Michelle A Ozbun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1701694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Cellular Entry of Human Papillomavirus Type 16 Involves Activation of the Phosphatidylinositol 3-Kinase/Akt/mTOR Pathway and Inhibition of Autophagy. Journal of Virology, 2013, 87, 2508-2517.	3.4	194
3	Synthesis of infectious human papillomavirus type 18 in differentiating epithelium transfected with viral DNA. Journal of Virology, 1997, 71, 7381-7386.	3.4	163
4	Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. Journal of Virology, 1997, 71, 5161-5172.	3.4	153
5	Essential Roles for Soluble Virion-Associated Heparan Sulfonated Proteoglycans and Growth Factors in Human Papillomavirus Infections. PLoS Pathogens, 2012, 8, e1002519.	4.7	149
6	Annexin A2 and S100A10 Regulate Human Papillomavirus Type 16 Entry and Intracellular Trafficking in Human Keratinocytes. Journal of Virology, 2013, 87, 7502-7515.	3.4	114
7	Human Papillomavirus Type 31 Uses a Caveolin 1- and Dynamin 2-Mediated Entry Pathway for Infection of Human Keratinocytes. Journal of Virology, 2007, 81, 9922-9931.	3.4	113
8	Human Papillomavirus L2 Facilitates Viral Escape from Late Endosomes via Sorting Nexin 17. Traffic, 2012, 13, 455-467.	2.7	111
9	Temporal Usage of Multiple Promoters during the Life Cycle of Human Papillomavirus Type 31b. Journal of Virology, 1998, 72, 2715-2722.	3.4	99
10	Caveolin-1-Dependent Infectious Entry of Human Papillomavirus Type 31 in Human Keratinocytes Proceeds to the Endosomal Pathway for pH-Dependent Uncoating. Journal of Virology, 2008, 82, 9505-9512.	3.4	94
11	Human Papillomavirus Type 31b E1 and E2 Transcript Expression Correlates with Vegetative Viral Genome Amplification. Virology, 1998, 248, 218-230.	2.4	91
12	Human Papillomavirus Type 31b Infection of Human Keratinocytes and the Onset of Early Transcription. Journal of Virology, 2002, 76, 11291-11300.	3.4	88
13	The Minor Capsid Protein L2 Contributes to Two Steps in the Human Papillomavirus Type 31 Life Cycle. Journal of Virology, 2005, 79, 3938-3948.	3.4	87
14	Nitric Oxide Induces Early Viral Transcription Coincident with Increased DNA Damage and Mutation Rates in Human Papillomavirus–Infected Cells. Cancer Research, 2009, 69, 4878-4884.	0.9	82
15	Tumor Suppressor p53 Mutations and Breast Cancer: A Critical Analysis. Advances in Cancer Research, 1995, 66, 71-141.	5.0	79
16	Variable expression of some "housekeeping―genes during human keratinocyte differentiation. Analytical Biochemistry, 2002, 307, 341-347.	2.4	76
17	Human and primate tumour viruses use PDZ binding as an evolutionarily conserved mechanism of targeting cell polarity regulators. Oncogene, 2009, 28, 1-8.	5.9	68
18	Human Papillomavirus Type 31b Infection of Human Keratinocytes Does Not Require Heparan Sulfate. Journal of Virology, 2005, 79, 6838-6847.	3.4	66

MICHELLE A OZBUN

#	Article	IF	CITATIONS
19	Sumoylation dynamics during keratinocyte differentiation. Journal of Cell Science, 2007, 120, 125-136.	2.0	63
20	Virus activated filopodia promote human papillomavirus type 31 uptake from the extracellular matrix. Virology, 2008, 381, 16-21.	2.4	59
21	Two Highly Conserved Cysteine Residues in HPV16 L2 Form an Intramolecular Disulfide Bond and Are Critical for Infectivity in Human Keratinocytes. PLoS ONE, 2009, 4, e4463.	2.5	57
22	Interaction of human papillomavirus type 16 particles with heparan sulfate and syndecan-1 molecules in the keratinocyte extracellular matrix plays an active role in infection. Journal of General Virology, 2015, 96, 2232-2241.	2.9	55
23	Propagation of infectious human papillomavirus type 16 by using an adenovirus and Cre/LoxP mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2094-2099.	7.1	54
24	Using an Immortalized Cell Line to Study the HPV Life Cycle in Organotypic. , 2005, 119, 141-156.		52
25	Infectious human papillomavirus type 31b: purification and infection of an immortalized human keratinocyte cell line. Journal of General Virology, 2002, 83, 2753-2763.	2.9	48
26	Transforming growth factor beta1 induces differentiation in human papillomavirus-positive keratinocytes. Journal of Virology, 1996, 70, 5437-5446.	3.4	45
27	The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy. Analytical Biochemistry, 2007, 364, 180-192.	2.4	44
28	Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting. Scientific Reports, 2017, 7, 4243.	3.3	38
29	Tobacco exposure results in increased E6 and E7 oncogene expression, DNA damage and mutation rates in cells maintaining episomal human papillomavirus 16 genomes. Carcinogenesis, 2014, 35, 2373-2381.	2.8	37
30	Opposing Effects of Bacitracin on Human Papillomavirus Type 16 Infection: Enhancement of Binding and Entry and Inhibition of Endosomal Penetration. Journal of Virology, 2012, 86, 4169-4181.	3.4	36
31	Extracellular events impacting human papillomavirus infections: Epithelial wounding to cell signaling involved in virus entry. Papillomavirus Research (Amsterdam, Netherlands), 2019, 7, 188-192.	4.5	34
32	Cross-talk Signaling between HER3 and HPV16 E6 and E7 Mediates Resistance to PI3K Inhibitors in Head and Neck Cancer. Cancer Research, 2018, 78, 2383-2395.	0.9	31
33	Tobacco Exposure Enhances Human Papillomavirus 16 Oncogene Expression via EGFR/PI3K/Akt/c-Jun Signaling Pathway in Cervical Cancer Cells. Frontiers in Microbiology, 2018, 9, 3022.	3.5	31
34	Two Novel Promoters in the Upstream Regulatory Region of Human Papillomavirus Type 31b Are Negatively Regulated by Epithelial Differentiation. Journal of Virology, 1999, 73, 3505-3510.	3.4	31
35	Immunization with a consensus epitope from human papillomavirus L2 induces antibodies that are broadly neutralizing. Vaccine, 2014, 32, 4267-4274.	3.8	27
36	Using Organotypic (Raft) Epithelial Tissue Cultures for the Biosynthesis and Isolation of Infectious Human Papillomaviruses. Current Protocols in Microbiology, 2014, 34, 14B.3.1-18.	6.5	22

MICHELLE A OZBUN

#	Article	IF	CITATIONS
37	MEK/ERK signaling is a critical regulator of high-risk human papillomavirus oncogene expression revealing therapeutic targets for HPV-induced tumors. PLoS Pathogens, 2021, 17, e1009216.	4.7	22
38	Inducible heat shock protein 70 enhances HPV31 viral genome replication and virion production during the differentiation-dependent life cycle in human keratinocytes. Virus Research, 2010, 147, 113-122.	2.2	19
39	The Known and Potential Intersections of Rab-GTPases in Human Papillomavirus Infections. Frontiers in Cell and Developmental Biology, 2019, 7, 139.	3.7	18
40	The long and winding road: human papillomavirus entry and subcellular trafficking. Current Opinion in Virology, 2021, 50, 76-86.	5.4	18
41	p53 mutations selected in vivo when mouse mammary epithelial cells form hyperplastic outgrowths are not necessary for establishment of mammary cell lines in vitro. Cancer Research, 1993, 53, 1646-52.	0.9	16
42	MAPKAPK2 (MK2) inhibition mediates radiation-induced inflammatory cytokine production and tumor growth in head and neck squamous cell carcinoma. Oncogene, 2019, 38, 7329-7341.	5.9	15
43	Infectious titres of human papillomaviruses (HPVs) in patient lesions, methodological considerations in evaluating HPV infectivity and implications for the efficacy of high-level disinfectants. EBioMedicine, 2021, 63, 103165.	6.1	11
44	Glycogen Phosphorylase: Developmental Expression in Rat Liver. Neonatology, 1993, 63, 113-119.	2.0	5
45	Protamine Sulfate Is a Potent Inhibitor of Human Papillomavirus Infection <i>In Vitro</i> and <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0151321.	3.2	2
46	Cetuximab Has Antiviral Activities in Human Papillomavirus (HPV)-Infected Cells and HPV-Associated Tumors. International Journal of Radiation Oncology Biology Physics, 2016, 94, 937-938.	0.8	1
47	Molecular and immune signature of HPV-positive oral cavity squamous cell carcinoma. Oral Oncology, 2021, 116, 105175.	1.5	1
48	TP53 Tumor Suppressor Gene: Structure and Function. , 2002, , 415-431.		0
49	Abstract 3176: The EGFR pathway as the Achilles' heel for human papillomavirus-induced tumors: EGFR/MAPK pathway inhibitors exhibit antiviral activities and limit tumor growthin vivo. , 2014, , .		Ο
50	Protamine sulfate may prevent infections by pathogens that require heparan sulfate proteoglycan interactions, including high- and low-risk Human Papillomaviruses and Chlamydia trachomatis Journal of Clinical Oncology, 2019, 37, e13065-e13065.	1.6	0
51	Assessing the Efficacy of Human Papillomavirus Disinfection and the Risk of Transmission from Clinical Lesions. American Journal of Infection Control, 2020, 48, S3-S4.	2.3	0