chemical beam epitaxy from lithium hexaethoxy-tantalate. Ferroelectrics, 1994, 152, 7-12.	0.6	6
297	Model for interface reaction control in superplastic deformation of non-stoichiometric ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 166, 89-95.	5.6	12
298	Mapping sp2 and sp3 states of carbon at sub-nanometre spatial resolution. Nature, 1993, 366, 725-727.	27.8	235
299	Reply to "Comment on 'Analysis of the Sintering Pressure". Journal of the American Ceramic Society, 1993, 76, 1903-1903.	3.8	6
300	Fundamental Research in Structural Ceramics for Service Near 2000oC. Journal of the American Ceramic Society, 1993, 76, 2147-2174.	3.8	222
301	Epitaxial LiTaO3thin film by pulsed metalorganic chemical vapor deposition from a single precursor. Applied Physics Letters, 1993, 63, 3146-3148.	3.3	46
302	BaSi2and thin film alkaline earth silicides on silicon. Applied Physics Letters, 1993, 63, 2818-2820.	3.3	119
303	Superplastic flow in a non-stoichiometric ceramic: Magnesium aluminate spinel. Acta Metallurgica Et Materialia, 1993, 41, 1229-1235.	1.8	21
304	Nucleation of Special Orientations During Heteroepitaxial Growth of Diamond on Silicon. Materials Research Society Symposia Proceedings, 1993, 317, 517.	0.1	0
305	Deposition of Titanium Oxide Films from Metal-Organic Precursor by Electron Cyclotron Resonance Plasma-Assisted Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 1993, 335, 117.	0.1	0
306	The Design of the Interface Phase for Obtaining Thermal Shock Resistance in Silicon Nitride. , 1993, , 207-221.		1

#	Article	IF	CITATIONS
307	First Order Quasi-Phase-Matched Second-Harmonic Generation in LiTaO3 Utilizing a Periodic Domain Inversion Created by an External Stress. Materials Research Society Symposia Proceedings, 1993, 329, 147.	0.1	O
308	Blue Light by Second Harmonic Generation in Epitaxial PbTiO3 Thin Film Waveguide. Materials Research Society Symposia Proceedings, 1993, 329, 153.	0.1	0
309	MgO epitaxial thin films on (100) GaAs as a substrate for the growth of oriented PbTiO3. Applied Physics Letters, 1992, 60, 3105-3107.	3.3	93
310	Overview no. 100 Scalings in fracture probabilities for a brittle matrix fiber composite. Acta Metallurgica Et Materialia, 1992, 40, 2813-2828.	1.8	103
311	Creep fracture experiments with planar sapphireî—,copper interfaces stressed in tension. Acta Metallurgica Et Materialia, 1992, 40, 615-624.	1.8	8
312	The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metallurgica Et Materialia, 1992, 40, 123-129.	1.8	348
313	Rate effects in metal-ceramic interface sliding from the periodic film cracking technique. Acta Metallurgica Et Materialia, 1992, 40, 2269-2280.	1.8	26
314	Model for the crystallization and sintering of unseeded and seeded boehmite gels. Journal of Materials Science, 1992, 27, 2251-2257.	3.7	19
315	Ultrahigh vacuum chemical vapor deposition of rhodium thin films on clean and TiO2-covered Si(111). Thin Solid Films, 1992, 208, 172-176.	1.8	16
316	Enhancement of Tensile Ductility in Nanograin Superplastic Ceramics Through Control of Interface Chemistry., 1992,, 238-247.		0
317	Thin films of transition metals on oxides. Acta Metallurgica Et Materialia, 1991, 39, 3187-3191.	1.8	13
318	Microtensile superplasticity in ceramic fibers. Acta Metallurgica Et Materialia, 1991, 39, 3125-3132.	1.8	14
319	Interface effects in superplastic deformation of alumina containing zirconia, titania or hafnia as a second phase. Acta Metallurgica Et Materialia, 1991, 39, 2909-2919.	1.8	35
320	A model for subgrain superplastic flow in aluminum alloys. Acta Metallurgica Et Materialia, 1991, 39, 679-688.	1.8	17
321	Superplastic Flow in Ceramic Microfiber Specimens. Materials Research Society Symposia Proceedings, 1991, 239, 133.	0.1	1
322	Ultra-high vacuum metalorganic chemical vapor deposition of GaAs thin films onto Si(100) using a single-source precursor. Thin Solid Films, 1991, 205, 236-240.	1.8	5
323	Solution precursor chemical vapor deposition of titanium oxide thin films. Thin Solid Films, 1991, 204, L13-L17.	1.8	74
324	Control of the Microstructure of Alumina-Zirconia Alloys Starting from Inorganic Salts. Journal of the American Ceramic Society, 1991, 74, 1707-1709.	3.8	6

#	Article	IF	Citations
325	Grain Growth in Superplastically Deformed Zinc Sulfide/Diamond Composites. Journal of the American Ceramic Society, 1991, 74, 1729-1731.	3.8	7
326	Activation Energy for the Sintering of Two-Phase Alumina/Zirconia Ceramics. Journal of the American Ceramic Society, 1991, 74, 1959-1963.	3.8	154
327	Ultra-high vacuum chemical vapor deposition and <i>in situ</i> characterization of titanium oxide thin films. Journal of Materials Research, 1991, 6, 1913-1918.	2.6	37
328	Effect of hotâ€pressing temperature on the optical transmission of zinc sulfide. Applied Physics Letters, 1991, 58, 441-443.	3.3	22
329	The Influence of Grain Boundary Structure on Strain-Induced Grain Growth During Superplastic Deformation. Materials Research Society Symposia Proceedings, 1990, 196, 21.	0.1	3
330	Ion Induced Crystallization and Growth of Nanoscale Grains in Ceramics. Materials Research Society Symposia Proceedings, 1990, 202, 633.	0.1	1
331	Phase Formation and Phase Stability in the Al-Ti Thin Film System. Materials Research Society Symposia Proceedings, 1990, 213, 925.	0.1	3
332	Estimate of the Activation Energies for Boundary Diffusion from Rate-Controlled Sintering of Pure Alumina, and Alumina Doped with Zirconia or Titania. Journal of the American Ceramic Society, 1990, 73, 1172-1175.	3.8	289
333	Better Sintering through Green-State Deformation Processing. Journal of the American Ceramic Society, 1990, 73, 2032-2037.	3.8	35
334	In-Situ Measurement of Silica-Gel Coating on Particles of Alumina. Journal of the American Ceramic Society, 1990, 73, 2163-2164.	3.8	16
335	Fracture and Stiffness Characteristics of Particulate Composites of Diamond in Zinc Sulfide. Journal of the American Ceramic Society, 1990, 73, 3074-3080.	3.8	19
336	Effect of Diamond Dispersion on the Superplastic Rheology of Zinc Sulfide. Journal of the American Ceramic Society, 1990, 73, 2213-2216.	3.8	11
337	Deformation-induced phase transformation in zinc sulphide. Journal of Materials Science Letters, 1990, 9, 818-819.	0.5	14
338	Ultimate shear strengths of copper-silica and nickel-silica interfaces. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1990, 126, 125-131.	5.6	64
339	Control of the mechanical properties of metal-ceramic interfaces through interfacial reactions. Acta Metallurgica Et Materialia, 1990, 38, 2215-2224.	1.8	73
340	Autonucleation of cavities in thin ceramic films. Acta Metallurgica, 1989, 37, 2035-2038.	2.1	32
341	Measurement of the ultimate shear strength of a metal-ceramic interface. Acta Metallurgica, 1989, 37, 1265-1270.	2.1	348
342	Copper on sapphire: Stability of thin films at 0.7 Tm. Acta Metallurgica, 1989, 37, 2947-2952.	2.1	71

#	Article	IF	Citations
343	Superplastic Deformation of Zinc Sulfide Near Its Transformation Temperature [10200]. Journal of the American Ceramic Society, 1989, 72, 1792-1796.	3.8	34
344	Nucleation of Flocs in Dilute Colloidal Suspensions. Journal of the American Ceramic Society, 1989, 72, 2148-2153.	3.8	7
345	Effect of the Heating Rate on the Relative Rates of Sintering and Crystallization in Glass. Journal of the American Ceramic Society, 1989, 72, 2361-2364.	3.8	50
346	Shear and Densification of Glass Powder Compacts. Journal of the American Ceramic Society, 1989, 72, 798-804.	3.8	64
347	Type II Magnetic Levitation on Sinter-Forged YBa2Cu3Ox Superconductor. Journal of the American Ceramic Society, 1989, 72, 846-848.	3.8	23
348	Flaw Generation During Constrained Sintering of Metal-Ceramic and Metal-Glass Multilayer Films. Journal of the American Ceramic Society, 1989, 72, 1649-1655.	3.8	113
349	Sintering and Crystallization of Glass at Constant Heating Rates. Journal of the American Ceramic Society, 1989, 72, 1564-1566.	3.8	36
350	Shear deformation and compaction of nickel aluminide powders at elevated temperatures. Acta Metallurgica, 1988, 36, 1929-1939.	2.1	10
351	Grain-Growth Transition During Sintering of Colloidally Prepared Alumina Powder Compacts. Journal of the American Ceramic Society, 1988, 71, 1031-1035.	3.8	120
352	Sinter-Forging Characteristics of fine-Grained Zirconia. Journal of the American Ceramic Society, 1988, 71, C-507-C-509.	3.8	56
353	Measurement of the Sintering Pressure in Ceramic Films. Journal of the American Ceramic Society, 1988, 71, 276-280.	3.8	26
354	Sintering of TiO2-Al2O3 Composites: A Model Experimental Investigation. Journal of the American Ceramic Society, 1988, 71, 302-310.	3.8	109
355	Spatial Variations in the Sintering Rate of Ordered and Disordered Particle Structures. Journal of the American Ceramic Society, 1988, 71, C-408-C-410.	3.8	22
356	Characterizing Packing Geometry for Better Sintering. Materials and Processing Report, 1988, 2, 8-9.	0.0	0
357	Hot Isostatic Pressing of Ceramic/Ceramic Composites at Pressures <10 MPa. Advanced Ceramic Materials, 1988, 3, 122-126.	2.2	20
358	Sapphire whiskers from boehmite gel seeded with \hat{l}_{\pm} -alumina. Journal of Crystal Growth, 1987, 85, 527-534.	1.5	20
359	Liquid-Phase Bonding of Silicon Nitride Ceramics. Journal of the American Ceramic Society, 1987, 70, C-105-C-107.	3.8	16
360	Packing and Sintering of Two-Dimensional Structures Made fro Bimodal Particle Size Distributions. Journal of the American Ceramic Society, 1987, 70, 843-849.	3.8	73

#	Article	IF	CITATIONS
361	Enhancement of Strength through Sinter Forging. Journal of the American Ceramic Society, 1987, 70, 514-520.	3.8	55
362	Analysis of the Sintering Pressure. Journal of the American Ceramic Society, 1987, 70, C-210-C-211.	3.8	79
363	A model for the evolution of grain size distribution during superplastic deformation. Acta Metallurgica, 1986, 34, 447-456.	2.1	41
364	Superplastic Flow in Fine-Grained Alumina. Journal of the American Ceramic Society, 1986, 69, 135-138.	3.8	103
365	Kinetics of Precipitation of alpha-Al2O3 in Polycrystalline Supersaturated MgO - 2Al2O3 Spinel Solid Solution. Journal of the American Ceramic Society, 1986, 69, 365-373.	3.8	27
366	Analysis of Sintering of a Composite with a Glass or Ceramic Matrix. Journal of the American Ceramic Society, 1986, 69, C-55-C-57.	3.8	53
367	Shear Deformation and Densification of Powder Compacts. Journal of the American Ceramic Society, 1986, 69, 499-506.	3.8	161
368	Unstable Spreading of a Fluid Inclusion in a Grrain Boundary under Normal Stress. Journal of the American Ceramic Society, 1986, 69, 708-712.	3.8	19
369	Role of Shear in the Sintering of Composites. , 1986, , 27-39.		4
370	Suppression of Frothing by Silicon Addition During Oxynitride Glass Synthesis. Journal of the American Ceramic Society, 1985, 68, C-168-C-170.	3.8	6
371	Superplastic Deformation in Fine-Grained MgO 2Al2O3 Spinel. Journal of the American Ceramic Society, 1985, 68, 522-529.	3.8	56
372	Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate. Journal of the American Ceramic Society, 1985, 68, 287-292.	3.8	216
373	Segregation of Mg to the (0001) Surface of Doped Sapphire. Journal of the American Ceramic Society, 1985, 68, 281-286.	3.8	88
374	Effect of Silicon Activity on Liquid-Phase Sintering of Nitrogen Ceramics. Journal of the American Ceramic Society, 1985, 68, C-124-C-126.	3.8	6
375	Influence of Hydrostatic Pressure and Humidity on Superplastic Ductility of Two \hat{l}^2 -Spodumene Glass-Ceramics. Journal of the American Ceramic Society, 1984, 67, 385-390.	3.8	47
376	Mechanism of Superplastic Flow in a Fine-Grained Ceramic Containing Some Liquid Phase. Journal of the American Ceramic Society, 1984, 67, 399-409.	3.8	150
377	Sintering behavior of bi-modal powder compacts. Acta Metallurgica, 1984, 32, 1003-1019.	2.1	206
378	Superplastic deformation of an ultrafine grained intermetallic alloy prepared by crystallization of a metallic glass. Acta Metallurgica, 1984, 32, 1553-1560.	2.1	7

#	Article	IF	CITATIONS
379	Superplastic Flow in Ceramics Enhanced by a Liquid Phase. , 1984, , 353-378.		7
380	Correlations between cavitation, creep and dilation for multiaxial loading. Acta Metallurgica, 1983, 31, 29-36.	2.1	7
381	CREEP FRACTURE IN CERAMICS CONTAINING SMALL AMOUNTS OF A LIQUID PHASE. , 1983, , 145-160.		O
382	Creep in polycrystalline aggregates by matter transport through a liquid phase. Journal of Geophysical Research, 1982, 87, 4731-4739.	3.3	300
383	Intergranular creep fracture in aggressive environments. Acta Metallurgica, 1982, 30, 1259-1268.	2.1	32
384	Influence of hydrostatic pressure and multiaxial straining on cavitation in a superplastic aluminum alloy. Acta Metallurgica, 1982, 30, 2043-2053.	2.1	81
385	Intergranular fracture in bicrystals—II. Acta Metallurgica, 1982, 30, 505-511.	2.1	23
386	Creep fracture in ceramics containing small amounts of a liquid phase. Acta Metallurgica, 1982, 30, 1043-1058.	2.1	146
387	Limiting Densities for Dense Random Packing of Spheres. Journal of the American Ceramic Society, 1982, 65, C-19-C-21.	3.8	15
388	Separation of Cavitation-Strain and Creep-Strain During Deformation. Journal of the American Ceramic Society, 1982, 65, C-46-C-46.	3.8	86
389	Dissolution Kinetics of beta-Si3N4 in an Mg-Si-O-N Glass. Journal of the American Ceramic Society, 1982, 65, 270-274.	3.8	21
390	A Theoretical Estimate of Solution-Precipitation Creep in MgO-Fluxed Si3N4. Journal of the American Ceramic Society, 1982, 65, c88-c90.	3.8	11
391	Equations for diffusional creep under multiaxial stress states. Scripta Metallurgica, 1981, 15, 273-274.	1.2	6
392	Crystallization of small quantities of glass (or a liquid) segregated in grain boundaries. Acta Metallurgica, 1981, 29, 1993-2000.	2.1	108
393	Solution-precipitation creep in glass ceramics. Acta Metallurgica, 1981, 29, 159-166.	2.1	279
394	Micromechanical modelling of creep using distributed parameters. Acta Metallurgica, 1981, 29, 283-292.	2.1	64
395	Grain size distribution effects in superplasticity. Acta Metallurgica, 1981, 29, 607-616.	2.1	110
396	Morphology and Stability of the Glass Phase in Glass Ceramic Systems. Journal of the American Ceramic Society, 1981, 64, 245-248.	3.8	84

#	Article	IF	CITATIONS
397	Activation Energies for Densification, Creep, and Grain-Boundary Sliding in Nitrogen Ceramics. Journal of the American Ceramic Society, 1981, 64, C-143-C-145.	3.8	37
398	Kinetics of Dissolution and Crystallization in a beta-Spodumene Glass-Ceramic. Journal of the American Ceramic Society, 1981, 64, 194-200.	3.8	14
399	Stress rupture. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1981, 12, 1291-1302.	1.4	43
400	Development of a Processing Map for Use in Warm-Forming and Hot-Forming Processes. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1981, 12, 1089-1097.	1.4	333
401	An upper bound on strain rate for wedge type fracture in nickel during creep. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1981, 12, 515-520.	1.4	34
402	The Role of Grain-Boundary Sliding in Fracture of Hot-Pressed Si3N4 at High Temperatures. Journal of the American Ceramic Society, 1980, 63, 513-517.	3.8	82
403	Creep crack propagation by cavitation near crack tips. Metal Science, 1980, 14, 385-394.	0.7	45
404	Dynamic effects on flow and fracture during isothermal forging of a titanium alloy. Scripta Metallurgica, 1980, 14, 241-246.	1.2	17
405	Life Prediction of Tungsten Filaments in Incandescent Lamps. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1978, 9, 941-946.	1.4	21
406	Diffusional relaxation of stress concentration at second phase particles. Acta Metallurgica, 1978, 26, 1551-1558.	2.1	93
407	Intergranular fracture in bicrystals. Acta Metallurgica, 1978, 26, 341-349.	2.1	83
408	Nucleation of cavities at second phase particles in grain boundaries. Acta Metallurgica, 1978, 26, 995-1006.	2.1	240
409	Hold-time effects in high temperature fatigue. Acta Metallurgica, 1978, 26, 1007-1022.	2.1	62
410	Correction to: "Intergranular fracture at elevated temperature― Scripta Metallurgica, 1977, 11, 839-842.	1.2	66
411	Fracture at elevated temperature. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1977, 8, 1917-1933.	1.4	90
412	Measurement of viscosity of the grain-boundary phase in hot-pressed silicon nitride. Journal of Materials Science, 1976, 11, 49-53.	3.7	112
413	Crack Initiation In Grain Boundaries Under Conditions of Steady-State and Cyclic Creep. Journal of Engineering Materials and Technology, Transactions of the ASME, 1976, 98, 132-139.	1.4	23
414	Transient behavior of diffusion-induced creep and creep rupture. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1975, 6, 1499-1509.	1.4	111

#	Article	IF	CITATIONS
415	Intergranular fracture at elevated temperature. Acta Metallurgica, 1975, 23, 653-666.	2.1	771
416	De-adhesion by the growth of penny-shaped bubbles in an adhesive layer. Philosophical Magazine and Journal, 1975, 32, 909-922.	1.7	17
417	Intergranular fracture at elevated temperature. Scripta Metallurgica, 1975, 9, xv.	1.2	O
418	Use of the internal friction technique to measure rates of grain boundary sliding. Acta Metallurgica, 1974, 22, 1469-1474.	2.1	96
419	Grain boundary sliding, and the effects of particles on its rate. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1972, 3, 1937-1942.	2.1	56
420	On grain boundary sliding and diffusional creep. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1971, 2, 1113-1127.	1.4	1,100
421	Fabrication of multi-layered SiCN ceramic MEMS using photo-polymerization of precursor., 0,,.		2
422	Fabrication of SiCN MEMS structures using microforged molds. , 0, , .		3
423	Fabrication process for ultra high aspect ratio polysilazane-derived MEMS. , 0, , .		4
424	Nucleation of voids at Li-metal–ceramic–electrolyte interfaces. MRS Communications, 0, , 1.	1.8	3
425	Experimental Investigation of Single-Phase Heat Transfer on Scalable Nanostructured Microchannels. , 0, , .		1
426	Solidification Processing of Magnesium Based In-Situ Metal Matrix Composites by Precursor Approach. , 0, , .		0
427	Touch Free Flash Sintering with Magnetic Induction within a Reactor Activated by the Usual Flash Method. Journal of the American Ceramic Society, 0, , .	3.8	7