Claire Rampon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1701889/publications.pdf

Version: 2024-02-01

				159585		168389
ı	56		7,184	30		53
ı	papers		citations	h-index		g-index
ı						
ı		. '			. '	
	60		60	60		8183
	all docs		docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Genetic enhancement of learning and memory in mice. Nature, 1999, 401, 63-69.	27.8	1,666
2	Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nature Neuroscience, 2000, 3, 238-244.	14.8	699
3	Effects of environmental enrichment on gene expression in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12880-12884.	7.1	550
4	NMDA Receptor-Dependent Synaptic Reinforcement as a Crucial Process for Memory Consolidation. Science, 2000, 290, 1170-1174.	12.6	495
5	Deficient Neurogenesis in Forebrain-Specific Presenilin-1 Knockout Mice Is Associated with Reduced Clearance of Hippocampal Memory Traces. Neuron, 2001, 32, 911-926.	8.1	443
6	New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. European Journal of Neuroscience, 2005, 21, 513-521.	2.6	419
7	Role and Origin of the GABAergic Innervation of Dorsal Raphe Serotonergic Neurons. Journal of Neuroscience, 2000, 20, 4217-4225.	3.6	274
8	Long-Term Potentiation Enhances Neurogenesis in the Adult Dentate Gyrus. Journal of Neuroscience, 2006, 26, 5888-5893.	3.6	254
9	Adult Hippocampal Neurogenesis, Synaptic Plasticity and Memory: Facts and Hypotheses. Reviews in the Neurosciences, 2007, 18, 93-114.	2.9	224
10	Alzheimer's-Type Amyloidosis in Transgenic Mice Impairs Survival of Newborn Neurons Derived from Adult Hippocampal Neurogenesis. Journal of Neuroscience, 2007, 27, 6771-6780.	3.6	203
11	Distribution of glycine-immunoreactive cell bodies and fibers in the rat brain. Neuroscience, 1996, 75, 737-755.	2.3	185
12	Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5919-5924.	7.1	169
13	Lower brainstem catecholamine afferents to the rat dorsal raphe nucleus. , 1996, 364, 402-413.		118
14	Young hippocampal neurons are critical for recent and remote spatial memory in adult mice. Neuroscience, 2010, 171, 769-778.	2.3	108
15	Metformin Promotes Anxiolytic and Antidepressant-Like Responses in Insulin-Resistant Mice by Decreasing Circulating Branched-Chain Amino Acids. Journal of Neuroscience, 2019, 39, 5935-5948.	3.6	93
16	Impaired neurogenesis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer's disease. Neurobiology of Aging, 2011, 32, 407-418.	3.1	86
17	Genetic manipulation of adult-born hippocampal neurons rescues memory in a mouse model of Alzheimer's disease. Brain, 2015, 138, 440-455.	7.6	80
18	proBDNF is modified by advanced glycation end products in Alzheimer's disease and causes neuronal apoptosis by inducing p75 neurotrophin receptor processing. Molecular Brain, 2018, 11, 68.	2.6	79

#	Article	IF	CITATIONS
19	Genetic analysis of learning behavior-induced structural plasticity. Hippocampus, 2000, 10, 605-609.	1.9	77
20	Modifications of Hippocampal Circuits and Early Disruption of Adult Neurogenesis in the Tg2576 Mouse Model of Alzheimer's Disease. PLoS ONE, 2013, 8, e76497.	2.5	69
21	Early Onset of Hypersynchronous Network Activity and Expression of a Marker of Chronic Seizures in the Tg2576 Mouse Model of Alzheimer's Disease. PLoS ONE, 2015, 10, e0119910.	2.5	68
22	VIP-like immunoreactive projections from the dorsal raphe and caudal linear raphe nuclei to the bed nucleus of the stria terminalis demonstrated by a double immunohistochemical method in the rat. Neuroscience Letters, 1995, 193, 77-80.	2.1	61
23	Reinstating plasticity and memory in a tauopathy mouse model with an acetyltransferase activator. EMBO Molecular Medicine, $2018,10,10$	6.9	61
24	Transient enriched housing before amyloidosis onset sustains cognitive improvement in Tg2576 mice. Neurobiology of Aging, 2013, 34, 211-225.	3.1	59
25	Attenuated Levels of Hippocampal Connexin 43 and its Phosphorylation Correlate with Antidepressant- and Anxiolytic-Like Activities in Mice. Frontiers in Cellular Neuroscience, 2015, 9, 490.	3.7	58
26	Human iPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies. Stem Cell Reports, 2020, 15, 256-273.	4.8	49
27	Origin of the glycinergic innervation of the rat trigeminal motor nucleus. NeuroReport, 1996, 7, 3081-3086.	1.2	46
28	Hippocampal neurogenesis during normal and pathological aging. Psychoneuroendocrinology, 2007, 32, S26-S30.	2.7	44
29	Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat. Neuroscience, 2006, 142, 37-47.	2.3	42
30	Mitochondria in Developmental and Adult Neurogenesis. Neurotoxicity Research, 2019, 36, 257-267.	2.7	39
31	Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome. Experimental Neurology, 2009, 220, 341-348.	4.1	35
32	Amplifying mitochondrial function rescues adult neurogenesis in a mouse model of Alzheimer's disease. Neurobiology of Disease, 2017, 102, 113-124.	4.4	31
33	Origins of the glycinergic inputs to the rat locus coeruleus and dorsal raphe nuclei: a study combining retrograde tracing with glycine immunohistochemistry. European Journal of Neuroscience, 1999, 11, 1058-1066.	2.6	29
34	NCAM Function in the Adult Brain: Lessons from Mimetic Peptides and Therapeutic Potential. Neurochemical Research, 2013, 38, 1163-1173.	3.3	25
35	Differential alteration of hippocampal function and plasticity in females and males of the APPxPS1 mouse model of Alzheimer's disease. Neurobiology of Aging, 2017, 57, 220-231.	3.1	25
36	The neural cell adhesion molecule-derived peptide FGL facilitates long-term plasticity in the dentate gyrus in vivo. Learning and Memory, 2011, 18, 306-313.	1.3	23

3

#	Article	IF	CITATIONS
37	Targeting hippocampal adult neurogenesis using transcription factors to reduce Alzheimer's diseaseâ€associated memory impairments. Hippocampus, 2019, 29, 579-586.	1.9	22
38	Altered inhibitory function in hippocampal CA2 contributes in social memory deficits in Alzheimer's mouse model. IScience, 2022, 25, 103895.	4.1	21
39	Combined Experimental and Simulation Studies Suggest a Revised Mode of Action of the Antiâ€Alzheimer Disease Drug NQâ€₹rp. Chemistry - A European Journal, 2015, 21, 12657-12666.	3.3	20
40	Memory formation orchestrates the wiring of adult-born hippocampal neurons into brain circuits. Brain Structure and Function, 2017, 222, 2585-2601.	2.3	17
41	Age-related memory decline, dysfunction of the hippocampus and therapeutic opportunities. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 102, 109943.	4.8	16
42	Activation of nociceptin/orphanin FQ receptors inhibits contextual fear memory reconsolidation. Neuropharmacology, 2017, 125, 39-49.	4.1	15
43	Lack of correlation between the activity of the mesolimbic dopaminergic system and the rewarding properties of pregabalin in mouse. Psychopharmacology, 2019, 236, 2069-2082.	3.1	14
44	Hippocampal expression of a virus-derived protein impairs memory in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1611-1616.	7.1	12
45	Gene Control of Synaptic Plasticity and Memory Formation: Implications for Diseases and Therapeutic Strategies. Current Molecular Medicine, 2002, 2, 613-628.	1.3	11
46	Environmental enrichment does not influence hypersynchronous network activity in the Tg2576 mouse model of Alzheimer's disease. Frontiers in Aging Neuroscience, 2015, 7, 178.	3.4	10
47	Prolonged Consumption of Sweetened Beverages Lastingly Deteriorates Cognitive Functions and Reward Processing in Mice. Cerebral Cortex, 2022, 32, 1365-1378.	2.9	10
48	Environmental enrichment rescues memory in mice deficient for the polysialytransferase ST8SialV. Brain Structure and Function, 2016, 221, 1591-1605.	2.3	9
49	Sub-regions of the dorsal raph \tilde{A} \otimes nucleus receive different inputs from the brainstem. Sleep Medicine, 2018, 49, 53-63.	1.6	8
50	D1/5 dopamine receptors are necessary for learning a novel context. Learning and Memory, 2022, 29, 142-145.	1.3	4
51	proNGF Involvement in the Adult Neurogenesis Dysfunction in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 10744.	4.1	3
52	What's New on Alzheimer's Disease? Insights From AD Mouse Models. , 2019, , 431-431.		1
53	Inhibitory Mechanisms in the Dorsal Raphe Nucleus and Locus Coeruleus During Sleep. , 1998, , .		1
54	Molecular and electrophysiological features of GABAergic neurons in the dentate gyrus reveal limited homology with cortical interneurons. PLoS ONE, 2022, 17, e0270981.	2.5	1

#	Article	IF	CITATIONS
55	Amyloidogenesis, Neurogenesis, Learning, and Memory in Alzheimer's Disease: Lessons from Transgenic Mouse Models. Modecular Medicine and Medicinal, 2013, , 157-186.	0.4	O
56	Young Neurons Tickle Memory during REM Sleep. Neuron, 2020, 107, 397-398.	8.1	0