Stephan Wawra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1703450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The fungal root endophyte <i>Serendipita vermifera</i> displays inter-kingdom synergistic beneficial effects with the microbiota in <i>Arabidopsis thaliana</i> and barley. ISME Journal, 2022, 16, 876-889.	9.8	22
2	Fungi hijack a ubiquitous plant apoplastic endoglucanase to release a ROS scavenging β-glucan decasaccharide to subvert immune responses. Plant Cell, 2022, 34, 2765-2784.	6.6	20
3	Unraveling the sugar code: the role of microbial extracellular glycans in plant–microbe interactions. Journal of Experimental Botany, 2021, 72, 15-35.	4.8	37
4	Plant speciesâ€specific recognition of long and short βâ€1,3â€linked glucans is mediated by different receptor systems. Plant Journal, 2020, 102, 1142-1156.	5.7	50
5	A secreted fungal histidine―and alanine―ich protein regulates metal ion homeostasis and oxidative stress. New Phytologist, 2020, 227, 1174-1188.	7.3	35
6	FGB1 and WSC3 are <i>in plantaâ€</i> induced <i>β</i> â€glucanâ€binding fungal lectins with different functions. New Phytologist, 2019, 222, 1493-1506.	7.3	43
7	<i>>Serendipita indica</i> E5′ <scp>NT</scp> modulates extracellular nucleotide levels in the plant apoplast and affects fungal colonization. EMBO Reports, 2019, 20, .	4.5	59
8	Cell entry of a host-targeting protein of oomycetes requires gp96. Nature Communications, 2018, 9, 2347.	12.8	28
9	The RxLR Motif of the Host Targeting Effector AVR3a of <i>Phytophthora infestans</i> Is Cleaved before Secretion. Plant Cell, 2017, 29, 1184-1195.	6.6	123
10	The fungal-specific β-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. Nature Communications, 2016, 7, 13188.	12.8	117
11	Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding. Nature Communications, 2016, 7, 10470.	12.8	65
12	Auto-aggregation in zoospores of <i>Phytophthora infestans</i> : the cooperative roles of bioconvection and chemotaxis. Journal of the Royal Society Interface, 2014, 11, 20140017.	3.4	27
13	A putative serine protease, SpSsp1, from Saprolegnia parasitica is recognised by sera of rainbow trout, Oncorhynchus mykiss. Fungal Biology, 2014, 118, 630-639.	2.5	26
14	In Vitro Translocation Experiments with RxLR-Reporter Fusion Proteins of Avr1b from <i>Phytophthora sojae</i> and AVR3a from <i>Phytophthora infestans</i> Fail to Demonstrate Specific Autonomous Uptake in Plant and Animal Cells. Molecular Plant-Microbe Interactions, 2013, 26, 528-536.	2.6	87
15	Distinctive Expansion of Potential Virulence Genes in the Genome of the Oomycete Fish Pathogen Saprolegnia parasitica. PLoS Genetics, 2013, 9, e1003272.	3.5	221
16	Avirulence Protein 3a (AVR3a) from the Potato Pathogen Phytophthora infestans Forms Homodimers through Its Predicted Translocation Region and Does Not Specifically Bind Phospholipids. Journal of Biological Chemistry, 2012, 287, 38101-38109.	3.4	28
17	Host-targeting protein 1 (SpHtp1) from the oomycete <i>Saprolegnia parasitica</i> translocates specifically into fish cells in a tyrosine-O-sulphate–dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2096-2101.	7.1	79
18	Secretion, delivery and function of oomycete effector proteins. Current Opinion in Microbiology, 2012, 15, 685-691.	5.1	90

STEPHAN WAWRA

#	Article	IF	CITATIONS
19	The putative RxLR effector protein SpHtp1 from the fish pathogenic oomycete Saprolegnia parasitica is translocated into fish cells. FEMS Microbiology Letters, 2010, 310, 127-137.	1.8	51
20	Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology, 2010, 11, R73.	9.6	391
21	Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. Journal of Experimental Botany, 2009, 60, 1133-1140.	4.8	92
22	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	27.8	1,405
23	Conformational Consequences of Regio―and Stereoselective Disulfide Bridge Oxidation in a Cyclic Peptide. ChemBioChem, 2008, 9, 46-49.	2.6	4
24	Cellulose Synthesis in <i>Phytophthora infestans</i> Is Required for Normal Appressorium Formation and Successful Infection of Potato. Plant Cell, 2008, 20, 720-738.	6.6	133
25	Isothermal Calorimetry as a Tool To Investigate Slow Conformational Changes in Proteins and Peptides. Analytical Chemistry, 2006, 78, 4517-4523.	6.5	11
26	Polypeptide binding proteins: what remains to be discovered?. Molecular Microbiology, 2006, 61, 1388-1396.	2.5	10
27	AmideCis-TransIsomerization in Peptides and Proteins. , 2006, , 167-193.		7