Takashi Osono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1702326/publications.pdf

Version: 2024-02-01

81839 128225 4,419 127 39 60 citations h-index g-index papers 131 131 131 4323 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecological Research, 2007, 22, 955-974.	0.7	347
2	Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Canadian Journal of Microbiology, 2006, 52, 701-716.	0.8	177
3	Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia, 2002, 94, 421-427.	0.8	145
4	Organic chemical and nutrient dynamics in decomposing beech leaf litter in relation to fungal ingrowth and succession during 3-year decomposition processes in a cool temperate deciduous forest in Japan. Ecological Research, 2001, 16, 649-670.	0.7	143
5	Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecology Letters, 2016, 19, 249-259.	3.0	128
6	Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecological Research, 2004, 19, 593-602.	0.7	106
7	Endophytic and epiphytic phyllosphere fungi of <i>Camellia japonica </i> : seasonal and leaf age-dependent variations. Mycologia, 2008, 100, 387-391.	0.8	97
8	Decomposition of organic chemical components in relation to nitrogen dynamics in leaf litter of 14 tree species in a cool temperate forest. Ecological Research, 2005, 20, 41-49.	0.7	88
9	Fungal decomposition of Abies needle and Betula leaf litter. Mycologia, 2006, 98, 172-179.	0.8	88
10	Comparison of Litter Decomposing Ability among Diverse Fungi in a Cool Temperate Deciduous Forest in Japan. Mycologia, 2002, 94, 421.	0.8	77
11	Wood decomposing abilities of diverse lignicolous fungi on nondecayed and decayed beech wood. Mycologia, 2011, 103, 474-482.	0.8	74
12	The roles of microorganisms in litter decomposition and soil formation. Biogeochemistry, 2014, 118, 471-486.	1.7	72
13	Disentangling the relative importance of host tree community, abiotic environment and spatial factors on ectomycorrhizal fungal assemblages along an elevation gradient. FEMS Microbiology Ecology, 2016, 92, fiw044.	1.3	72
14	Phyllosphere fungi on leaf litter of Fagus crenata: occurrence, colonization, and succession. Canadian Journal of Botany, 2002, 80, 460-469.	1.2	71
15	Disentangling relationships between plant diversity and decomposition processes under forest restoration. Journal of Applied Ecology, 2017, 54, 80-90.	1.9	71
16	Substrate-associated seedling recruitment and establishment of major conifer species in an old-growth subalpine forest in central Japan. Forest Ecology and Management, 2004, 196, 287-297.	1.4	70
17	Fungal decomposition of <i>Abies</i> needle and <i>Betula</i> leaf litter. Mycologia, 2006, 98, 172-179.	0.8	66
18	Roles of diverse fungi in larch needle-litter decomposition. Mycologia, 2003, 95, 820-826.	0.8	64

#	Article	IF	Citations
19	Fungal succession and decomposition of Camellia japonica leaf litter. Ecological Research, 2005, 20, 599-609.	0.7	64
20	Effects of organic chemical quality and mineral nitrogen addition on lignin and holocellulose decomposition of beech leaf litter by Xylaria sp European Journal of Soil Biology, 2001, 37, 17-23.	1.4	63
21	Colonization and lignin decomposition of Camellia japonica leaf litter by endophytic fungi. Mycoscience, 2005, 46, 280-286.	0.3	62
22	Potassium, calcium, and magnesium dynamics during litter decomposition in a cool temperate forest. Journal of Forest Research, 2004, 9, 23-31.	0.7	61
23	Dynamics of physicochemical properties and occurrence of fungal fruit bodies during decomposition of coarse woody debris of <i>>Fagus crenata </i> >. Journal of Forest Research, 2009, 14, 20-29.	0.7	61
24	Decomposing ability of interior and surface fungal colonizers of beech leaves with reference to lignin decomposition. European Journal of Soil Biology, 1999, 35, 51-56.	1.4	59
25	Nitrogen and phosphorus enrichment and balance in forests colonized by cormorants: Implications of the influence of soil adsorption. Plant and Soil, 2005, 268, 89-101.	1.8	58
26	Colonization and succession of fungi during decomposition of Swida controversa leaf litter. Mycologia, 2005, 97, 589-597.	0.8	58
27	Changes in the structure and heterogeneity of vegetation and microsite environments with the chronosequence of primary succession on a glacier foreland in Ellesmere Island, high arctic Canada. Ecological Research, 2008, 23, 363-370.	0.7	56
28	Effects of attack of saprobic fungi on twig litter decomposition by endophytic fungi. Ecological Research, 2009, 24, 1067-1073.	0.7	54
29	Fungal ingrowth on forest floor and decomposing needle litter of Chamaecyparis obtusa in relation to resource availability and moisture condition. Soil Biology and Biochemistry, 2003, 35, 1423-1431.	4.2	52
30	Carbon isotope dynamics during leaf litter decomposition with reference to lignin fractions. Ecological Research, 2008, 23, 51-55.	0.7	51
31	Phyllosphere fungi on living and decomposing leaves of giant dogwood. Mycoscience, 2004, 45, 35-41.	0.3	47
32	Immobilization of avian excreta-derived nutrients and reduced lignin decomposition in needle and twig litter in a temperate coniferous forest. Soil Biology and Biochemistry, 2006, 38, 517-525.	4.2	47
33	Effects of prior decomposition of beech leaf litter by phyllosphere fungi on substrate utilization by fungal decomposers. Mycoscience, 2003, 44, 41-45.	0.3	44
34	Functional diversity of ligninolytic fungi associated with leaf litter decomposition. Ecological Research, 2020, 35, 30-43.	0.7	44
35	Colonization and succession of fungi during decomposition of <i>Swida controversa </i> leaf litter. Mycologia, 2005, 97, 589-597.	0.8	43
36	Effects of prior decomposition of Camellia japonica leaf litter by an endophytic fungus on the subsequent decomposition by fungal colonizers. Mycoscience, 2009, 50, 52-55.	0.3	42

#	Article	IF	CITATIONS
37	Abundance, diversity, and species composition of fungal communities in a temperate forest affected by excreta of the Great Cormorant Phalacrocorax carbo. Soil Biology and Biochemistry, 2002, 34, 1537-1547.	4.2	41
38	Fungal colonization as affected by litter depth and decomposition stage of needle litter. Soil Biology and Biochemistry, 2006, 38, 2743-2752.	4.2	41
39	Plant species effect on the decomposition and chemical changes of leaf litter in grassland and pine and oak forest soils. Plant and Soil, 2014, 376, 411-421.	1.8	41
40	Diversity and functioning of fungi associated with leaf litter decomposition in Asian forests of different climatic regions. Fungal Ecology, 2011, 4, 375-385.	0.7	37
41	Biodiversity–ecosystem function relationships change through primary succession. Oikos, 2017, 126, 1637-1649.	1.2	37
42	Temporal distance decay of similarity of ectomycorrhizal fungal community composition in a subtropical evergreen forest in Japan. FEMS Microbiology Ecology, 2016, 92, fiw061.	1.3	36
43	Limit values for decomposition and convergence process of lignocellulose fraction in decomposing leaf litter of 14 tree species in a cool temperate forest. Ecological Research, 2005, 20, 51-58.	0.7	35
44	Fungal colonization and decomposition of <i>Castanopsis sieboldii</i> leaves in a subtropical forest. Ecological Research, 2008, 23, 909-917.	0.7	35
45	Microfungus communities of Japanese beech logs at different stages of decay in a cool temperate deciduous forest. Canadian Journal of Forest Research, 2009, 39, 1606-1614.	0.8	35
46	Title is missing!. Water, Air, and Soil Pollution, 2001, 130, 679-684.	1.1	33
47	Roles of Diverse Fungi in Larch Needle-Litter Decomposition. Mycologia, 2003, 95, 820.	0.8	33
48	Reduction of fungal growth and lignin decomposition in needle litter by avian excreta. Soil Biology and Biochemistry, 2006, 38, 1623-1630.	4.2	33
49	Microfungi associated with Abies needles and Betula leaf litter in a subalpine coniferous forest. Canadian Journal of Microbiology, 2007, 53, 1-7.	0.8	33
50	Pattern of natural 15N abundance in lakeside forest ecosystem affected by cormorant-derived nitrogen. Hydrobiologia, 2006, 567, 69-86.	1.0	32
51	Distribution of phyllosphere fungi within the canopy of giant dogwood. Mycoscience, 2004, 45, 161-168.	0.3	31
52	Decomposition of Japanese beech wood by diverse fungi isolated from a cool temperate deciduous forest. Mycoscience, 2005, 46, 97-101.	0.3	30
53	Accumulation of carbon and nitrogen in vegetation and soils of deglaciated area in Ellesmere Island, high-Arctic Canada. Polar Science, 2016, 10, 288-296.	0.5	30
54	Colonization and lignin decomposition of pine needle litter by <i>Lophodermium pinastri</i> Pathology, 2011, 41, 156-162.	0.5	29

#	Article	IF	CITATIONS
55	Accumulation and decay dynamics of coarse woody debris in a Japanese oldâ€growth subalpine coniferous forest. Ecological Research, 2014, 29, 257-269.	0.7	29
56	Diversity and community assembly of moss-associated fungi in ice-free coastal outcrops of continental Antarctica. Fungal Ecology, 2016, 24, 94-101.	0.7	29
57	Functional redundancy of multiple forest taxa along an elevational gradient: predicting the consequences of nonâ€random species loss. Journal of Biogeography, 2015, 42, 1383-1396.	1.4	28
58	Decomposition of wood, petiole and leaf litter by Xylaria species from northern Thailand. Fungal Ecology, 2011, 4, 210-218.	0.7	27
59	Colonization of Japanese beech leaves by phyllosphere fungi. Mycoscience, 2003, 44, 437-441.	0.3	26
60	Seasonal and leaf age-dependent changes in occurrence of phyllosphere fungi of giant dogwood. Mycoscience, 2005, 46, 273-279.	0.3	26
61	Diversity and ubiquity of xylariaceous endophytes in live and dead leaves of temperate forest trees. Mycoscience, 2013, 54, 54-61.	0.3	26
62	Selective lignin decomposition and nitrogen mineralization in forest litter colonized by Clitocybe sp European Journal of Soil Biology, 2011, 47, 114-121.	1.4	25
63	Assessment of the fungal diversity and succession of ligninolytic endophytes in Camellia japonica leaves using clone library analysis. Mycologia, 2013, 105, 837-843.	0.8	24
64	Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia, 2002, 94, 421-7.	0.8	24
65	Beech log decomposition by woodâ€inhabiting fungi in a cool temperate forest floor: a quantitative analysis focused on the decay activity of a dominant basidiomycete <i>Omphalotus guepiniformis</i> Ecological Research, 2010, 25, 959-966.	0.7	23
66	Decomposition of grass leaves by ligninolytic litterâ€decomposing fungi. Grassland Science, 2010, 56, 31-36.	0.6	21
67	Leaf litter decomposition of 12 tree species in a subtropical forest in Japan. Ecological Research, 2017, 32, 413-422.	0.7	21
68	Comparison of the diversity, composition, and host recurrence of xylariaceous endophytes in subtropical, cool temperate, and subboreal regions in Japan. Population Ecology, 2014, 56, 289-300.	0.7	20
69	Metagenomic Approach Yields Insights into Fungal Diversity and Functioning. SpringerBriefs in Biology, 2014, , 1-23.	0.5	20
70	Development and seasonal variations of Lophodermium populations on Pinus thunbergii needle litter. Mycoscience, 2006, 47, 242-247.	0.3	19
71	Colonization and decomposition of salal (Gaultheria shallon) leaf litter by saprobic fungi in successional forests on coastal British Columbia. Canadian Journal of Microbiology, 2008, 54, 427-434.	0.8	19
72	Altitudinal distribution of microfungi associated with <i>Betula ermanii</i> leaf litter on Mt. Rishiri, northern Japan. Canadian Journal of Microbiology, 2009, 55, 783-789.	0.8	18

#	Article	IF	CITATIONS
73	Effects of temperature and litter type on fungal growth and decomposition of leaf litter. Mycoscience, 2011, 52, 327-332.	0.3	18
74	Light quality determines primary production in nutrient-poor small lakes. Scientific Reports, 2019, 9, 4639.	1.6	18
75	Endophytic fungi associated with leaves of Betulaceae in Japan. Canadian Journal of Microbiology, 2012, 58, 507-515.	0.8	16
76	Fungal decomposition of woody debris of <i>Castanopsis sieboldii</i> in a subtropical oldâ€growth forest. Ecological Research, 2012, 27, 211-218.	0.7	16
77	Beech cupules share endophytic fungi with leaves and twigs. Mycoscience, 2015, 56, 252-256.	0.3	16
78	Abundant deposits of nutrients inside lakebeds of Antarctic oligotrophic lakes. Polar Biology, 2017, 40, 603-613.	0.5	16
79	Abundance and diversity of fungi in relation to chemical changes in arctic moss profiles. Polar Science, 2012, 6, 121-131.	0.5	15
80	Effects of clear-cutting on decomposition processes in leaf litter and the nitrogen and lignin dynamics in a temperate secondary forest. Journal of Forest Research, 2007, 12, 247-254.	0.7	14
81	Microfungi associated with withering willow wood in ground contact near Syowa Station, East Antarctica for 40Âyears. Polar Biology, 2013, 36, 919-924.	0.5	14
82	Fungal succession and decomposition of beech cupule litter. Ecological Research, 2012, 27, 735-743.	0.7	13
83	Endophytic and epiphytic phyllosphere fungi of red-osier dogwood (Cornus stolonifera) in British Columbia. Mycoscience, 2007, 48, 47-52.	0.3	12
84	Diversity and Ecology of Endophytic and Epiphytic Fungi of Tree Leaves in Japan: A Review., 2014, , 3-26.		12
85	Diversity, resource utilization, and phenology of fruiting bodies of litter-decomposing macrofungi in subtropical, temperate, and subalpine forests. Journal of Forest Research, 2015, 20, 60-68.	0.7	12
86	Litter quality control of decomposition of leaves, twigs, and sapwood by the white-rot fungus Trametes versicolor. European Journal of Soil Biology, 2017, 80, 1-8.	1.4	12
87	Microfungal diversity associated with <i>Kindbergia oregana</i> in successional forests of British Columbia. Ecological Research, 2012, 27, 35-41.	0.7	11
88	Effects of litter type, origin of isolate, and temperature on decomposition of leaf litter by macrofungi. Journal of Forest Research, 2015, 20, 77-84.	0.7	11
89	Abundance, richness, and succession of microfungi in relation to chemical changes in Antarctic moss profiles. Polar Biology, 2017, 40, 2457-2468.	0.5	11
90	Fungal succession and decomposition of composted aquatic plants applied to soil. Fungal Ecology, 2018, 35, 34-41.	0.7	11

#	Article	IF	Citations
91	Fungal colonization and decomposition of leaves and stems of Salix arctica on deglaciated moraines in high-Arctic Canada. Polar Science, 2014, 8, 207-216.	0.5	10
92	Decomposing ability of diverse litter-decomposer macrofungi in subtropical, temperate, and subalpine forests. Journal of Forest Research, 2015, 20, 272-280.	0.7	10
93	Evaluation of host effects on ectomycorrhizal fungal community compositions in a forested landscape in northern Japan. Royal Society Open Science, 2020, 7, 191952.	1.1	10
94	Small-scale variation in chemical property within logs of Japanese beech in relation to spatial distribution and decay ability of fungi. Mycoscience, 2005, 46, 209-214.	0.3	9
95	Consequences of gall tissues as a food resource for a tortricid moth attacking cecidomyiid galls. Canadian Entomologist, 2006, 138, 390-398.	0.4	9
96	Hyphal length in the forest floor and soil of subtropical, temperate, and subalpine forests. Journal of Forest Research, 2015, 20, 69-76.	0.7	9
97	Taxonomic, functional, and phylogenetic diversity of fungi along primary successional and elevational gradients near Mount Robson, British Columbia. Polar Science, 2019, 21, 165-171.	0.5	9
98	Geographical distributions of rhytismataceous fungi on Camellia japonica leaf litter in Japan. Fungal Ecology, 2017, 26, 37-44.	0.7	8
99	Biogeographic Patterns of Ectomycorrhizal Fungal Communities Associated With Castanopsis sieboldii Across the Japanese Archipelago. Frontiers in Microbiology, 2019, 10, 2656.	1.5	8
100	Internal transcribed spacer haplotype diversity and their geographical distribution in Dasyscyphella longistipitata (Hyaloscyphaceae, Helotiales) occurring on Fagus crenata cupules in Japan. Mycoscience, 2010, 51, 116-122.	0.3	7
101	Resource utilization of wood decomposers: mycelium nuclear phases and host tree species affect wood decomposition by Dacrymycetes. Fungal Ecology, 2014, 9, 11-16.	0.7	7
102	Mass, nitrogen content, and decomposition of woody debris in forest stands affected by excreta deposited in nesting colonies of Great Cormorant. Ecological Research, 2015, 30, 555-561.	0.7	7
103	Bleaching of leaf litter and associated microfungi in subboreal and subalpine forests. Canadian Journal of Microbiology, 2015, 61, 735-743.	0.8	7
104	Diversity and Geographic Distribution of Ligninolytic Fungi Associated With Castanopsis sieboldii Leaf Litter in Japan. Frontiers in Microbiology, 2020, 11, 595427.	1.5	7
105	Pattern of natural 15N abundance in lakeside forest ecosystem affected by cormorant-derived nitrogen., 2006,, 69-86.		7
106	Positive interaction facilitates landscape homogenization by shrub expansion in the forest–tundra ecotone. Journal of Vegetation Science, 2020, 31, 234-244.	1.1	6
107	Application of 13C NMR spectroscopy to characterize organic chemical components of decomposing coarse woody debris from different climatic regions. Annals of Forest Research, 2015, 58, 3.	0.6	6
108	Inter- and intraspecific variations of the chemical properties of high-Arctic mosses along water-regime gradients. Polar Science, 2009, 3, 134-138.	0.5	5

7

#	Article	IF	CITATIONS
109	Colonization and decomposition of leaf litter by ligninolytic fungi inAcacia mangiumplantations and adjacent secondary forests. Journal of Forest Research, 2012, 17, 51-57.	0.7	5
110	Bacterial 16S rDNA and alkaline phosphatase gene diversity in soil applied with composted aquatic plants. Limnology, 2020, 21, 357-364.	0.8	5
111	Identifying microbial drivers promoting plant growth on soil amended with composted aquatic plant: insight into nutrient transfer from aquatic to terrestrial systems. Limnology, 2020, 21, 443-452.	0.8	5
112	Taxonomic, functional, and phylogenetic diversity of fungi in a forest-tundra ecotone in Québec. Polar Science, 2021, 27, 100594.	0.5	5
113	Bleaching of leaf litter accelerates the decomposition of recalcitrant components and mobilization of nitrogen in a subtropical forest. Scientific Reports, 2021 , 11 , 1787 .	1.6	5
114	Roles of diverse fungi in larch needle-litter decomposition. Mycologia, 2003, 95, 820-6.	0.8	5
115	Species Diversity and Community Structure. SpringerBriefs in Biology, 2014, , .	0.5	4
116	Decomposition of Organic Chemical Components in Wood by Tropical Xylaria Species. Journal of Fungi (Basel, Switzerland), 2020, 6, 186.	1.5	4
117	Variability of decomposing ability among fungi associated with the bleaching of subtropical leaf litter. Mycologia, 2021, 113, 703-714.	0.8	4
118	Two-years of investigation revealed the inconsistency of seasonal dynamics of an ectomycorrhizal fungal community in Japanese cool-temperate forest across years. FEMS Microbiology Ecology, 2020, 96, .	1.3	3
119	The ectomycorrhizal fungal communities react differently to climatic, edaphic and spatial variables depending on their host species. Journal of Biogeography, 2021, 48, 2550-2561.	1.4	3
120	Prolonged impacts of past agriculture and ungulate overabundance on soil fungal communities in restored forests. Environmental DNA, 2021, 3, 930-939.	3.1	2
121	Microfungi associated with a myrmecophyte Macaranga bancana. Tropics, 2013, 22, 19-25.	0.2	2
122	Metabolic Diversity of Xylariaceous Fungi Associated with Leaf Litter Decomposition. Journal of Fungi (Basel, Switzerland), 2022, 8, 701.	1.5	2
123	Occurrence, hyphal growth rate, and carbon source utilization of fungi from continental Antarctica. Polar Science, 2022, 31, 100738.	0.5	1
124	Functionally explicit partitioning of plant \hat{l}^2 -diversity reveal soil fungal assembly in the subarctic tundra. FEMS Microbiology Ecology, 2021, 97, .	1.3	1
125	Integrative assessment of the effects of shrub coverage on soil respiration in a tundra ecosystem. Polar Science, 2021, 27, 100562.	0.5	0
126	Diversity and host recurrence of fungi associated with the bleached leaf litter in a subtropical forest. Fungal Ecology, 2021, 54, 101113.	0.7	0

Takashi Osono

#	Article	IF	CITATIONS
127	Distribution and functional data of fungal families. Ecological Research, 0, , .	0.7	0