Marcia Margis-Pinheiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/170393/publications.pdf

Version: 2024-02-01

71685 57758 6,451 120 44 76 citations h-index g-index papers 124 124 124 8132 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 2012, 35, 1011-1019.	1.3	515
2	Glutathione peroxidase family – an evolutionary overview. FEBS Journal, 2008, 275, 3959-3970.	4.7	400
3	Interactions between plant hormones and heavy metals responses. Genetics and Molecular Biology, 2017, 40, 373-386.	1.3	325
4	Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta, 2006, 224, 300-314.	3.2	199
5	PeroxiBase: The peroxidase database. Phytochemistry, 2007, 68, 1605-1611.	2.9	187
6	Heavy metalâ€associated isoprenylated plant protein (<scp>HIPP</scp>): characterization of a family of proteins exclusive to plants. FEBS Journal, 2013, 280, 1604-1616.	4.7	187
7	Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis. BMC Evolutionary Biology, 2011, 11, 263.	3.2	174
8	Analysis of the Molecular Evolutionary History of the Ascorbate Peroxidase Gene Family: Inferences from the Rice Genome. Journal of Molecular Evolution, 2004, 59, 761-770.	1.8	158
9	Succinate dehydrogenase (mitochondrial complex <scp>II</scp>) is a source of reactive oxygen species in plants and regulates development and stress responses. New Phytologist, 2015, 208, 776-789.	7.3	129
10	Functional characterization of the rice kaurene synthase-like gene family. Phytochemistry, 2007, 68, 312-326.	2.9	124
11	New Insights into Aluminum Tolerance in Rice: The ASR5 Protein Binds the STAR1 Promoter and Other Aluminum-Responsive Genes. Molecular Plant, 2014, 7, 709-721.	8.3	117
12	Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochemistry, 2010, 71, 548-558.	2.9	115
13	Bean cyclophilin gene expression during plant development and stress conditions. Plant Molecular Biology, 1994, 26, 1181-1189.	3.9	112
14	The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Science, 2013, 208, 93-101.	3.6	110
15	Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Science, 2004, 166, 323-331.	3.6	106
16	Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant, Cell and Environment, 2011, 34, 1705-1722.	5.7	106
17	Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. Genomics, 2007, 89, 567-579.	2.9	100
18	The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65, 1403-1413.	4.8	97

#	Article	IF	Citations
19	Glutathione peroxidases as redox sensor proteins in plant cells. Plant Science, 2015, 234, 22-26.	3.6	92
20	Involvement of <i>ASR</i> genes in aluminium tolerance mechanisms in rice. Plant, Cell and Environment, 2013, 36, 52-67.	5.7	86
21	Aluminum triggers broad changes in microRNA expression in rice roots. Genetics and Molecular Research, 2011, 10, 2817-2832.	0.2	85
22	Reference genes for transcriptional analysis of flowering and fruit ripening stages in apple (MalusÂ×Âdomestica Borkh.). Molecular Breeding, 2014, 34, 829-842.	2.1	83
23	Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Brazilian Journal of Plant Physiology, 2003, 15, 33-41.	0.5	82
24	Biosynthesis of Triacylglycerols (TAGs) in Plants and algae. International Journal of Plant Biology, 2011, 2, e10.	2.6	81
25	The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Plant Science, 2014, 214, 74-87.	3.6	81
26	Possible roles of basic helix-loop-helix transcription factors in adaptation to drought. Plant Science, 2014, 223, 1-7.	3 . 6	81
27	Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhiziinfection. BMC Plant Biology, 2014, 14, 236.	3.6	79
28	Arabidopsis thalianaclass IV chitinase is early induced during the interaction withXanthomonas campestris. FEBS Letters, 1997, 419, 69-75.	2.8	77
29	Rice <i>ASR1</i> and <i>ASR5</i> are complementary transcription factors regulating aluminium responsive genes. Plant, Cell and Environment, 2016, 39, 645-651.	5.7	75
30	Isolation of a complementary DNA encoding the bean PR4 chitinase: an acidic enzyme with an amino-terminus cysteine-rich domain. Plant Molecular Biology, 1991, 17, 243-253.	3.9	71
31	Rice peroxisomal ascorbate peroxidase knockdown affects ROS signaling and triggers early leaf senescence. Plant Science, 2017, 263, 55-65.	3.6	71
32	The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Molecular Genetics and Genomics, 2009, 281, 87-97.	2.1	68
33	Salt-induced antioxidant metabolism defenses in maize (Zea maysL.) seedlings. Redox Report, 2004, 9, 29-36.	4.5	64
34	Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Reports, 2005, 23, 819-833.	5 . 6	61
35	Identifying Conserved and Novel MicroRNAs in Developing Seeds of Brassica napus Using Deep Sequencing. PLoS ONE, 2012, 7, e50663.	2.5	61
36	The Wall-associated Kinase gene family in rice genomes. Plant Science, 2014, 229, 181-192.	3.6	59

#	Article	IF	Citations
37	Ascorbate peroxidaseâ€related (APxâ€R) is a new hemeâ€containing protein functionally associated with ascorbate peroxidase but evolutionarily divergent. New Phytologist, 2011, 191, 234-250.	7.3	57
38	Differential Transcriptional Profiles of Dormancy-Related Genes in Apple Buds. Plant Molecular Biology Reporter, 2014, 32, 796-813.	1.8	51
39	Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Molecular Phylogenetics and Evolution, 2016, 96, 55-69.	2.7	51
40	The MADS-box gene Agamous-like 11 is essential for seed morphogenesis in grapevine. Journal of Experimental Botany, 2017, 68, 1493-1506.	4.8	51
41	Identification of differentially expressed genes by cDNA-AFLP technique during heat stress in cowpea nodules. FEBS Letters, 2002, 515, 44-50.	2.8	50
42	Genome-wide analysis of the Glycerol-3-Phosphate Acyltransferase (GPAT) gene family reveals the evolution and diversification of plant GPATs. Genetics and Molecular Biology, 2018, 41, 355-370.	1.3	48
43	Programmed cell death (PCD) control in plants: New insights from the Arabidopsis thaliana deathosome. Plant Science, 2020, 299, 110603.	3.6	48
44	Identification and expression analysis of castor bean (Ricinus communis) genes encoding enzymes from the triacylglycerol biosynthesis pathway. Plant Science, 2010, 179, 499-509.	3.6	47
45	Even population differentiation for maternal and biparental gene markers in Eugenia uniflora, a widely distributed species from the Brazilian coastal Atlantic rain forest. Diversity and Distributions, 2004, 10, 201-210.	4.1	46
46	Expression of an osmotin-like protein from Solanum nigrumconfers drought tolerance in transgenic soybean. BMC Plant Biology, 2014, 14, 343.	3 . 6	45
47	Differential expression of bean chitinase genes by virus infection, chemical treatment and UV irradiation. Plant Molecular Biology, 1993, 22, 659-668.	3.9	42
48	Identification and in silico characterization of soybean trihelix-GT and bHLH transcription factors involved in stress responses. Genetics and Molecular Biology, 2012, 35, 233-246.	1.3	42
49	Large-scale phylogeography of the disjunct Neotropical tree species Schizolobium parahyba (Fabaceae-Caesalpinioideae). Molecular Phylogenetics and Evolution, 2012, 65, 174-182.	2.7	40
50	PeroxiBase: a powerful tool to collect and analyse peroxidase sequences from Viridiplantae. Journal of Experimental Botany, 2009, 60, 453-459.	4.8	39
51	Peroxisomal <scp>APX</scp> knockdown triggers antioxidant mechanisms favourable for coping with high photorespiratory <scp>H</scp> ₂ <scp>O</scp> ₂ induced by <scp>CAT</scp> deficiency in rice. Plant, Cell and Environment, 2015, 38, 499-513.	5.7	36
52	Identifying MicroRNAs and Transcript Targets in Jatropha Seeds. PLoS ONE, 2014, 9, e83727.	2.5	35
53	Phytocalpains: orthologous calcium-dependent cysteine proteinases. Trends in Plant Science, 2003, 8, 58-62.	8.8	34
54	Diversity and evolution of plant diacylglycerol acyltransferase (DGATs) unveiled by phylogenetic, gene structure and expression analyses. Genetics and Molecular Biology, 2016, 39, 524-538.	1.3	34

#	Article	lF	Citations
55	Silenced rice in both cytosolic ascorbate peroxidases displays pre-acclimation to cope with oxidative stress induced by 3-aminotriazole-inhibited catalase. Journal of Plant Physiology, 2016, 201, 17-27.	3.5	34
56	Mitochondrial GPX1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants. Journal of Integrative Plant Biology, 2016, 58, 737-748.	8.5	33
57	Evolutionary diversification of galactinol synthases in Rosaceae: adaptive roles of galactinol and raffinose during apple bud dormancy. Journal of Experimental Botany, 2018, 69, 1247-1259.	4.8	33
58	Impairment of peroxisomal APX and CAT activities increases protection of photosynthesis under oxidative stress. Journal of Experimental Botany, 2019, 70, 627-639.	4.8	31
59	New insights on the evolution of Leafy cotyledon1 (LEC1) type genes in vascular plants. Genomics, 2014, 103, 380-387.	2.9	30
60	Chloroplastic and mitochondrial GPX genes play a critical role in rice development. Biologia Plantarum, 2014, 58, 375-378.	1.9	30
61	Comprehensive selection of reference genes for quantitative gene expression analysis during seed development in Brassica napus. Plant Cell Reports, 2015, 34, 1139-1149.	5.6	30
62	Authentication of Medicinal Plant Botanical Identity by Amplified Fragmented Length Polymorphism Dominant DNA Marker: Inferences from the Plectranthus Genus. Planta Medica, 2006, 72, 929-931.	1.3	29
63	Salinity and osmotic stress trigger different antioxidant responses related to cytosolic ascorbate peroxidase knockdown in rice roots. Environmental and Experimental Botany, 2016, 131, 58-67.	4.2	29
64	Nicotine Biosynthesis in <i>Nicotiana</i> : A Metabolic Overview. Tobacco Science, 2019, 56, 1-9.	3.0	29
65	Somatic embryo formation in Arabidopsis and eggplant is associated with expression of a glycine-rich protein gene (Atgrp-5). Plant Science, 2001, 161, 559-567.	3.6	28
66	Multigene families encode the major enzymes of antioxidant metabolism in Eucalyptus grandis L. Genetics and Molecular Biology, 2005, 28, 529-538.	1.3	28
67	Mitochondrial glutathione peroxidase (OsGPX3) has a crucial role in rice protection against salt stress. Environmental and Experimental Botany, 2019, 158, 12-21.	4.2	28
68	Enzymes of glycerol-3-phosphate pathway in triacylglycerol synthesis in plants: Function, biotechnological application and evolution. Progress in Lipid Research, 2019, 73, 46-64.	11.6	28
69	Revisiting the Non-Animal Peroxidase Superfamily. Trends in Plant Science, 2015, 20, 807-813.	8.8	27
70	VuNIP1 (NOD26-like) and VuHSP17.7 gene expression are regulated in response to heat stress in cowpea nodule. Environmental and Experimental Botany, 2008, 63, 256-265.	4.2	25
71	Fumarate reductase superfamily: A diverse group of enzymes whose evolution is correlated to the establishment of different metabolic pathways. Mitochondrion, 2017, 34, 56-66.	3.4	25
72	Bean class IV chitinase gene: structure, developmental expression and induction by heat stress. Plant Science, 1994, 98, 163-173.	3.6	24

#	Article	IF	Citations
73	Ubiquitous urease affects soybean susceptibility to fungi. Plant Molecular Biology, 2012, 79, 75-87.	3.9	24
74	Gene expression analysis reveals important pathways for drought response in leaves and roots of a wheat cultivar adapted to rainfed cropping in the Cerrado biome. Genetics and Molecular Biology, 2016, 39, 629-645.	1.3	22
75	Thylakoidal APX modulates hydrogen peroxide content and stomatal closure in rice (Oryza sativa L.). Environmental and Experimental Botany, 2018, 150, 46-56.	4.2	20
76	Revising the <i>PLAC8</i> gene family: from a central role in differentiation, proliferation, and apoptosis in mammals to a multifunctional role in plants. Genome, 2018, 61, 857-865.	2.0	20
77	Cytosolic <scp>APX</scp> knockdown rice plants sustain photosynthesis by regulation of protein expression related to photochemistry, Calvin cycle and photorespiration. Physiologia Plantarum, 2014, 150, 632-645.	5.2	19
78	Molecular evolution and diversification of plant cysteine proteinase inhibitors: New insights after the poplar genome. Molecular Phylogenetics and Evolution, 2008, 49, 349-355.	2.7	18
79	Analysis of castor bean ribosome-inactivating proteins and their gene expression during seed development. Genetics and Molecular Biology, 2013, 36, 74-86.	1.3	18
80	Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy. Physiologia Plantarum, 2015, 155, 315-329.	5.2	18
81	Proteomic and physiological approaches reveal new insights for uncover the role of rice thylakoidal APX in response to drought stress. Journal of Proteomics, 2019, 192, 125-136.	2.4	18
82	AtchitIV gene expression is stimulated under abiotic stresses and is spatially and temporally regulated during embryo development. Genetics and Molecular Biology, 2004, 27, 118-123.	1.3	17
83	Modulation of genes related to specific metabolic pathways in response to cytosolic ascorbate peroxidase knockdown in rice plants. Plant Biology, 2012, 14, 944-955.	3.8	17
84	Transcriptome of tung tree mature seeds with an emphasis on lipid metabolism genes. Tree Genetics and Genomes, 2014, 10, 1353-1367.	1.6	15
85	Manipulation of VviAGL11 expression changes the seed content in grapevine (Vitis vinifera L.). Plant Science, 2018, 269, 126-135.	3.6	15
86	Molecular evolution and diversification of the GRF transcription factor family. Genetics and Molecular Biology, 2020, 43, 20200080.	1.3	15
87	Going Forward and Back: The Complex Evolutionary History of the GPx. Biology, 2021, 10, 1165.	2.8	15
88	Rice bifunctional phytocystatin is a dual modulator of legumain and papain-like proteases. Plant Molecular Biology, 2016, 92, 193-207.	3.9	14
89	Ascorbate peroxidase-related (APx-R) is not a duplicable gene. Plant Signaling and Behavior, 2011, 6, 1908-1913.	2.4	13
90	The rice ASR5 protein. Plant Signaling and Behavior, 2012, 7, 1263-1266.	2.4	13

#	Article	IF	Citations
91	Chromosomal introgressions from <i>Oryza meridionalis </i> i>into domesticated rice <i>Oryza sativa </i> result in iron tolerance. Journal of Experimental Botany, 2021, 72, 2242-2259.	4.8	13
92	Transgenic fertile soybean plants derived from somatic embryos transformed via the combined DNA-free particle bombardment and Agrobacterium system. Euphytica, 2011, 177, 343-354.	1.2	12
93	OsICE1 transcription factor improves photosynthetic performance and reduces grain losses in rice plants subjected to drought. Environmental and Experimental Botany, 2018, 150, 88-98.	4.2	12
94	In vitro somatic embryogenesis and adventitious root initiation have a common origin in eggplant (Solanum melongena L.). Revista Brasileira De Botanica, 2004, 27, 79-84.	1.3	12
95	Ascorbic acid toxicity is related to oxidative stress and enhanced by high light and knockdown of chloroplast ascorbate peroxidases in rice plants. Theoretical and Experimental Plant Physiology, 2018, 30, 41-55.	2.4	11
96	Phosphate starvation responses in crop roots: from well-known players to novel candidates. Environmental and Experimental Botany, 2020, 178, 104162.	4.2	11
97	Tightly controlled expression of OsbHLH35 is critical for anther development in rice. Plant Science, 2021, 302, 110716.	3.6	11
98	Ascorbate Peroxidase Neofunctionalization at the Origin of APX-R and APX-L: Evidence from Basal Archaeplastida. Antioxidants, 2021, 10, 597.	5.1	11
99	Identification, classification and expression pattern analysis of sugarcane cysteine proteinases. Genetics and Molecular Biology, 2001, 24, 275-283.	1.3	9
100	The Lesion Simulating Disease (LSD) gene family as a variable in soybean response to Phakopsora pachyrhizi infection and dehydration. Functional and Integrative Genomics, 2013, 13, 323-338.	3.5	9
101	Arabidopsis APx-R Is a Plastidial Ascorbate-Independent Peroxidase Regulated by Photomorphogenesis. Antioxidants, 2021, 10, 65.	5.1	9
102	Bean class IV chitinase promoter is modulated during plant development and under abiotic stress. Physiologia Plantarum, 2002, 116, 512-521.	5.2	8
103	The phylogeny and evolutionary history of the Lesion Simulating Disease (LSD) gene family in Viridiplantae. Molecular Genetics and Genomics, 2015, 290, 2107-2119.	2.1	8
104	ASR5 is involved in the regulation of miRNA expression in rice. Plant Cell Reports, 2015, 34, 1899-1907.	5.6	8
105	Characterization of the nucellus-specific dehydrin MdoDHN11 demonstrates its involvement in the tolerance to water deficit. Plant Cell Reports, 2019, 38, 1099-1107.	5.6	7
106	Chloroplastic ascorbate peroxidases targeted to stroma or thylakoid membrane: The chicken or egg dilemma. FEBS Letters, 2022, 596, 2989-3004.	2.8	7
107	The mitochondrial isoform glutathione peroxidase 3 (OsGPX3) is involved in ABA responses in rice plants. Journal of Proteomics, 2021, 232, 104029.	2.4	6
108	Transformation of Brazilian eliteIndica-type rice (Oryza sativa L.) by electroporation of shoot apex explants. Plant Molecular Biology Reporter, 2001, 19, 55-64.	1.8	5

#	Article	IF	CITATIONS
109	Effect of Urtica dioica agglutinin and Arabidopsis tha liana Chia 4 chitinase on the protozoan Phytomonas fran \hat{A} \hat	1.8	5
110	Salt resistance of interspecific crosses of domesticated and wild rice species. Journal of Plant Nutrition and Soil Science, 2021, 184, 492-507.	1.9	5
111	Molecular Cloning and Transgenic Expression of a Synthetic Human Erythropoietin Gene in Tobacco. Applied Biochemistry and Biotechnology, 2011, 165, 652-665.	2.9	4
112	GILP family: a stress-responsive group of plant proteins containing a LITAF motif. Functional and Integrative Genomics, 2018, 18, 55-66.	3.5	4
113	The evolutionary history of the E2F and DEL genes in Viridiplantae. Molecular Phylogenetics and Evolution, 2016, 99, 225-234.	2.7	3
114	Ascorbate Peroxidases: Scavengers or Sensors of Hydrogen Peroxide Signaling?. Signaling and Communication in Plants, 2019, , 85-115.	0.7	3
115	Salicylic acid and adenine nucleotides regulate the electron transport system and ROS production in plant mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2022, 1863, 148559.	1.0	3
116	Phylogeography of the disjunct Schizolobium parahyba (Fabaceae-Caesalpinioideae). BMC Proceedings, 2011, 5, .	1.6	1
117	Rice Arsenal Against Aluminum Toxicity. Signaling and Communication in Plants, 2015, , 155-168.	0.7	1
118	Investigating the expression pattern of the OsAPx1 gene promoter in rice. BMC Proceedings, 2014, 8, .	1.6	0
119	cDNA-AFLP Transcriptome Analysis in Legumes. , 2008, , 413-426.		O

 $\text{Characterization of an Early Berry Development Grapevine Somatic Variant (Vitis labrusca L. cv. Isabel) Tj ETQq0 0 \\ \underbrace{0.8}_{0.8}BT / Overlock 10 \\ \text{True}$